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Preface

This LNCS volume contains the papers presented at the 3rd International Con-
ference on Advances in Pattern Recognition (ICAPR 2005) organized in August,
2005 in the beautiful city of Bath, UK. The conference was first organized in
November 1998 in Plymouth, UK and subsequently in March 2001 in Rio de
Janeiro, Brazil. The conference encouraged papers that made significant theo-
retical and application-based contributions in pattern recognition. The emphasis
was on an open exchange of ideas and shared learning. The papers submitted
to ICAPR 2005 were thoroughly reviewed by up to three referees per paper and
less than 40% of the submitted papers were accepted. The papers have been
finally published as two volumes of LNCS and these are organized under the
themes of Pattern Recognition and Data Mining (which included papers from
the tracks on Pattern Recognition Methods, Knowledge and Learning, and Data
Mining), and Pattern Recognition and Image Analysis (which included papers
from the Applications track). From the conference technical programme point
of view, the first volume contains papers on pattern recognition, data mining,
signal processing and OCR/document analysis. The second volume contains pa-
pers from the Workshop on Pattern Recognition for Crime Prevention, Security
and Surveillance, Biometrics, Image Processing and Medical Imaging.

ICAPR 2005 was run in parallel with the International Workshop on Pattern
Recognition for Crime Prevention, Security and Surveillance that was organized
on the 22nd of August, 2005. This workshop brought together a number of excel-
lent papers that focussed on how pattern recognition techniques can be used to
develop systems that help with crime prevention and detection. On the same day,
a number of tutorials were also organized. Each tutorial focussed on a specific
research area and gave an exhaustive overview of the scientific tools and state-
of-the-art research in that area. The tutorials organized dealt with the topics of
Computational Face Recognition (given by Dr. Babback Moghaddam, MERL,
USA), 2-D and 3-D Level Set Applications for Medical Imagery (given by Dr.
Jasjit Suri, Biomedical Technologies, USA; Dr. Gilson Antonio Giraldi, National
Laboratory of Computer Science, Brazil; Prof. Sameer Singh, Loughborough
University, UK; and Prof. Swamy Laxminarayan, Idaho State University, USA),
Geometric Graphs for Instance-Based Learning (given by Prof. Godfried Tous-
saint, McGill University, Canada), and Dissimilarity Representations in Pattern
Recognition (given by Prof. Bob Duin and Elzbieta Pekalska, Delft University
of Technology, The Netherlands).

The conference also had three plenary speeches that were much appreciated
by the audience. On the first day of the conference, Prof. David Hogg from
the University of Leeds, UK gave an excellent speech on learning from objects
and activities. On the second day of the conference Prof. Ingemar Cox from
University College London, UK gave the second plenary speech. On the final
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day of the conference Prof. John Oommen from Carlton University, Canada
gave a plenary speech on the general problem of syntactic pattern recognition
and string processing.

ICAPR was a fully reviewed and well-run conference. We would like to thank
a number of people for their contribution to the review process, especially the
Program Chairs, Tutorial Chair Dr. Majid Mirmehdi and Workshops Chair Prof.
Marco Gori. The members of the Program Committee did an excellent job with
reviewing most of the papers. Some papers were also reviewed by academics who
were not in the committee and we thank them for their efforts. We would also like
to thank the local arrangements committee and University of Bath Conference
Office for their efforts in ensuring that the conference ran smoothly. In particular,
our thanks are due to Dr. Maneesha Singh, Organizing Chair and Mr. Harish
Bhaskar, Organizing Manager who both worked tirelessly. The conference was
supported by the British Computer Society and a number of local companies
within the UK. We would like to thank Springer in extending their support to
publish the proceedings as LNCS volumes. Finally, we thank all the delegates
who attended the conference and made it a success.

August 2005 Sameer Singh
Maneesha Singh

Chid Apte
Petra Perner
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Jesús M. Pérez, Javier Muguerza, Olatz Arbelaitz, Ibai Gurrutxaga,
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José I. Mart́ın . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

Missing Data Estimation Using Polynomial Kernels
Maxime Berar, Michel Desvignes, Gérard Bailly, Yohan Payan,
Barbara Romaniuk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390

Predictive Model for Protein Function Using Modular Neural Approach
Doosung Hwang, Ungmo Kim, Jaehun Choi, Jeho Park,
Janghee Yoo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400

Using kNN Model for Automatic Feature Selection
Gongde Guo, Daniel Neagu, Mark T.D. Cronin . . . . . . . . . . . . . . . . . . . . 410

Multi-view EM Algorithm for Finite Mixture Models
Xing Yi, Yunpeng Xu, Changshui Zhang . . . . . . . . . . . . . . . . . . . . . . . . . . 420

Segmentation Evaluation Using a Support Vector Machine
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Vicente Atienza, Ángel Rodas, Gabriela Andreu, Alberto Pérez . . . . . . 636

Hybrid OCR Combination for Ancient Documents
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Rémi Landais, Laurent Vinet, Jean-Michel Jolion . . . . . . . . . . . . . . . . . . 674

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 685



 

S. Singh et al. (Eds.): ICAPR 2005, LNCS 3687, pp. 1 – 10, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Image Enhancement Optimization for Hand-Luggage 
Screening at Airports 

Maneesha Singh and Sameer Singh 
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University of Loughborough, Loughborough, UK 

Abstract. Image enhancement is very important for increasing the sensitivity of 
screening luggage performance at airports. On the basis of 11 statistical 
measures of image viewability we propose a novel approach to optimizing the 
choice of image enhancement tools. We propose a neural network predictor that 
can be used for predicting, on a given test image, the best image enhancement 
algorithm for it. The network is trained using a number of image examples. The 
input to the neural network is a set of viewability measures and its output is the 
choice of enhancement algorithm for that image. On a number of test images 
we show that such a predictive system is highly capable in forecasting the 
correct choice of enhancement algorithms (as judged by human experts). We 
compare our predictive system against a baseline approach that uses a fixed 
enhancement algorithm for all batch test images, and find the proposed model 
to be substantially superior. 

Keywords: Aviation Security, Enhancement, Viewability. 

1   Introduction 

The current set-up of screening operations at airports uses only three main 
enhancement techniques, which we refer to in this paper as techniques DB (Deep 
Boost), HE (Histogram Equalization) and CC (Crystal Clear). It is well understood 
from our research with airport screening staff that these techniques only provide a 
marginal advantage over the original images of airport luggage and in some case their 
application even deteriorates the image quality. In the context of improving image 
quality for the detection of explosives, it is important to note the following issues 
(Singh and Singh, 2003, Singh 2004): 

a) The images of the airport luggage are in colour, but each colour is related to the 
atomic number of the material being imaged (Krug and Stein, 1991; Michette 
and Buckley, 1993). The image contains three colours: orange (organic), blue 
(inorganic) and green (mixed). Where the x-ray fails to penetrate the regions are 
nearly black. Figure 1 shows two example image. 

b) The baggage x-ray systems come with many image manipulation options and 
some screeners are not conversant enough in the intricacies of their functionality 
to allow them to pick the best one or the best combination for a particular image 
with high speed. 
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c) It turns out to be the case that human judgment of security images across 
different operators is not uniform. Two experts’ performance could match well 
in terms of their ability to pick out dangerous objects, but not in terms of 
grading image quality. For this reason, designing viewability measures that are 
quantitative depend on image alone, and yet correlate well with the visual 
perception of different human experts remains a challenging task.  

d) In general practice, most operators simply enhance the image once using 
technique CC and work with it. Since each operator must decide on each bag 
within a 6 second window, most functions on the console never get used. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Example images containing explosives 

2   Enhancement Techniques 

In this study we use several state-of-the-art enhancement techniques from the 
literature to develop our predictive system. The enhancement techniques compared 
include: Low pass and High Boost filter (Gonzalez and Woods, 1993), Unsharp 
masking (Cheikh and Gabbouj, 1998; 2000), Adpative unsharp masking  (Polesel et 
al., 2000), Cubic Unsharp masking (Ramponi, 1998), Product of linear operators 
(Ramponi, 1999), Adaptive contrast enhancement (Rangayyan et al., 1997), Adaptive 
contrast enhancement based on local entropy (Singh, and Singh 2001), Fuzzy 
enhancement (Singh and Al-Mansoori, 2000; Zadeh, 1965), Extreme value 
sharpening and Local adaptive scaling (Klette and Zamperoni, 1996); Potential 
functions (Fotopoulos et al., 1997; Sindoukas et al., 1997).  

3   Viewability Measures 

In order to develop a predictive system, we must have some measurement of image 
viewability before and after enhancement. Such a measurement forms the input to a 
predictor whose output is the recommended choice of enhancement algorithm. During 
the course of our research we have found that no single measurement is sufficient and 
a range of measurements is needed. We briefly summarize here the viewability 
measures that can be computed on a single image.  
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1) Cumulative edge strength - Cumulative edge strength is the average edge 
strength per pixel of the whole image.  

For a colour image, its gradient can be computed in different channels as 
         follows: 
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            Edge strength is given by the magnitude of vector C. Cumulative edge 
strength is the average edge strength per pixel of the whole image which is 
represented by C∇

r
. 

2) Number of edge pixels - This measure computes the proportion of edge pixels in 
the image above a certain threshold. 

3) Histogram Area - This measure can be calculated as follows: The edge-strength 
values of a particular image are distributed in bins (of size 10).  Then the 
frequency of existence of a particular bin is plotted against the edge-strength in 
the form of a histogram.  The area under the curve is then computed which 
serves as a measure of viewability. 

4) Edge Contrast - A contrast edge in a photo is the boundary between areas of 
different brightness or colour.  So we will be measuring the distance between 
edges.  All the edge pixels are first computed using edge detection operators.  
For each pixel we find the edge pixels in its ‘neighbourhood'.  We average the 
Euclidean distance between the pixel and these neighbours, which gives the 
contrast value for the pixel.  Contrast of the image is computed by averaging the 
‘contrast matrix’. 

5) Proportion of Very dark pixels - Very dark pixels are the pixels that are almost 
black in the scale image.  The proportion of very dark pixels in the image is 
computed by counting the number of pixels with the RGB values less than 
100.  

6) Uniformity of texture in the edge removed image - This is computed by taking 
into account the non-edge pixels and computing the texture variability in a 
neighbourhood around it.  The neighbourhood considered in this case is 3x3.  

7) Difference in the neighbourhood pixels - The average difference between the 
neighbourhood edge pixels and non-edge pixels is computed and is used as a 
viewability measure. 

8) Mean of Pixel Intensity. 
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9) Standard Deviation of Pixel Intensity. 
10) Skewness of Pixel Intensity.  
11) Kurtosis of Pixel Intensity.  

4   Enhancement Predictor 

The proposed predictive system uses a neural network for mapping viewability 
measure to human ranking. We have used a feed-forward multilayer perceptron neural 
network using SNNS package (SNNS- http://www-ra.informatik.uni-
tuebingen.de/SNNS/) with back-propagation with momentum training method. In 
order to find the true generalisation error, ten fold cross-validation is used. The main 
objective is to use ten different training and test sets, such that training and test sets 
are disjoint, and results are averaged across the ten trials. For each trial, the number of 
network inputs and outputs remain fixed, however, a number of training parameters 
need to be determined. These include: (a) number of hidden nodes, (b) learning rate 
η , and (c) momentum μ . For all of our experiments we use 1.=η 9.=μ . The 

number of hidden nodes however needs to be empirically determined. Using less than 
required number of hidden nodes leads to under-generalisation, whereas using too 
many hidden nodes leads to over-generalisation. It is not possible to optimise the 
number of hidden nodes on test data since in practice this should be determined prior 
to using it on test data. Hence, we divide our data into three sets: training set (70% 
data), validation set (20%), and test set (10%). For our experiments, we have a total of 
273 samples from the same number of x-ray images of luggage, of which we use 22 in 
testing, 44 in validation set and 207 in training. The number of hidden nodes to be 
used is optimised on the basis of the validation set.  

The inputs to the predictive system are the measures of image viewability that are 
mapped to the enhancement algorithm. In order words, the mapping problem can be 
stated as follows: “Given: An image X  with its viewability defined by a vector of 
measurements ),...,2,1( nvvv ; and a binary vector defining the suitability of 

enhancement algorithms denoted as ),...,,( 21 mrrr : where 1=ir , for mi ≤≤1 , 

only when the human expert judges the algorithm to be suitable, otherwise 0=ir . 

Aim: To map the vector ),...,,( 21 nvvv  to vector ),...,,( 21 mrrr ”. 

The ground-truth was generated where screening experts assigned a rank between 
1 and 6 (1 is the best) when presented with six images (original and five enhanced 
images). The original image was included in this set to determine whether the 
enhancement methods did make the image better than the original or otherwise. These 
experiments were conducted on a set of 273 original images and their five enhanced 
versions per image. Six monitors of same specifications were used to present the 
images at the same time. The images presented were on screens similar to those used 
by screening operators at the airports. All monitors had the same settings to ensure 
that there was no brightness/contrast difference. Also, the experiments were 
conducted under the same lighting conditions in which the operators normally work at 
the airports. A total of two experts from a UK airport participated in this task. Both 
experts were asked to make judgements individually.  
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5   Experimental Details 

We have a total of 273 images belonging to 17 known classes. Each class represents a 
unique choice of algorithms. Given that we might prefer the original image (un-
enhanced), or one or more of its enhanced versions, the vector 

}6,...,2,1{ rrr represents the options possible. Hence a vector {0 0 0 0 1 1} suggests 

that the human experts chose algorithms 5r  or 6r . We first generate a total of ten 

folds of training, validation and test sets. The training data is used to train a neural 
network. As a first step, ten disjoint partitions of training and testing data are created. 
Each time training data partition has 90% of data and the test data partition has 
remaining 10% of the data. As such we conduct 10 separate training/testing trials. All 
classes represented in the test data set are also represented in the training data set. 
From the training data, 20% of data is randomly picked to create a validation set that 
is used to determine the optimal number of hidden nodes. In this process, different 
neural networks with varying number of hidden nodes (5-30) are trained, and for each 
trained network generalisation error using the validation set is computed. The network 
which gives the least generalisation error is selected for use on the test set. During the 
test phase, the ground truth labelling is used only to compare the predicted network 
value and calculate classification error. 

6   Results 

Neural networks are ideally suited for function mapping tasks with small amounts of 
data. The knowledge in the network is stored finally as the resultant weights on links. 
The cost of training neural networks could be high however they are very cheap to 
operate when testing. For developing a commercial system, they will need to be 
trained with a larger data set, and must be optimised for parameters such as the 
number of hidden nodes. Our primary criterion for success is the ability to correctly 
select the enhancement algorithm for a given image. A further step of analysis can be 
integrated that matches the viewability of images before and after enhancement and 
generates an alarm if the image is by mistake made less viewable. 

We show our results in Figure 4 on a ten fold cross-validation task using 
classification rates. Each graph plots the generalisation error on the validation set by 
varying the neural network architecture (increasing the number of hidden nodes). Our 
primary criterion for success is the ability to correctly select the enhancement 
algorithm for a given image. A further step of analysis can be integrated that matches 
the viewability of images before and after enhancement and generates an alarm if the 
image is by mistake made less viewable. The chosen architecture is highlighted, e.g in 
Figure 4 (a), the least generalisation error is observed on the validation set with 20 
hidden nodes. The test results obtained by using the selected network on test data are 
quoted below the graph, e.g. in Figure 4 (a) we get 88.18% accuracy on the test set. 

We can observe the following points from Figure 4 

a) The performance across different folds of analysis is moderately variable. At 
worst, we are 68.17% correct and at best we are 98.00% correct. Overall, the 
results are very good. 
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b) Better performances can be obtained if the network is trained on good quality 
data. This can be observed from the results of Fold3 (for Fold3 we get the best 
training and validation performance). 

c) The quality of training and network convergence is good as shown by low 
validation set errors. 

In addition, we perform an analysis to find out the proportion of images on which 
the predicted enhancement method improves the viewability of the image by at least 1 
point (one a scale of [1,10]). Remembering that human expert rankings lie between 
[1,6] range, a change of 0.5 improvement on this scale is roughly equivalent to a shift 
of 1 on a [1,10] scale. The analysis can be phrased as follows: “If the original image 
had a viewability rank of x  (given by an expert), on how many images did the 
enhanced version of the same image that is predicted optimal by our system, have a 
rank y (given by an expert), where 5.0)( >− xy  assuming that higher rank 

suggests improvement in visual quality?” It should be noted that the prediction itself 
is based on the knowledge-based framework without any information on the ground-
truth on test image enhancements. In our analysis we used 273 images, out of which 
254 showed a positive movement (93.04%), 17 showed no change (6.22%), and 2 
showed negative change (.73%). It is for those cases that show negative change that 
we propose an alarm system that will block any such ‘negative’ image enhancement. 

Computational Time Analysis of the Proposed Approach 
One of the key considerations is the actual time taken to process images. This is 
particularly important since the screening operator has less than 6 seconds for each 
image. It is desirable that most of the computation should take place less than half that 
time, or even less than 1 second. Total system execution time is composed of the 
following four processes: 

Time Analysis
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Fig. 2. Time taken in seconds by the 5 image enhancement methods on a 2.7 GHz machine for 
a single image 

a) Enhancement algorithms: In Figure 2 we plot the time taken on a single image 
by an enhancement algorithm written in C and executed in Linux operating 
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environment. Since at a given time, only one algorithm is executed, at worst it 
takes 0.098 seconds, and at best 0.007 seconds. 

b) Viewability measures computation: This takes a total of 0.085 seconds per image 
with Intel 2.7 GHz processor. The computation takes the same time for all the 
images because all images are of the same size 

c) Training a MLP: This is an off-line process and it could take from a few minutes 
to a few hours. This process does not affect the time to view online images.  

d) Selecting an enhanced algorithm with MLP: This takes a total of 0.0002 seconds 
per image with Intel 2.7 GHz processor. 

Hence, the total time by adding the above per image with Intel 2.7 GHz processor, 
lies between the range [0.0922, 0.1832] seconds. This meets our requirement of 
processing information in less than 1 second. 

7   Baseline Comparison 

In this section we present the results of comparison of our predictive system with the 
baseline approach. The baseline approach is based on the principle of using a given 
image enhancement algorithm on all images (without any optimisation). In our 
experiments, we set each of the five enhancement methods used, as baseline methods 
in turn and compare the results with the machine learning approach. The comparison 
is based on the following: 

Baseline Comparison
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Fig. 3. The graph showing the baseline comparison 

a) Given a total of N  images ),...,1( NII . For each image jI , the output image 

after the application enhancement algorithm is also known and ground-truthed in 
terms of its visual quality. The ground-truth is a quality index for this image given 
as )( jIR , Nj ≤≤1 , where 0)( =jIR  for poor quality image enhancement 

and 1)( =jIR  for good quality enhancement. If a total of five image 

enhancement algorithms )5,...,2,1( eee are used, then the quality achieved with 

enhancement algorithm ie , 51 ≤≤ i , is given as )( ijIR , which again is 0 or 1. 
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(j) Fold 10 (test result = 84.73%)

(a) Fold 1 (test result = 88.18%) (b) Fold 2 (test result = 68.18%)
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(c) Fold 3 (test result = 98.00%) (d) Fold 4 (test result = 81.82%)
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(e) Fold 5 (test result = 86.64%)
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(f) Fold 6 (test result = 77.27%)
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(g) Fold 7 (test result = 83.64%) (h) Fold 8 (test result = 82.73%)
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(i) Fold 9 (test result = 82.45%)
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Fig. 4. The test set performance of MLP with varying number of hidden nodes for the 
validation set on ten folds 



 Image Enhancement Optimization for Hand-Luggage Screening at Airports 9 

 

b) If we fix the use of algorithm ie  for application on all N  images ),...,1( NII , 

then the overall success in terms of the ability of ie  to lead to a good image 

enhancement is given by 
=

=
N

j
ijIRiQ

1
)( . 

c) If we use the predictive system, then for a given image jI , the algorithm to be 

applied on it is predicted as predictede , and the ground-truth of this is given 

by ),( jpredictedIR . Hence the overall quality index is given as 

=
=

N

j
jpredictedIRpredictedQ

1
),( . 

d) In Figure 3 the values of ACEQ , HPQ , HBQ , AUMQ , LASQ , 

predictedQ are plotted as the six values. It is easy to see the 

predictedQ turns out to be the best. 

8   Conclusions 

This paper presented the results of a prediction system for choosing appropriate image 
enhancement technique(s) for a given image. The results show extremely good 
predictive ability of the system in selecting good enhancement algorithms from a 
database of algorithms. The computational time analysis of the algorithms was also 
studied and found to meet the requirements of a real system. 
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Abstract. Image segmentation is one of the most fundamental steps of image 
analysis. Almost all image segmentation algorithms have their parameters that 
need to be optimally set for a good segmentation. The problem of automatically 
setting algorithm parameters on a per image basis has been largely ignored in 
the vision community. In this paper we present a novel solution to this problem 
based on classification complexity and image edge analysis. 

1   Introduction 

Image segmentation is often considered to be the most important bottleneck in most 
computer vision tasks [6]. Over the last few decades, several image segmentation 
algorithms have appeared [3,7,8,9,15,17]. None of these algorithms have established 
themselves as the definitive image segmentation method and their performance is 
often dependent on the skill of the user who applies them. In addition, different 
algorithms perform better or worse on different images (principle of selective ability). 
There are four open research issues related to the performance evaluation of image 
enhancement algorithms. (a) Exhaustive comparison of image segmentation 
algorithms on a range of benchmarks; (b) Generating ground-truth data for such 
benchmarks (synthetic or natural); (c) Optimising algorithm parameters automatically, 
and (d) Developing machine learning systems that map the properties of images to 
optimal algorithms to predict which algorithm will work best on test images.  

Several studies have tackled the issue of comparative analysis of segmentation 
algorithms [11,23]. A crucial but related issue is how to compare algorithms. Human 
judgment alone is not sufficient and also impossible on large data sets. Quantitative 
evaluation requires that each pixel in the image is ground-truthed (allocated to its true 
class) so that segmentation error can be calculated. This is a nearly impossible task for 
most images and for this reason alone most comparisons have been based on artificial 
data sets for which ground-truth is easy to establish [2,19,20,22]. The only 
disheartening but important finding of comparative studies has been that no single 
algorithm is a clear winner. On different data sets, different algorithms have turned 
out to be the best.  

In light of these findings, the holy grail of image segmentation research is to 
develop a machine learning approach that can, on a per image basis, select the optimal 
image segmentation algorithm with its associated parameters. In this process, we no 
longer view it important to prove which algorithm is better than another, but it simply 
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becomes a matter choice for a given image. Some previous effort in this area for 
developing an expert or rule based system for image segmentation includes 
[12,13,14,16]. 

In this paper we propose a novel technique for automatic selection of image 
segmentation algorithm parameter setting. If an image x  is segmented as m  outputs 

),...,,( 21 mxxx by the same algorithm with m  different parameter settings, then our 

propose method automatically picks out the best segmentation without any human 
intervention. In addition, the strength of the algorithm lies in the fact that no ground-
truth is needed for the original image. This makes the technique extremely powerful 
since it can be robustly applied to any image. In this paper, we only use ground-truth 
to verify that our proposed technique generates valid results. 

The proposed technique is not bound to any specific application. In this paper we 
have used a number of x-ray colour coded images of airport luggage. The aim of 
segmenting such images is to develop an automatic system for threat detection for 
which image segmentation is needed to separate out objects of interest. Further 
analysis on the shape and colour of objects can be used to give a rough estimate of the 
identity of the object. Any suspicious objects are then hand-checked by the airport 
staff. The main reason for choosing such images is that they are extremely hard to 
segment. Image regions are extremely edgy and there is significant colour feature 
variation even within the same region. Hence, this represents a significant challenge 
for any segmentation algorithm. 

Our paper is laid out as follows. First, in section 2 we introduce three image 
segmentation methods that we have used, namely fuzzy c-means clustering, self-
organising maps and Gaussian mixture models. We show example segmented images 
using these three methods. In section 3, we detail our methodology for automatic 
image segmentation parameter selection. This methodology is based on classification 
complexity and image edge analysis. In section 4, we show our results on a number of 
images, and conclude the paper in section 5. 

2   Image Segmentation Algorithms 

We have used three image segmentation algorithms that are diverse in terms of how 
they operate. These include fuzzy c-means clustering (based on region growing with 
clustering concept), self-organising maps (a clustering approach using unsupervised 
neural networks), and Gaussian mixture model (a statistical approach based on 
modelling pixel probabilities). A brief description of these segmentation algorithms 
and their associated parameters is given below. 

Fuzzy c-Means Clustering:  Fuzzy c-means clustering [1] is a method of data 
clustering based on the similarity in value between a data feature point and a cluster 
of data. In our experiments we fixed two of its parameters as follows. First, the 
number of iterations used (each iteration leads to an update in cluster membership of 
the data points) is fixed to 10. Second, the termination threshold is fixed at 0.25. We 
vary a single variable, ℵ , which is the number of clusters required. We vary this 
parameter between 2=ℵ , and 9=ℵ . 
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Self-organising Maps:  A self-organising map [10] is a unsupervised scheme which 
finds the best set of weights for hard clusters in an iterative, sequential manner. The 
application of self-organising maps to image segmentation process is well-
established. The segmentation process can be treated as a feature vector quantisation 
problem. It can be interpreted as a mapping from the pixels in the input image 

)},({ yxfz = of size xN by yN  to a set of M  regions }1,{ MiRR i ≤≤= . 

Self-organising map can be used to learn this mapping. Only feature vectors 
consisting of position and intensity of pixels can be used as input. For SOM, we need 
to define a parameter that specifies the maximum number of clusters, which is set 
equal to 2 and 5 for two runs. 

Gaussian Mixture Models: A Gaussian Mixture Model (GMM) [5] uses information 
of the likelihood of different pixel values occurring for image segmentation. A grey-

scale image is represented as a one dimensional array ),...,,{ 21 NxxxX = , where 

nx  is an input feature for pixel n  and N  is the total number of pixels in the image. 

The input feature vector nx  may be a D  dimensional vector or simply the grey-scale 

value of the pixel n . Let the underlying true segmentation of the image be denoted as 

),...,,{ 21 NyyyY = . It is assumed that the number of classes is predetermined as a 

set of known class labels lω , where },...,1{ Ll ∈  and therefore the class label of pixel 

n  is indicated as { }l
L
lny ω 1=∈ . A common assumption in modelling a density with a 

GMM for image segmentation is that each component m  },...,1{ Mm ∈ will model the 

pdf of each class LM = . Using the labelled training data, a Maximum Likelihood 
(ML) estimate of all component parameters and mixing coefficients can be found. In 
our study, the only parameter we vary is M , the number of components used. We 
have used 1 and 2 Gaussian components for segmentation. 

At this stage, it is worth making an important point of observation before we 
proceed. The segmentation algorithms and their parameters are by no means 
exhaustive. The choice of segmentation algorithms and their associated parameters is 
based on our experience and the methodology we present next is generic, which 
would work equally well on a much larger choice of algorithms and their parameters. 
We now proceed to discuss our measure of segmentation quality that can be used to 
rank the output images obtained by varying algorithm parameters. 

3   Measuring Image Segmentation Quality 

Evaluating the quality of image segmentation without ground-truth is a difficult task. 
As we mentioned earlier, for real images obtaining ground-truth pixel by pixel is 
nearly an impossible task. Once the image is segmented into different regions, a key 
question is how valid these regions are. A good segmentation algorithm will create 
the correct number of regions as well as correct region boundaries. In our approach, 
we define the following measures of image segmentation quality. 
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3.1   Classification Complexity Estimate Using Davies Bouldin Index indexDB  

A measure of classification complexity is based on how separable image regions are. 
From each image region, we can calculate a set of colour features from each pixel, 
and determine how separable these features from different regions are. In our research 
we have used a total of 41 colour features based on different colour spaces which are 
computed for each pixel. A simple measure of classification complexity is based on 
inter- intra cluster separability. Davies Bouldin index [4] is widely used to measure 
this. It is defined as follows: 

Consider a total of C clusters. We can define inter-cluster distance )( kQS and 

between cluster distances ),( lk QQd . Now considering the fact that samples 

kii Qxx ∈', , 'ii ≠ , lQjx ∈ , lk ≠ , and kN is the number of samples in cluster kQ , 

the cluster centroids are defined as: = ∈ kQix ikk xNc 1 . The inter-cluster 

distance is given by 
k

i
ki

c N
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S

−
=

||||

, and the between cluster distance is given by: 

|||| lkce ccd −= . Davies Bouldin index aims to minimise the following function: 
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3.2   Average Edge Gradient aegμ  

The magnitude of edge strength for each image in the pixel can be computed using a 
number of different image operators. Since we are dealing with colour images, we 
calculate edge strength for each colour channel separately that is then combined to 
give an overall edge strength per pixel. 

In an ideal image, each distinct region will have a high degree of colour 
uniformity. However, in our application images, the regions themselves are edgy, and 
thresholding edge strength is necessary to distinguish between pixels within a region 
that have a slight degree of noise content, from those that truly lie on the image 
boundary or represent high noise content within the region. We therefore first 
compute for a given region, the average edge gradient [17] of all pixels that lie within 
it. Let this be denoted as )(regionaegμ . The edge gradients of all pixels that is above 

this average within that region is now summed and averaged to obtain the revised 
estimate of aegμ . It is expected that we now include mostly those pixels in the 

computation that represent high level of noise or lie on the true boundary. For a 
perfect segmentation, this value will be low. On the other hand, for poor 
segmentation, e.g. if it over-segments and the region now contains another region 
boundary, then the value will be high. The aim is to minimise aegμ  for the whole 

image (the values obtained from the different regions can now be averaged to give an 
overall estimate for an image).  
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3.3   Algorithm Colour Purity CDS 

We use the “Cluster Dominance and Separation” (CDS) [17, 18] measure to define 
the colour purity of the segmented region. The main objective is to make this estimate 
sensitive to the number of clusters found within a histogram, the proportion of 
elements within these clusters and the relative separation between clusters. The 
measure can be used on any histogram (raw pixel values or features computed from 
these). The following algorithm defines the pseudo code for this novel measure. 

1. For an image I of size M X N, assume that the pixel values for the red, green 
and blue channels are given by r(x,y), g(x,y) and b(x,y) respectively  
where 10 −≤≤ Mx  and 10 −≤≤ Ny . 

2. Segment the image I using Fuzzy-c-means algorithm (Bezdek et al., 1984) 
into n regions, and create a map-file Map of size M x N where each region is 
uniquely labelled nregion ≤≤1 . Colour purity is now computed on a per 

region basis. The following steps operate on a given region R. 
3. For each pixel in region R compute two colour histograms. The joint 

probability histogram of the three channels for each region H1 and a 
histogram of the saturation information H2. The steps 4 to 9 are followed for 
each histogram separately. 

4. Cluster the histogram information using a simple method that generates 
narrow peaks and wide valleys into m+1 clusters.  

5. Find the most dominant cluster C (the cluster with the highest proportion of 

pixels) in the histogram, and the other clusters ( )mccc .., 21 .  

6. Each other cluster is assigned a weight. Find weights of ( )mccc .., 21  as 

( )mwww .., 21 as the proportion of number of pixels contained within the 

cluster compared to the total number of pixels. 
7. Compute α as the number of pixels from region R not present in the 

dominant cluster C.   

8. For every cluster in ( )mccc .., 21 , compute the distances ( )mddd .., 21  

between the mode values of these clusters and the mode value of the 
dominant cluster C. This is simply the spatial distance between colour values 
on a histogram. If a 3D histogram was plotted in 2D, where each unique 
RGB combination was indexed as a separate colour and linearly ordered, 
then the distance would simply be the difference in colour indices along the 
x-axis of the histogram. 

9. Compute the colour purity measure as: =CDS mmdwdwdw .., 2211 ++α . 

The CDS measure is computed on the histograms H1 and H2 separately. The 
unique features of the above algorithm include: (a) The measurement gives larger 
weights to bigger clusters (i.e. with more pixels) and hence the effect of pixels with 
incoherent colours is minimised; (b) The measurement centres around the most 
dominant colour within the histogram and measures the distance between this and  
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other clusters; (c) The measurement is contained within the [0,1] range and should be 
minimised for maximum colour purity; and (d) It is based on histogram information 
that is readily available. 

Since the three measures indexDB , aegμ  and CDS lie on different scales, 

therefore it is not possible to combine them directly. However, combining ranked 
images is relatively straightforward. This is done as follows 

Given: An original image I , which is segmented using a segmentation algorithm with 

m  different parameters giving the following m  images: ),...,( 1 mII . 

Method: Compute the values of the three measures as follows: ),...,( 1 mDBDB , 

),...,( 1 avgmavg μμ  and (CDS1,…,CDSm). The aim is to minimise all three measures. In 

descending order, each vector value can be converted into a rank as follows: 

),...,( 1 mrDBrDB , ),...,( 1 avgmavg rr μμ  and (rCDS1,…,rCDSm). The average rank of 

image jI  is given as: 3/)( javgjj CDSrrDB ++ μ . So in case all three measures do 

not agree, we take the case where at least two of the measures have lower values. 
In this manner we can rank different image segmentation parameters without the 

need of ground-truth data to calculate any segmentation error. By preferring a 
particular image, we prefer the segmentation parameter that was used for it.  

4   Results 

We have used a total of 75 images of colour coded x-ray images. These real images 
were obtained using dual-energy x-ray machine when monitoring checked in luggage 
at a UK airport. The images are colour coded on the basis of the atomic number of 
objects scanned. There are three main colours and their shades: orange (organic 
matter), blue (inorganic matter), and green (mixed organic and inorganic). The images 
have a high level of noise and their segmentation is quite difficult. Each image 
contains at least one illicit or explosive object within it. A good segmentation method 
should show a good segmentation of this object. 

We applied FCM with its 8 different parameter values giving us 8 images for each 
of the 75 images. Similarly we obtained 2 images per 75 images for both self-organising 
maps and Gaussian mixture models. These images are ground truthed by a screening 
expert in terms of the quality of segmentation. Figure 1 shows an example result of our 
analysis using different parameters. We next find the best parameter choice as suggested 
by indexDB , aegμ and CDS and analyse whether they agree with themselves or not, 

and whether their combined ranking agrees with our ground-truth or not. 
We can summarise the important conclusions as follows: 

a) For FCM segmentation, indexDB , aegμ and CDS rankings are in agreement 

most of the time (96% of the time), which was the same as the ground-truth 
97.2% of the time (i.e. 576 times out of 600 all three measures were in 
agreement and 560 times out of  576 the values matched the ground-truth). 
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(a)

(b)

(c)

(d)  

Fig. 1. (a) Two example images of luggage containing explosives; (b) original image and 8 
segmented FCM images; (c) original image and 2 segmented GMM images; and (d) original 
image and 2 segmented SOM images. 

b) For GMM segmentation, indexDB , aegμ and CDS rankings are in 

agreement most of the time (94% of the time), and the resultant ranking 
matched with ground-truth for 100% of the images. 

c) For SOM segmentation, indexDB , aegμ and CDS rankings are in agreement 

most of the time (97.3% of the time), and the resultant ranking matched with 
ground-truth for 98.63% of the images. 
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5   Conclusions 

In this paper we introduced a novel approach to the measurement of image 
segmentation quality. This approach was based on estimating classification 
complexity using Davies Bouldin Index, use of edge strength and a novel measure of 
colour purity. This work has laid the basic principles on the basis of which 
segmentation algorithm parameters can be selected.  
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Abstract. Contrary to popular belief, despite decades of research in fingerprints,
reliable fingerprint recognition is still an open problem. Extracting features out
of poor quality prints is the most challenging problem faced in this area. This pa-
per introduces a new approach for fingerprint enhancement based on Short Time
Fourier Transform(STFT) Analysis. STFT is a well known technique in signal
processing to analyze non-stationary signals. Here we extend its application to
2D fingerprint images.The algorithm simultaneously estimates all the intrinsic
properties of the fingerprints such as the foreground region mask, local ridge ori-
entation and local frequency orientation. We have evaluated the algorithm over
a set of 800 images from FVC2002 DB3 database and obtained a 17% relative
improvement in the recognition rate.

1 Introduction

The performance of a fingerprint feature extraction and matching algorithm depends
critically upon the quality of the input fingerprint image. While the ’quality’ of a fin-
gerprint image cannot be objectively measured, it roughly corresponds to the the clarity
of the ridge structure in the fingerprint image. Where as a ’good’ quality fingerprint im-
age has high contrast and well defined ridges and valleys, a ’poor’ quality fingerprint is
marked by low contrast and ill-defined boundaries between the ridges. There are several
reasons that may degrade the quality of a fingerprint image.

1. Presence of creases, bruises or wounds may cause ridge discontinuities.
2. Excessively dry fingers lead to fragmented and low contrast ridges.
3. Sweat on fingerprints leads to smudge marks and connects parallel ridges.

While most algorithms are designed to operate on well defined ridge structures, the
quality of fingerprint encountered during verification varies over a wide range as shown
in Fig. 1. It is estimated that roughly 10% of the fingerprint encountered during veri-
fication can be classified as ’poor’ [1]. The robustness of the fingerprint recognition
system can be improved by incorporating an enhancement stage prior to feature extrac-
tion. Due to the non-stationary nature of the fingerprint image, general-purpose image
processing algorithms are not very useful in this regard but only serve as a preprocess-
ing step in the overall enhancement scheme. The majority the existing techniques are
based on the use of contextual filters whose parameters depend on the properties of the
local neighborhood. The filters themselves may be defined in spatial or in the Fourier
domain.
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Fig. 1. Fingerprint images of different quality. The quality decreases from left to right. (a) Good
quality image with high contrast between the ridges and valleys (b) Insufficient distinction be-
tween ridges and valleys in the center of the image (c) Dry print.

1.1 Prior Related Work

O’Gorman et al. [2] proposed the use of contextual filters for fingerprint image enhance-
ment for the first time. They used an anisotropic smoothening kernel whose major axis
is oriented parallel to the ridges. For efficiency, they precompute the filter in 16 direc-
tions. The net result of the filter is that it increases contrast in a direction perpendicular
to the ridges while performing smoothening in the direction of the ridges. Recently,
Greenberg et al. [3] proposed the use of an anisotropic filter that is based on structure
adaptive filtering [4]. Another approach based on directional filtering kernel was given
by Hong et al. [5]. The algorithm uses a properly oriented Gabor kernel for perform-
ing the enhancement. Gabor filters have important properties from a signal processing
perspective such as optimal joint space frequency resolution [6]. Gabor elementary
functions form a very intuitive representation of fingerprint images since they capture
the periodic,yet non-stationary nature of the fingerprint regions. This is by far, the most
popular approach for fingerprint image enhancement.

Sherlock and Monro [7] perform contextual filtering completely in the Fourier Do-
main. Here, each image is convolved with precomputed filters of the same size as the
image. The contextual filtering is actually accomplished by a ’selector’ that uses the
local orientation information to combine the results of the filter bank using appropriate
weights for each output. The algorithm also accounts for the curvature of the ridges. In
regions of high curvature, having a fixed angular bandwidth leads to processing artifacts
and subsequently spurious minutiae.

1.2 Intrinsic Images

The intrinsic images represent the important properties of the fingerprint image as a
pixel map. These include the ridge orientation image, the ridge frequency image and the
region mask. The computation of the intrinsic images forms a very critical step in the
feature extraction and in the matching process. Applications that require a reliable ori-
entation image include enhancement [5,7,2,8], singular point detection [9,10,11] and
segmentation [12] and most importantly fingerprint classification [13,14,15,16,17].
The region mask is used to eliminate spurious fingerprint features [8,5].
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Orientation Image. The orientation image O represents the instantaneous ridge ori-
entation at every point in the fingerprint image. There have been several approaches to
estimate the orientation image of a fingerprint image. Here we discuss some popular
approaches for computing the orientation image.

Except in the region of singularities such as core and delta, the ridge orientation
varies very slowly across the image. Therefore, the orientation image is seldom com-
puted at full-resolution. Instead each non-overlapping block of size W × W of the im-
age is assigned a single orientation that corresponds to the most probable or dominant
orientation of the block. The horizontal and vertical gradients Gx(x, y) and Gy(x, y)
respectively, are computed using simple gradient operators such as a Sobel mask [18].
The block orientation θ is given by θ = 1

2 tan−1 Gyy

Gxx
, where

Gxy =
∑
u∈W

∑
v∈W

2Gx(u, v)Gy(u, v) (1)

Gxx =
∑
u∈W

∑
v∈W

G2
x(u, v) − G2

y(u, v) (2)

A rigorous derivation of the above relation is provided in [19]. The dominant orien-
tation so obtained still contains inconsistencies caused by creases and ridge breaks.
Utilizing the regularity property of the fingerprint, the orientation image is smoothened
by vector averaging.

Frequency Image. The ridge frequency is another intrinsic property of the fingerprint
image. It is also a slowly varying property and hence is computed only once for each
non-overlapping block of the image. It indicates the average inter-ridge distance within
a block and is estimated based on the projection sum taken along a line oriented orthog-
onal to the ridges [5], or based on the variation of gray levels in a window oriented
orthogonal to the ridge flow [20]. These methods depend upon the reliable extraction
of the local ridge orientation. The projection sum forms a sinusoidal signal and the dis-
tance between any two peaks provides the inter-ridge distance. The frequency image so
obtained may be further filtered to remove the outliers.

Region Mask. The region mask indicates the parts of the image where ridge structures
are present. It is also known as the foreground mask and is used to eliminate spurious
features that may occur outside the fingerprint area.

2 Proposed Approach: STFT Analysis

We present a new fingerprint image enhancement algorithm based on contextual fil-
tering in the Fourier domain. The fingerprint image may be thought of as a system of
oriented texture with non-stationary properties. Therefore, traditional Fourier analysis
is not adequate to analyze the image completely. We need to resolve the properties of
the image both in space and also in frequency. We can extend the traditional one di-
mensional time-frequency analysis to two dimensional image signals to perform short
(time/space)-frequency analysis. In this section, we recapitulate some of the principles
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Fig. 2. (a) Overlapping window parameters used in the STFT analysis (b) Illustration of how
analysis windows are moved during analysis (c) Spectral window used in STFT analysis.

of 1D STFT analysis and show how it is extended to two dimensions for the sake of
analyzing the fingerprint.

When analyzing a non-stationary 1D signal x(t) it is assumed that it is approxi-
mately stationary in the span of a temporal window w(t) with finite support. The STFT
of x(t) of such a signal is represented by time frequency atoms X(τ, ω) [21] and is
given by

X(τ, ω) =
∫ ∞

−∞
x(t)ω∗(t − τ)e−jωtdt (3)

In the case of 2D signals such as a fingerprint image, the space-frequency atoms is
given by

X(τ1, τ2, ω1, ω2) =
∫ ∞

−∞

∫ ∞

−∞
I(x, y)W ∗(x − τ1, y − τ2)e−j(ω1x+ω2y)dxdy (4)

Here τ1, τ2 represent the spatial position of the two dimensional window W(x,y).
ω1, ω2 represents the spatial frequency parameters. Figure 2 illustrates how the spec-
tral window is parameterized. At each position of the window, it overlaps OVRLP pixels
with the previous position. This preserves the ridge continuity and eliminates ’block’ ef-
fects common with other block processing image operations. Each such analysis frame
yields a single value of the dominant orientation and frequency in the region centered
around (τ1, τ2). However, unlike regular Fourier transform, the result of the STFT is de-
pendent on the choice of the window w(t). For the sake of analysis, any smooth spectral
window such as hanning, hamming or even a gaussian [22] window may be utilized.
However, since we are also interested in enhancing and reconstructing the fingerprint
image directly from the Fourier domain, our choice of window is fairly restricted. We
chose a 12×12 window since it provides a good trade-off between local stationarity and
processing complexity. Larger windows are unsuitable since the image will no longer
be stationary within it. In order to provide suitable reconstruction during enhancement,
we utilize a raised cosine window that tapers smoothly near the border and is unity at
the center of the window. The raised cosine spectral window is obtained using
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Fig. 3. (a) Local region in a fingerprint image (b) Surface wave approximation (c,d) Fourier spec-
trum of the real fingerprint and the surface wave. The symmetric nature of the Fourier spectrum
arrives from the properties of the Fourier transform for real signals [18].

W (x, y)=
{

1 if(|x|, |y|) < BLKSZ/2
1
2 (1 + cos( πx

OV RLP )) otherwise

}
(x, y)∈ [−WNDSZ/2, WNDSZ/2)

(5)

With the exception of the singularities such as core and delta any local region in the
fingerprint image has a consistent orientation and frequency. Therefore, the local region
can be modeled as a surface wave that is characterized completely by its orientation θ
and frequency f (See Fig. 3). It is these parameters that we hope to infer by performing
STFT analysis. This approximation model does not account for the presence of local
discontinuities but is useful enough for our purpose. A local region of the image can be
modeled as a surface wave according to I(x, y) = A {2πf cos (x cos(θ) + y sin(θ))} .

The parameters of the surface wave (f, θ) may be easily obtained from its Fourier
spectrum that consists of two impulses, whose distance from the origin indicates the
frequency and angular location indicates the orientation of the wave. However, this
straight forward approach is not very useful since the maximum response is prone to
errors. Creases running across the fingerprint can easily put off such maximal response
estimators. Instead, we propose a probabilistic approximation of the dominant ridge
orientation and frequency. Representing the Fourier spectrum in polar form as F (r, θ),
we can define a probability density function p(r, θ) and the marginal density functions
p(θ), p(r) as

p(r, θ) =
|F (r, θ)|2∫

r

∫
θ |F (r, θ)|2 (6)

p(r) =
∫

θ

p(r, θ)dθ, p(θ) =
∫

r

p(r, θ)dr. (7)

2.1 Ridge Orientation Image

To compute the ridge orientation image, we assume that the orientation θ is a random
variable that has the probability density function p(θ). The expected value of the ori-
entation may then be obtained by performing a vector averaging according to 8. The
terms sin(2θ) and cos(2θ) are used to resolve the orientation ambiguity between orien-
tations ±180◦
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E{θ} =
1
2
tan−1

{ ∫
θ
p(θ) sin(2θ)dθ∫

θ p(θ) cos(2θ)dθ

}
(8)

However, if there is a crease in the fingerprints that spans several analysis frames, the
orientation estimation will still be wrong. The estimate will also be inaccurate when
the frame consists entirely of unrecoverable regions with poor ridge structure or poor
ridge contrast. In such instances, we can estimate the ridge orientation by considering
the orientation of its immediate neighborhood. The resulting orientation image O(x,y)
is further smoothened using vectorial averaging. The smoothened image O’(x,y) is ob-
tained using

O′(x, y) =
1
2

{
tan−1 sin(2O(x, y)) ∗ W (x, y)

cos(2O(x, y) ∗ W (x, y)

}
(9)

Here W(x,y) represent a gaussian smoothening kernel. It has been our experience that a
smoothening kernel of size 3x3 applied repeatedly provides a better smoothening result
than using a larger kernel of size 5x5 or 7x7.

2.2 Ridge Frequency Image

The average ridge frequency is estimated in a manner similar to the ridge orientation.
We can assume the ridge frequency to be a random variable with the probability density
function p(r) as in Eq 7. The expected value of the ridge frequency is given by E{r} =∫

r
p(r)rdr.
The frequency map so obtained is smoothened by process of isotropic diffusion.

Simple smoothening cannot be applied since the ridge frequency is not defined in the
background regions. The smoothened is obtained by the following.

F ′(x, y) =

∑x+1
u=x−1

∑y+1
v=y−1 F (u, v)W (u, v)I(u, v)∑y+1

v=y−1 W (u, v)I(u, v)
(10)

This is similar to the approach proposed in [5]. Here H,W represent the height and
width of the frequency image. W(x,y) represents a gaussian smoothening kernel of size
3x3. The indicator variable I(x,y) ensures that only valid ridge frequencies are consid-
ered during the smoothening process. I(x,y) is non zero only if the ridge frequency is
within the valid range (3-25 pixels per ridge [5]).

2.3 Region Mask

The fingerprint image may be easily segmented based on the observation that the sur-
face wave model does not hold in regions where ridges do not exist. In the areas of
background and noisy regions, there is very little energy content in the Fourier spec-
trum. We define an energy image E(x,y), where each value indicates the energy content
of the corresponding block. The fingerprint region may be differentiated from the back-
ground by thresholding the energy image. We take the logarithm values of the energy
to compress the large dynamic range to a linear scale.

E(x, y) = log
{∫

r

∫
θ

|F (r, θ)|2
}

(11)



26 S. Chikkerur, V. Govindaraju, and A.N. Cartwright

The resulting binary image is processed further to retain the largest connected compo-
nent and binary morphological processing [23].

Coherence Image. Enhancement is especially problematic in regions of high curva-
ture close to the core and deltas that have more than one dominant direction. Exces-
sively narrow angular bandwidth causes spurious artifacts and ridge discontinuities in
the reconstructed image. Sherlock and Monro [7] used a piece wise linear dependence
between the angular bandwidth of their filter and the ridge curvature. However, this
requires a reasonable estimation of the singular point location. Most algorithms for sin-
gular point location [9,10] are not reliable in noisy and poor quality images. Therefore
we rely on a flow-orientation/angular coherence measure [24] that is more robust than
singular point detection. The coherence is related to dispersion measure of circular data
and is given by

C(x0, y0) =

∑
(i,j)∈W |cos (θ(x0, y0) − θ(xi, yi)) |

W × W
(12)

The coherence is high when the orientation of the central block θ(x0, y0) is similar to
each of its neighbors θ(xi, xj). In a fingerprint image, the coherence is expected to be
low closer to regions of high curvature. We therefore utilize this coherence measure to
adapt the angular bandwidth of the directional filter.

2.4 Enhancement

The algorithm consists of two stages. The first stage consists of STFT analysis outlined
before and is responsible for computing all the intrinsic images of the fingerprint. The
image is divided into overlapping windows as shown in Fig˙ 2. It is assumed that the
image is stationary within this small window and can be modeled approximately as a
surface wave. The fourier spectrum of this small region is analyzed and probabilistic
estimates of the ridge frequency and ridge orientation are obtained as outlined before.
In each window we apply a filter that is tuned to the radial frequency and aligned with
the dominant ridge direction. The filter itself is separable in angle and frequency and is
identical to the filters mentioned in [7] and is given by

H(ρ, φ) = Hρ(ρ)Hφ(φ) (13)

Hρ(ρ) =

√[
(ρρBW )2n

(ρρBW )2n + (ρ2 − ρ2
0)2n

]
(14)

Hφ(φ) =

{
cos2 π

2
(φ−φc)
φBW

if|φ| < φBW

0otherwise

}
(15)

Here Hρ(ρ) is a band-pass butterworth filter with center defined by ρ0 and bandwidth
ρBW . ρ0 is derived from the intrinsic orientation image while the bandwidth ρBW is
chosen to be inversely proportional to the angular coherence measure. The angular filter
is a raised cosine filter in the angular domain with support φBW and center φc. The
enhanced image is reconstructed by tiling the results of enhancement of each local
window. Figure 5 shows the results of enhancement on some sample images.
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Fig. 4. (a) Original Image (b) Orientation Image (c) Energy Image (d) Ridge Frequency Image
(e) Angular Coherence Image (f) Enhanced Image.

3 Experimental Evaluation

While the effect of the enhancement algorithm may be guaged visually, the final objec-
tive of the enhancement process is to increase the accuracy of the recognition system.
We evaluated the effect of our enhancement on a set of 800 images (100 users, 8 images
each) derived from FVC2002 [25] DB3 database. In order to obtain the performance
characteristics such as EER (Equal Error Rate) we perform a total of 2800 genuine
(each instance of a finger is compared with the rest of the instances resulting in (8x7)/2
tests per finger) comparison and 4950 impostor comparisons (the first instance of each
finger is compared against the first instance of all other fingers resulting in a total of
(100x99)/2 tests for the entire database). We used NIST’s NFIS2 open source software
(http://fingerprint.nist.gov) for feature extraction and matching. The summary of the
results is provided in Table 1.

4 Summary

The performance of a fingerprint feature extraction and matching algorithms depend
critically upon the quality of the input fingerprint image. We presented a new fingerprint
image enhancement algorithm based on STFT analysis and contextual/non-stationary
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Fig. 5. Original and enhanced images (Samples from FVC2002 [25] database): (a,b) DB1 data-
base,(c,d) DB2 (e,f) DB3, (g,h) DB4.

Table 1. Effect on enhancement on the final recognition accuracy

DB3 Results Equal Error Rate
Without Enhancement 10.35%

With Enhancement 8.5%
Improvement 17%

filtering in the Fourier domain to address this problem. The proposed approach obviates
the need for multiple algorithms to compute the intrinsic images and replaces it with
a single unified approach. The algorithm utilized complete contextual information in-
cluding instantaneous frequency, orientation and even orientation coherence/reliability.
We performed an objective evaluation of the enhancement algorithm by considering the
improvement in matching accuracy for poor quality fingerprints and showed that it re-
sults in net improvement in recognition rate. (The matlab code for the enhancement is
available for download at http://www.cubs.buffalo.edu).
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Abstract. The possibility that a biometric database is compromised is
one of the main concerns in implementing biometric identification sys-
tems. The compromise of a biometric renders it permanently useless.
In this paper we present a method of hashing fingerprint minutia infor-
mation and performing fingerprint identification in a new space. Only
hashed data is transmitted and stored in the server database, and it is
not possible to restore fingerprint minutia locations using hashed data.
We also present a performance analysis of the proposed algorithm.

1 Introduction

The problem we are dealing with is well described in section 9.7 of Handbook
of Fingerprint recognition[1]. Plaintext passwords can be hashed, and only hash
values are stored in the database and transmitted across networks. Password au-
thentication requires comparison of the hashed values and not original passwords.
If database with hash values is ever compromised, subjects can be re-enrolled
using different passwords or different hash functions.

The situation is different when using biometric data for person authentica-
tion. Due to the difficulty of devising hash functions for biometric data, the
biometric templates are often stored unprotected in a central database. Even
if stored templates are encrypted, matching is still performed using decrypted
templates, and decryption process can be compromised as well. If the biometric
database is compromised and an intruder obtains a person’s biometric template,
using this biometric will be impossible for the rest of person’s life.

In this work we want to devise a method for biometric data, in particular
fingerprint data, to be hashed, and the biometric identification to be performed
using hashed biometric data. Hashing functions can be one-way functions, and
given such hash values it is impossible to reconstruct original template. Only
the hash values are transmitted over the network and stored in the biometric
database. In case the hash values are compromised, person will be re-enrolled
using new hash functions. The original biometric(e.g. fingerprint) is safe and
never compromised.

Figure 1 presents the architecture of a system using proposed hashing al-
gorithm. Fingerprints are obtained by the scanner, minutia locations are found
and hashes of minutia subsets are constructed. Finding minutiae and hashes can
be incorporated into scanner. Only hashes are transmitted and stored in the
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Fig. 1. Architecture of the proposed hashing algorithm

database. During the verification, new hash values are produced by the scanner
and are matched with those stored in the database. Matching can be performed
either on the client or on the server.

2 Related Work

The hashing functions for text passwords usually change hash values completely,
even if a single character in a password is changed. Is it possible to construct
a person authentication algorithm if we allow the password to change slightly?
Error correcting codes [2] are designed to deal with such situations of recovering
changed data and their use might be appropriate here. Indeed, Davida et al.[3]
presented an authentication algorithm based on error correcting codes. In this
algorithm, error-correcting digits are generated from the biometric data and
some other verifying data, and stored in the database. During authenticating
stage, possibly changed biometric data is combined with stored error-correcting
digits and error correction is performed. The amount of correction required serves
as a measure of the authentication success. This algorithm was later modified as
fuzzy commitment scheme in the work of Juels and Wattenberg[4] and some of
its properties were derived.

Fingerprint data with minutia positions as features presents additional chal-
lenges for designing hashes. Minutia sets of two fingerprints usually do not co-
incide, it is nearly impossible to introduce some order in minutia set, and global
transformation parameters are usually present between corresponding minutiae.
A fuzzy vault algorithm (Juels and Sudan [5]) improves upon fuzzy commit-
ment scheme in trying to solve first two challenges and also uses error-correcting
codes. The security of the algorithm relies on the addition of chaff points, or,
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in the case of fingerprint vault, false minutia points. The attacker would try
to find a subset of points well intersecting with non-chaff point set. Thus more
chaff points provides better security, but arguably worse vault unlocking per-
formance. The application of fuzzy vault to fingerprint identification appeared
in the work of Clancy et al.[6]. That paper showed realistic expectations on the
numbers of chaff points and associated attack complexity. The algorithm used
the assumption that fingerprints are aligned, and corresponding minutiae had
similar coordinates.

To address the frequent impossibility to properly align fingerprint images,
Uludag and Jain [7] proposed to use features independent of global rotation and
translation. It is still unclear if this approach will work.

Soutar et al. [8] took another approach to secure fingerprint biometrics. The
algorithm operates on images by constructing special filter in Fourier space en-
coding key data. The data can be retrieved only by presenting similar fingerprint
image to the decoder. The matching procedure is correlation based, thus trans-
lations of images are possible but not rotations.

In our work we use ideas similar to [9] to combine results of localized match-
ings into the whole fingerprint recognition algorithm. In that work localized
matching consists in matching minutia triplets using such features as angles
and lengths between minutia points. For each minutia feature vector of length 3
(x,y,θ) and its two nearest neighbors, a secondary feature vector of length 5 is
generated which is based on the Euclidean distances and orientation difference
between the central minutia and its nearest neighbors. Matching is performed
on these secondary features. In contrast, for localized matchings in this work we
keep only limited information about matched neighborhoods, so that minutia
positions can not be restored. Global matching is essentially finding a cluster
of localized matchings with similar rotation(r) and transformation(t) parame-
ters. It seems that proposed algorithm of Uludag and Jain[7] might also use this
2-stage technique. Unlike fingerprint vault algorithm[6] our algorithm performs
hashing of not only enrolled fingerprint, but of test fingerprint also. Thus hash-
ing can be incorporated into scanner, and original fingerprint data will never be
transmitted nor stored in the database.

3 Hash Functions of Minutia Points

The main difficulty in producing hash functions for fingerprint minutiae is the
inability to somehow normalize fingerprint data, for example, by finding specific
fingerprint orientation and center. If fingerprint data is not normalized, then the
values of any hashing functions are destined to be orientation/position- depen-
dent. The way to overcome this difficulty is to have hash functions as well as
matching algorithm deal with transformations of fingerprint data.

We represent minutia points as complex numbers {ci}. We assume that two
fingerprints of the same finger can have different position, rotation and scale,
coming from possibly different scanners and different ways to put the finger
on scanner. Thus the transformation of one fingerprint to the other can be
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described by the complex function f(z) = rz + t. In our approach we construct
hash functions and corresponding matching algorithm, so that this transforma-
tion function is taken into account. Additionally we cannot set specific order of
minutiae, so we want our hash functions be independent of this order. Thus we
consider symmetric complex functions as our hash functions.

Specifically, given n minutia points {c1, c2, . . . , cn} we construct following m
symmetric hash functions

h1(c1, c2, . . . , cn) = c1 + c2 + · · · + cn

h2(c1, c2, . . . , cn) = c2
1 + c2

2 + · · · + c2
n

. . .

hm(c1, c2, . . . , cn) = cm
1 + cm

2 + · · · + cm
n

(1)

Suppose that the another image of the fingerprint is obtained through above
described transformation f(z) = rz + t, thus locations of corresponding minutia
points are c′i = f(ci) = rci + t. Hash functions of the transformed minutiae can
be rewritten as

h1(c′1, c
′
2, . . . , c

′
n) = c′1 + c′2 + · · · + c′n

= (rc1 + t) + (rc2 + t) + · · · + (rcn + t)
= r(c1 + c2 + · · · + cn) + nt = rh1(c1, c2, . . . , cn) + nt

h2(c′1, c
′
2, . . . , c

′
n) = c′21 + c′22 + · · · + c′2n

= (rc1 + t)2 + (rc2 + t)2 + · · · + (rcn + t)2

= r2(c2
1 + c2

2 + · · · + c2
n) + 2rt(c1 + c2 + · · · + cn) + nt2

= r2h2(c1, c2, . . . , cn) + 2rh1(c1, c2, . . . , cn) + nt2

. . .

(2)

Let us denote the hash values of the minutia set of one fingerprint as hi =
hi(c1, c2, . . . , cn) and hash values of corresponding minutia set of another finger-
print as h′

i = hi(c′1, c′2, . . . , c′n). Equations 2 now become

h′
1 = rh1 + nt

h′
2 = r2h2 + 2rth1 + nt2

h′
3 = r3h3 + 3r2th2 + 3rt2h1 + nt3

. . .

(3)

Equations 3 have two unknown variables r and t. If we take into account
errors introduced during fingerprint scanning and minutia search, the relation
between hash values of enrolled fingerprint {h1, . . . , hm} and hash values of test
fingerprint {h′

1, . . . , h
′
m} can be represented as

hi = fi(r, t, h1, . . . , hn) + εi (4)

The matching between hash values of enrolled fingerprint {h1, . . . , hm} and hash
values of test fingerprint {h′

1, . . . , h
′
m} consists in finding r and t that minimize
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errors εi. During algorithm implementation we considered minimization of error
functions ε =

∑
αi|εi|, where weights αi were chosen empirically.

4 Global Fingerprint Matching Using Hash Functions

It turns out that trying to use hash functions with respect to the minutia set
of whole fingerprint is impractical. Even the small difference in minutia sets of
two prints of the same finger will produce significant difference in hash values.
Additionally, the higher order hash values tend to change greatly with the small
change in positions of minutia points.

To overcome these difficulties we considered using hash functions for match-
ing localized sets of minutia, and global matching of two fingerprints as a col-
lection of localized matchings with similar transformation parameters r and t.
As in base fingerprint matcher[9] the localized set is determined by a particular
minutia and few of its neighbors. The hashes are calculated for each localized
set. Total hash data extracted from fingerprint is a set of hashes {hi,1, . . . , hi,m},
i = 1, . . . , k, where k is the total number of localized minutia sets.

During matching of two hash sets we first perform a match of all localized sets
in one fingerprint to all localized sets in another fingerprint. The matches with
highest confidences are retained. Then, assuming in turn that a particular match
is a correct match, we find how many other matches have similar transformation
parameters. The match score is composed from the number of close matches and
confidences of those matches.

5 Experiments

We carried out experiments with different configurations, using different number
of minutia points(n) and hashing functions(m). We tried out the configurations
as follows

1. n = 2, m = 1. For each minutia point we find its nearest neighbor, and the
hash function h(c1, c2) = c1+c2

2
2. n = 3, m = 1. For each minutia point we find two nearest neighbors and the

hash function h(c1, c2, c3) = c1+c2+c3
3

3. n = 3, m = 2: for each minutia point find three nearest neighbors, and
for each minutia triplet including original minutia point construct two hash
functions using the formula hm(c1, c2, . . . , cn) = cm

1 + cm
2 + · · · + cm

n where
m = 1, 2.

We use similar formulae for directions.
We compared performance with fingerprint matching algorithm developed in

[9] and using same set of fingerprints with identically extracted minutiae points.
Also, since in configurations 1 and 2 we simply get another set of minutia points,
we used matching algorithm of [9] to perform matching. We tested our system
on FV C2002’s DB1 database. The dataset consists of 110 different fingers and
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8 impressions for each finger. There are a total of 880 fingerprints(388 pixels
by 374 pixels) at 500 dpi with various image quality. We followed the protocols
of FV C2002 to evaluate the FAR(False Accept Rate) and FRR(False Reject
Rate). For FRR the total number of genuine tests is (8∗7)

2 ∗100 = 2800. For FAR
the total number of impostor tests is (100∗99)

2 = 4950. Currently achieved equal
error rate(EER) of proposed algorithm is ∼ 3%. The EER for plain matching
is ∼ 1.7%. The ROC characteristics of the baseline system and the different
configurations of our system are shown in figure 2.

Fig. 2. ROC Curves for the baseline system[9] and the different experimental configu-
rations

The decrease in the accuracy might be caused by the loss in information
when keeping reduced number of variables based on minutia triplets. For every
three neighboring minutia points we have reduced the number of variables to 4
(2 complex numbers) instead of original 6. It should be also noted that the total
number of hashed values is not reduced in the same proportion since the same
minutia can participate in the production of more than one triplet as described
in figure 3. Thus the total size of stored hash values can be even bigger than
the size of original fingerprint template. There can be additional reasons for
observed performance hit, such as difficulty in matching localized hashed values
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and reduced number of matched localized neighborhoods. Determining exact
cause of performance loss and correcting it is one of the future research topics.

Nevertheless, the benefits of securing fingerprint data can easily outweigh the
performance loss in many applications. Performance loss would mean stricter
decisions on matching, and more frequent repeat matching attempts. Arguably
many people will trade off the assurance on their fingerprint template privacy
for the inconvenience of performing repeat fingerprint scan.

6 Security of Proposed Algorithm

The main purpose of the proposed algorithm is to conceal original fingerprint
and minutiae locations from an attacker. Is it possible to reconstruct minutia
positions given stored hash values? Since the number of hash values for each
local minutia set is less than number of these minutiae, it is not possible to get
locations using only information of one local set. On the other hand, it seems
possible to construct a big system of equations involving all hashes (hashes
of only first order might be considered for linearity). The biggest problem in
constructing such system is that it is not known which minutia participated in
the creation of particular hash value.
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Fig. 3. Different number of minutiae(crosses) can participate in the creation of two
triplet centers(circles)

The problem is illustrated in figure 3. Two triplet centers are formed from 4,
5 and 6 minutia points. Thus during constructing an equation system for finding
minutia positions, we have a problem of deciding how many minutiae should be,
in addition to matching minutia to triplet centers.

Hill-climbing type attacks[10] will probably have more difficult time to make
a match since varying minutia position might have effect on few triplets, thus
influencing matching score in a more complex way. Also, we think, that even if
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attack succeeded and match is found, the resulting minutiae locations will be
different from original. In this situation, change of hashing algorithm will make
reconstructed fingerprint unmatchable.

7 Future Work

In this paper we presented one method of constructing hash functions. To achieve
a cancellable biometric algorithm we need to provide a way to automatically
construct and use randomly generated hash functions. Presented set of hash
functions is an algebraic basis in the set of polynomial symmetric functions.
Thus, we were able to express hash functions of transformed minutia set through
original set of symmetric functions. This is a clue to constructing other similar
hash functions. Essentially we can take arbitrary algebraic basis of symmetric
polynomials of degree less than or equal to m, {s1, . . . , sm} as our hash functions.
Then the hash functions of the transformed minutiae, si(rc1 + t, . . . , rcn + t),
will still be symmetric functions of the same degree with respect to variables
c1, . . . , cn. Thus, hashes of transformed minutia could be expressed using original
hashes, s′i = si(rc1 + t, . . . , rcn + t) = Fi(r, t, s1, . . . , sm) for some polynomial
functions Fi. These equations will allow matching localized minutia sets, and
finding corresponding transformation parameters.

In presented algorithm global matching relies heavily on first order hash func-
tions, basically centers of minutia triplets. If we want to use arbitrary symmetric
hash functions, then the global matching algorithm should be modified.

The ROC curves in figure 2 suggest that the algorithm has slightly lesser
accuracy than the baseline system which could be attributed to the fact that by
considering centers of minutia triplets as the features to match, we might lose
some information that the original minutia possess. Currently we are working
on improving the accuracy of the system by possibly learning the parameters
automatically and also trying to possibly use different scoring techniques.

Additional possible area of research is the use of scalar functions. For ex-
ample, it is easy to construct minutia triplet features which are rotation and
translation invariant. But, since algorithm requires estimation of rotation and
translation, these features will not suffice.
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Abstract. This paper presents a digital rights management approach for gray-
level images. The ownership of the original image is identified with an 
ownership statement, which is a gray-level image as well. The proposed scheme 
utilizes block truncation coding (BTC) to create a master share, which is then 
used to produce an ownership share against the ownership statement. When in 
doubt about the property of an image, the author should address his/her 
ownership share to reveal the ownership statement to claim the ownership. 
Since our method does not embed the ownership statement into the host image, 
we can register more than one ownership statements for a single image without 
destroying the former ownership statements. Besides, the original image does 
not need to involve in the process of identifying the ownership. Finally, 
experimental results will show the robustness of our scheme against several 
common attacks. 

1   Introduction 

Digital watermarking is a kind of techniques for protecting the intellectual property 
right of digital images. A meaningful signature, called a watermark, is embedded into 
a digital image, called a host, to register the ownership and can be detected when the 
ownership of the image needs to be identified. Most related techniques have to alter 
the original image to embed the information of the digital watermark [1–4]. Although 
some methods can embed multiple watermarks in a single image, the damage to the 
former watermark caused by the later one is inevitable. Recently, Chang et al. [5] 
proposed a new copyright protection scheme with a four-color signature. Their 
method transforms the host image and the signature into two binary images using 
discrete cosine transform (DCT) and visual cryptography (VC), respectively. Then, 
the two binary images are used to create an ownership share, which can be a key to 
reveal the signature to identify the ownership. Since the signature is not embedded 
into the host image, multiple ownership can be registered without destroying each 
other. However, their method can use four-color images as signatures only. Generally 
speaking, a meaningful chromatic image usually has more than four colors. Hence 
their method becomes impracticable when one needs to use a meaningful chromatic 
image to be the signature. Besides, their method spends 12 × 12 pixels to carry one 
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pixel of the signature. Therefore, when the number of colors of the signature 
increases, the size of the watermark has to be much smaller than that of the host 
image. Moreover, a transformation of the host image from the spatial domain to the 
frequency domain must be preformed so that the binary image can be constructed. 

In consideration of facilitating using more meaningful images as signatures, we 
propose another copyright protection method for gray-level digital images, where a 
gray-level image is used as an ownership statement. Our scheme has two phases: one 
is the ownership share generation phase; the other is the ownership identification 
phase. In the ownership share generation phase, we utilize block truncation coding 
(BTC) [6–7] to transform the original image into a binary image, called a master 
share, which represents the features of the original image. Then, an ownership share is 
produced in the light of the master share and the ownership statement. For the sake of 
security, we will disarrange the pixels of the original image using a pseudo random 
number generator before producing the master share. The ownership share is the key 
to reveal the ownership statement in the future, so it has to be sent to a trusted third 
party for authentication to show good faith to everyone. In the ownership 
identification phase, the test image is transformed to a master share by means of BTC 
firstly. Then, the ownership statement can be revealed according to the master share 
and the ownership share held by the author. 

Our method has several advantages. Firstly, we don’t need to alter the host image; 
hence the image quality won’t be decreased. Secondly, our method can identify the 
ownership without resorting to the original image. Only the ownership share needs to 
be addressed to identify the ownership when the dispute about the property of an 
image is happened. Thirdly, multiple ownership can be registered for a single image 
without interfering with each other. Fourthly, our method can attain the requirement 
of robustness for the ownership statement as shown in the experimental results. 
Finally, and most importantly, the ownership statement is not restricted to be binary 
images only or to be images with limit colors. We can handle gray-level signatures; 
therefore, our method has more applications than copyright protection. For example, 
our method can be used to cover the transmission of confidential images. 

The rest of this paper is organized as follows. In Sect. 2, we will explain the 
proposed copyright protection scheme for gray-level images in detail. Then, the 
experimental results and some discussions are presented in Sect. 3. And finally, we 
will give some conclusions in Sect. 4. 

2   The Proposed Scheme 

2.1   Ownership Share Generation 

Assume that an ownership statement W is a gray-level image of N × M pixels and the 
original image H is a gray-level image of 3N × 3M pixels. Before the process starts, H 
has to be permuted using a pseudo-random number generator seeded by a key key to 
enhance the robustness of the scheme. Then we perform the block truncation coding 
(BTC) to encode the permuted image H′ into a binary master share of 3N × 3M pixels. 
The image H′ is divided into blocks of 3 × 3 pixels firstly. Then, for each block, we 
compute a mean value μ of all pixels, and for each pixel in a block, we set it to ‘1’ if 
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its value is greater than or equal to μ; otherwise, we set it to ‘0’. Hereafter, BTC is 
completed, and the master share is produced. Next, each pixel s of the ownership 
statement is converted into an 8-bit binary string, i.e. (s1s2s3s4s5s6s7s8)2. Each binary 
string is arranged as a block of 3 × 3 pixels from top-left to bottom-right. Since the 
number of pixels of a block is more than the length of the binary string by one, the 
most bottom-right pixel of the block is left unused and marked with bit ‘0’. By doing 
so, we can transform each pixel of the ownership statement into a binary block. 
Finally, all of the blocks are collectively formed as a binary image of 3N × 3M pixels. 
From now on, we can produce our ownership share O by performing the logic XOR 
operation on the binary image and the master share. Fig. 1 depicts the whole process 
of ownership share generation, and the algorithm is shown below. 
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Fig. 1. Illustration of ownership share generation 

Algorithm.  Ownership Share Generation 
Input: A gray-level ownership statement W of N × M pixels 
 A gray-level host image H of 3N × 3M pixels 
 A seed key of the pseudo random number generator 
Output: An ownership share O of 3N × 3M pixels 
Step 1. Permute H using pseudo-random number generator seeded by key. Denote 

the permuted image as H′. 
Step 2. Divide H′ into equal-size block of 3 × 3 pixels to derive a set of blocks 

{H′ij}, where i = 0..(N − 1) and j = 0..(M − 1). Each pixel of H′ij is denoted 

as ij
mnp , where m = 0..2 and n = 0..2, and ijp00  is located at the position (3i, 

3j) of H′. 
Step 3. For the block H′ij of H′, calculate the mean value μij of the pixels. Set ij

mnp  

to ‘1’ if its value greater than or equal to μij; otherwise, set it to ‘0’, where m 

= 0..2 and n = 0..2. 
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Step 4. Convert the pixel wij of W to an 8-bit binary number sij, where i = 0..(N − 1) 

and j = 0..(M − 1). Append bit 0 to sij, and denote each bit of sij as ij
ts , 

where t = 1..9. 

Step 5. Generate the pixel quv of O through logic XOR; i.e. ij
nm

ij
mnuv spq 13 ++⊕= , 

where u = 3i + m, v = 3j + m, m = 0..2 and n = 0..2. 

Step 6. Repeat Step 3 to 5 until all blocks of H′ are processed. 

2.2   Ownership Identification 

If a gray-level image G is suspected to be a piracy copy, the author can resolve the 
dispute about the ownership by revealing the ownership statement from G. Firstly, G 
is disarranged using a pseudo-random number generator seeded by the same key key. 
Let G′ denote the permuted image. Then, G′ is encoded into a master share by means 
of BTC as we have described in Sect. 2.1. To identify the ownership, the author has to 
address his/her authenticated ownership share O and reveals the ownership statement 
by performing the logic XOR operation on the master share and the ownership share 
O. Note that the revealed ownership statement may be different from the original one. 
Fig. 2 depicts the process of ownership identification, and the algorithm is described 
as follows. 
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Fig. 2. Illustration of ownership identification 

Algorithm.  Ownership Identification 
Input: A gray-level test image G of 3N × 3M pixels 
 An ownership share O of 3N × 3M pixels 
 A seed key of the pseudo random number generator 
Output: An ownership statement W of N × M pixels 
Step 1. Permute G using a pseudo-random number generator seeded by key. Denote 

the permuted image as G′. 
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Step 2. Divide G′ into equal-size blocks of 3 × 3 pixels to derive a set of blocks 

{G′ij}, where i = 0..(N − 1) and j = 0..(M − 1). Each pixels of G′ij are 

denoted as ij
mnp , where m = 0..2 and n = 0..2, and ijp00  is located at (3i, 3j) 

of G′. 
Step 3. Divide O into equal-size blocks of 3 × 3 pixels to derive a set of blocks 

{Oij}, where i = 0..(N − 1) and j = 0..(M − 1). Each pixels of Oij are denoted 

as ij
mnq , where m = 0..2 and n = 0..2, and ijq00  is located at the position (3i, 

3j) of G′. 
Step 4. For the block G′ij of G′, calculate the mean value μij of the pixels. Set ij

mnp  

to 1 if its value greater than or equal to μij; otherwise, set it to 0, where m = 

0..2 and n = 0..2. 

Step 5. Generate a 9-bit binary string (s1s2s3s4s5s6s7s8s9)2 through performing logic 

XOR on ij
mnp  and ij

mnq , i.e. ij
mn

ij
mnnm qps ⊕=+3 , where m = 0..2 and n = 

0..2. 

Step 6. Set the value of pixel wij of W according to the following equation: 

wij = ( )
=

−×
8

1

82
k

k
ks  . (1) 

Step 7. Repeat Step 4 to 6 until all blocks of G′ are processed. 

3   Results and Discussions 

In this section, several experiments are performed to demonstrate the robustness of 
the proposed scheme against several common attacks, including darkening, 
lightening, rescaling, blurring, sharpening, noising, geometric distortion, cropping, 
and JPEG lossy compression attacks. The above attacks are done by Adobe 
Photoshop version 7.0, and the related parameters of each attack are listed in Table 1. 
The gray-level host image of 540 × 540 pixels and the gray-level ownership statement 
of 180 × 180 pixels are shown in Fig. 3(a) and Fig. 3(b), respectively. Besides, we use 
the peak signal-to-noise ratio (PSNR) to measure the similarity between two gray-
level images. The similarity measurement PSNR is defined as follows:  

MSE
PSNR

2255
log10 ×=  . (2) 

For gray-level images, MSE can be defined as  

= =

′−
×

=
1 2

1 1

2
,,
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j
jijigray cc

MM
MSE  , (3) 
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Table 1. Parameters of attacks 

Attacks Parameters (Adobe Photoshop version 7.0) 
Darkening Brightness: −30 
Lightening Brightness: +30 
Rescaling Downscaling the image by a factor of 2 in each direction and 

then upscaling the downscaled image to the original size 
Blurring Blur more 
Sharpening Sharpen more 
Noising Add noise: amount = 10%, distribution = uniform 
Geometric distortion Ripple: amount = 100%, size = medium 
Cropping Erasing about 20% area of the image 
JPEG Quality = 5, format option = baseline optimized 

 
 

  
(a) (b) 

Fig. 3. (a) The gray-level host image (540 × 540 pixels, 300 dpi); (b) The gray-level ownership 
statement (180 × 180 pixels, 150 dpi). 

where ci,j denotes a gray-level of the original image, c′i,j denotes a gray-level of the 
attacked image, and M1 × M2 is the image size.  
In Fig. 4, we illustrate the attacked images and their corresponding recovered gray-
level ownership statements upon different image processing operations. Note that 
PSNRw denotes the PSNR between the recovered ownership statement and the original 
one, and PSNRa denotes the PSNR between the original image and the attacked image. 
As shown in the experimental results, we could conclude that the proposed scheme 
can resist several common attacks. Especially, we found that our method can 
effectively resist the lightening and darkening image processing operations. However, 
we also found that the proposed scheme appears weak against the cropping attack 
with more than 25% area copped. 

In case an adversary knows our scheme, he may try to alter the host image so that 
the ownership statement may not be successfully revealed. One possible way to 
achieve his purpose is to disturb the pattern of the master share. We make a 
reasonable assumption that the adversary does not know the seed of the pseudo-
random number generator; therefore, he may directly divide the host image into 3×3   
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(a) Blurring 

PSNRw = 16.91 dB 
PSNRa = 27.24 dB 

(b) Lightening 
PSNRw = 32.96 dB 
PSNRa = 18.67 dB 

(c) JPEG 
PSNRw = 19.80 dB 
PSNRa = 33.26 dB 

   
(d) Cropping 

PSNRw = 11.53 dB 
PSNRa = 11.40 dB 

(e) Darkening 
PSNRw = 32.47 dB 
PSNRa = 18.64 dB 

(f) Distortion 
PSNRw = 14.27 dB 
PSNRa = 21.76 dB 

   
(g) Noising 

PSNRw = 15.47 dB 
PSNRa = 24.42 dB 

(h) Rescaling 
PSNRw = 16.57 dB 
PSNRa = 26.94 dB 

(i) Sharpening 
PSNRw = 15.59 dB 
PSNRa = 20.10 dB 

Fig. 4. The experimental results of gray-level ownership statements 

blocks without disarranging it. Then, for each block, the adversary can interchange 
pixels whose values are greater than or equal to the mean value with other pixels 
whose values are less than the mean value. By doing so, the binary blocks of the 
master share may be largely different from the original one, and thus the revealed 
gray-level ownership statement cannot be identified. Such scenario can be represented 
by the experiment shown in Fig. 5. Fig. 5(a) is the attacked result (PSNRa = 17.35 
dB), and Fig. 5(b) is the corresponding revealed ownership statement (PSNRw = 11.99 
dB). According to the low PSNR value of Fig. 5(a), we can know that the host image 
is seriously damaged. Nevertheless, we still can identify the content of the revealed 
ownership statement with eyes. Therefore, even though an adversary knows our 
scheme and attempts to destroy the host image, the revealed ownership statement is 
still robust enough to be identified. 
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(a) The attacked result 
PSNRa = 17.35 dB 

(b) Known-Scheme attack 
PSNRw = 11.99 dB 

Fig. 5. The known-scheme attack 

4   Conclusions 

In this paper, we proposed an ownership identification method for digital images 
using a gray-level image as an ownership statement. Since the scheme dose not really 
embed the ownership statement into the image to be protected, the host image will not 
be altered, and the rightful ownership can be identified without resorting to the 
original image. Moreover, it also allows registering more than one ownership for a 
single host image without destroying each other. Unlike many transformed-domain 
approaches, the proposed scheme does not need to transform the image between the 
spatial and frequency domains. Instead, BTC is utilized in our scheme to preserve the 
features of the original image, so that our scheme can satisfy the requirement of 
robustness. We also demonstrate the experimental results against several common 
attacks and discuss a worst-case scenario, where an adversary who knows our scheme 
may attempt to attack the host image. In the future, we will extend our scheme to 256-
color and true-color ownership statements. 
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Abstract. The ATRIUM project aims to the automatic detection of
threats hidden under clothes using millimetre-wave imaging. We describe
a simulator of realistic millimetre-wave images and a system for detecting
metallic weapons automatically. The latter employs two stages, detection
and tracking. We present a detector for metallic objects based on mixture
models, and a target tracker based on particle filtering. We show con-
vincing, simulated millimetre-wave images of the human body with and
without hidden threats, including a comparison with real images, and
very good detection and tracking performance with eight real sequences.
(International Workshop on Pattern Recognition for Crime Prevention,
Security and Surveillance)

1 Introduction

The ATRIUM project (Automatic Threat Recognition and Identification Using
Millimetre-waves) emerges from the necessity to protect public environments
such as airports, train stations and other public buildings. The project investi-
gates the use of a millimetre-wave (henceforth MMW) imaging sensor combined
with image processing techniques for detecting threats hidden under clothes.

We present our current work and results on two image processing approaches:
an image-based strand, whereby image intensities are analysed without reference
to the physics of image formation; and a physics-based strand, whereby the image
is analysed on the basis of a physical model of MMW image formation.

Specifically, we report a system for the automatic detection and tracking
of metallic objects concealed on moving people in sequences of MMW images
(image-based strand), and a complete model for the formation and simulation
of MMW images (physics-based strand).

We adopt QinetiQ’s recently demonstrated, proof-of-concept sensor, provid-
ing video-frame sequences with near-CIF resolution (320 × 240 pixels). It can
image through clothing, plastics and fabrics. Together, through-clothes imaging
and current video sequence analysis offer huge potential for automatic, covert
detection of weapons concealed under clothes.

S. Singh et al. (Eds.): ICAPR 2005, LNCS 3687, pp. 48–57, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Existing MMW simulation packages, e.g., PMWCM or Speos, are not de-
signed for indoors scenes and do not model specular reflections or bulk emis-
sion, which makes them unsuitable for ATRIUM. We have therefore developed
a novel simulator combining a ray-tracer (Zemax) and low-level Matlab modules
to process ray-tracing data. The system models both the geometry and the phys-
ical parameters of the scene objects, allowing full simulation of MMW images
and sequences of indoors scenes.

To our best knowledge, very little work has been reported on the automatic
analysis of MMW sequences or images. Most authors focus on very basic seg-
mentation [1] or image fusion. In a related application, shape identification on
segmented images [1] has been investigated and suitable shape descriptors pro-
posed. More recently, basic work on object detection has appeared [2]. The main
contribution of our work is therefore to apply advanced image processing tech-
niques to a new video imaging technology of high potential for public security.

This paper is divided into three parts: first, an introduction to MMW im-
ages focusing on image formation and simulation; second, a description of our
metallic-threat detection algorithm; third, experimental results for both simula-
tion and detection.

2 Millimetre -Wave Images

2.1 Formation of Millimetre -Wave Images

Two different phenomena influence the formation of MMW images; (1) the com-
bination of signal power from various components of the scene and (2) the modi-
fication of the recorded signal by the instrument response, including the impulse
response of the imaging sensor and noise artifacts such as, for instance, those
due to scanning and interpolation.

The radiation frequency used is f = 35 GHz or equivalently λ ≈ 9 mm in
wavelength. The focal length of the imager is 0.8 m resulting in a diffraction-
limited spot-size of ∼ 2 cm. We consider only short-range indoor scenes with
mostly incoherent illumination [3].

The temperature of the objects in the scene is above absolute zero, so that
scene objects radiate power in the MMW range with an emissivity ε compared
to the radiation of an ideal black body. Since the surfaces of body and threats
are flat at the scale of the illumination wavelength, reflections are considered
specular [4]. This implies that scattering effects are small and light propagation
within the scene obeys ray optics approximations. The intensity of MMW radia-
tion at each pixel is determined by three different contributions: self-emission by
scene components, reflections from illumination source and background radia-
tion. We consider illumination as ambient background black body radiation with
temperature around 290 K and by extended diffuse sources with high equivalent
temperatures of, typically, 800 K. The reflectivity, R, the emissivity, ε, and the
transmissivity t are related through Equation (1) [5].

R + ε + t = 1 (1)
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These three coefficients depend on the physical characteristics of materials
and geometrical aspects of the scene defined via the dielectric constant ε, the
permeability μ, the angle of incidence θi, the angle between the electric field and
the plane of incidence α, and the polarization p (horizontal or vertical). Note
that these coefficients can be expressed as a sum of their “projections” on the
horizontal and vertical polarization planes, as described in Equation (2) for the
power reflectivity [6]:

R(ε, μ, θ, α) = Rp(ε, μ, θ) cos2 α + Rs(ε, μ, θ) sin2 α, (2)

where Rp(ε, μ, θ) is the power reflectivity in P-polarisation and Rs(ε, μ, θ) the
power reflectivity in S-polarisation. Similar equations can be obtained for trans-
missivity and emissivity.

Since the source is incoherent, the three intensity coefficients in Equation
(1) are added (Fig. 1), obtaining Equation (3). This describes the temperature
received by the sensor [4]:

Trec(ε, μ, θ, α) = R Till + ε Tobj + t Tback, (3)

where Trec(ε, μ, θ, α) is the received temperature, Till the temperature of the
illumination, Tobj the temperature of the object and Tback the temperature of
the background. Till, Tobj and Tback are constant values.

Fig. 1. Illustration of the combination of power from various scene components

Finally, we assume a highly incoherent illumination source to allow Equation
(3). However, it is important to remark that the source has some residual spatial
and temporal coherence, resulting in low-level speckle noise (see Subsection 4.1).

2.2 Simulation of Millimetre -Wave Images

As we consider indoors scenes with incoherent illumination, MMW image for-
mation is modelled as superposition of the components in Equation (3). To
generate synthetic MMW images we must model these components as well as
relevant sensor effects.

In envisaged security applications, the scene is composed by a person possi-
bly carrying one or several threats (weapons, knives, explosives, etc). The rele-
vant physical characteristics of scene objects are the dielectric constant εobj , the
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permeability μobj (which is unity for non-magnetic materials) and the physical
temperature Tobj. The value of the dielectric constant depends on the type of
material: for instance, flesh is well approximated by salty water with a dielectric
constant of εbody ≈ 28 + i 34. The body geometry is modelled by a triangular
mesh, and threats as metallic or dielectric patches located on the body. Table 1
shows the reference dimensions of a typical scene.

Table 1. Dimensions of the scene

Description Length (m)
Range object - closest part of the imager 1.6
Range object - apeture 2.9
Focal length 0.8
Lens diameter 1.6
Height of the body 1.8
Dimensions of the threat 0.075 × 0.075

The MMW-image simulator is composed of two parts. A ray-tracing pro-
gramme, Zemax, is used to propagate rays back from each detector pixel via
reflections from scene components to the source (either hot or background). All
reflections within the scene are characterised using Zemax and the history of
every ray is stored as a text file. By repeated application of Equation (3) at
each intercept of a ray with a scene component, we can calculate the intensity
of MMW radiation incident on each pixel detector. This component is executed
by MATLAB code reading the Zemax output text file. The code calculates the
equivalent temperatures at each pixel. Convolution of these images with the im-
ager’s point spread function (Airy disk) and the addition of random, low-level
speckle noise to images yields the final, simulated MMW image.

The ray-optics model used here is strictly valid only for large scene dimensions
compared to the wavelength (a few centimetres); more accurate models are re-
quired otherwise, e.g., electromagnetic methods used with unbounded problems
such as the Boundary Element Method. When imaging people, the ray-optics
model will provide accurate results for large body parts with large radii of cur-
vature, but some inaccuracies might be expected for smaller features such as
fingers and details of the face. Although these inaccuracies may become no-
ticeable with future improvements in detector technology, they are currently
unobservable due to noise levels and discrepancies between model parameters
and real values. The salient advantage of the ray optics model is computation
speed, crucial when simulating the large numbers of video sequences required
for training automated detection algorithms.

2.3 Mixture Models for MMW Images

MMW images offer good data for material discrimination as different materi-
als yield, generally speaking, different image properties. In analysing the image
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statistics it would be desirable to have an understanding of the physical process
which could be incorporated in a model for the MMW image formation process.
However, given the complexity of the MMW imager and the extensive amount
of hardware calibration, software equalisation and interpolation undertaken to
produce a MMW image, this is a non-trivial task.

In this paper we adopt an approach modelling the differences in image prop-
erties statistically, using a weighted mixture model in which each pdf, fi, is
associated to a specific material:

fmix =
N∑

i=1

αifi(θ) (4)

where αi is a weight and θ a vector of parameters.
To identify the best-fitting pdf for each material (incl. background, i.e., non-

figure pixels), we built a number of mixture models made by combinations of
standard distributions (e.g. Gaussian, Rayleigh, Laplacian), optimised the pa-
rameters with a standard Maximum Likelihood (ML) algorithm and picked the
best fitting combination for the observed image histograms using a Chi-Square
test. We started with background-only sequences (no subject) to identify the
background distribution. We then moved to sequences of scenes with a subject
but no threats, then with a subject carrying threats (metallic objects). The fi-
nal result is a best-fitting mixture model for each material (types of component
distributions, and parameters). As an example, Figure 2 shows histograms and
results of the ML distribution fit for a scene.

0 20 40 60 80 100 120 140 160 180
2.8

2.85

2.9

2.95

3

3.05

3.1
x 10

4

0 20 40 60 80 100 120 140 160 180

1

1.2

1.4

1.6

1.8

2

Frame

P
re

-N
o

rm
a

li
s
a

ti
o

n
In

te
n

s
it
y

H
M

M
S

ta
te

Fig. 2. An example of the HMM model being applied to a sequence of 180 frames. In
the top row the maximum image intensity is shown for each frame in the sequence. In
the bottom row the HMM state (1=object present, 2=no object) is shown across the
sequence.
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Fig. 3. Example of threat location showing an example PDF classification (left) with a
MMW image containing a potential target (centre) and the Expectation-Maximisation
classification (right).

3 Automatic Detection of Metallic Objects

3.1 Identifying Sequences Containing Threats

The presence of metallic objects changes the maximum temperature recorded
significantly, providing a good criterion to identify frames containing threats.
Within a sequence, the range of variation of the maximum image temperature
provides a reliable measure of the presence of a threat when compared to a
normalised threshold. However, detecting which frames in the sequence contain
objects is more difficult.

3.2 Identifying Frames Containing Threats

To solve the problem of identifying individual frames containing metallic ob-
jects we trained a standard Hidden Markov Model (HMM) to detect significant
changes in maximum temperatures (i.e., image intensities). The data is first
quantised into 10 levels and the hidden field is composed of 2 states (threat,
no threat). A Baum-Welch algorithm [7] is used for parameter estimation, and
a Viterbi algorithm to determine the optimal state sequence. As an example,
Figure 3 shows the maximum temperature signal for a sequence of 180 frames,
and the corresponding frame classification.

3.3 Locating Threat Regions Within Frames

In frames classified as containing threats, we use Expectation-Maximisation
(EM) [8] to perform the necessary unsupervised clustering. The EM algorithm
uses ML to recompute the pdf parameters until a convergence criterion is met.
We initialise the mixture model to the one containing the optimal distributions
for the background-body-metal case (as defined in Subsection 2.3) with default
parameters. Although not strictly necessary, this improves the convergence speed
significantly. An example of threat location is shown in Fig. 3, with an example
PDF classification (left), original image (centre) and classified image (right).



54 B. Grafulla-González et al.

3.4 Tracking Threat Regions

The previous classification stage yields two results: a set of frames showing metal
threats, plus, in each such frame, the regions corresponding to threats. Such
regions are characterised by frame number, centroid location, and area. The
problem is now to track such regions throughout a sequence for as long as the
region remains visible, with frequent births, deaths and temporary occlusions.
The problem is made more difficult by the noisy nature of the MMW images,
making accurate segmentation difficult.

Tracking objects in visible-wavelength sequences is a well-studied problem
in image processing and computer vision [9]. Particle Filters (PF) [10] are a
powerful class of algorithms removing the Gaussian constraint typical of Kalman
filters. They also provide robustness against clutter, a significant problem in
MMW images. Common to PF is the degeneracy problem whereby all but a
few particles have negligible weights after several iterations. For this reason we
employ a Regularised PF (RPF) [10] which has an improved re-sampling stage,
helping to avoid the degeneracy problem.

To start we define the tracking as an inference problem on a dynamic sys-
tem, with a system model defining the evolution of the state with time and a
measurement model which relates the measurements to the state. Let x0..t be
the state sequence (xt is a random vector representing the target state at time
t) and z1..t be the sequence of measurements obtained. The tracking problem is
governed by two functions:

xt = Ft(xt−1, vt−1) (5)
zt = Ht(xt, nt) (6)

where v1..t is the process noise sequence from the system model and n1..t is the
measurement noise sequence. A detailed derivation of the inference problem for
the PF can be found in [10].

The state vector employed is a 5D vector containing the position, velocity and
area of the target: (x, ẋ, y, ẏ, φ)T . A constant velocity model for target position
and a constant area model for target area are assumed, giving the following
models for the functions Ft and Ht respectively:

xt =

⎛
⎜⎜⎜⎜⎝

1 1 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠ xt−1 +

⎛
⎜⎜⎜⎜⎝

0.5 0 0
1 0 0
0 0.5 0
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎠ vt−1 (7)

zt =

⎛
⎝1 0 0 0 0

0 0 1 0 0
0 0 0 0 1

⎞
⎠ xt + nt (8)

Suitable values for the prediction (Cvt) and observation (Cnt) noise covari-
ance matrices were determined experimentally. Due to the nature of the segmen-
tation, it is necessary to allow greater variance within the area measurements
than for the position estimate.
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4 Results

4.1 Simulation of MMW Images

Fig. 4 presents the images generated by the MMW simulator. As can be observed,
the differences in terms of grey levels range between synthetic and real images
are minimal except for specific situations. For instance, the man in Fig. 4(a)
carries three different objects: one below the chest, one on the abdomen and one
on the (left) knee. These objects are not represented in the simulated scene and
therefore no shading areas appear in the synthetic image.

In the case of the woman in Fig. 4(b), no big difference can be appreciated
in terms of grey level range and shape, even if the mesh model does not fit
perfectly the real body. However, as can be seen, images are not exactly the
same. This is due to imperfections in the real sensor, the simulator and the
illumination which is slightly different in real (highly incoherent) and synthetic
(completely incoherent) scenes. But the noticeable difference is noise as it has
not been included in the simulator yet. The study of noise distributions in real
images as well as its addition into synthetic images remain as a future task.

(a) (b)

Fig. 4. Real and synthetic images: (a) man carrying three objects; (b) woman carrying
two metal patches. For each box: (left) real image, (middle) simulated image including
convolution with point spread function and (right) intensity image (power distribution
of the scene, i.e. the received temperature at the input of the sensor for each pixel).

4.2 Automatic Detection of Metallic Objects

We tested our system with eight real sequences, four with subjects without a threat
and four with subjects carrying a threat, giving a total of 1629 frames of which
137 frames where a threat was visible (see summary in Table 2, columns 1-3).

Table 2 (columns 4-6) shows the results of the sequence and frame threat
identification described in Section 3, giving percentage error in classified frames
(Error) with a breakdown of target frames missed (Emiss) compared to false
alarms (Efalse). The results clearly show that both stages of the threat identi-
fication perform very effectively. Missed target frames occurred primarily when
targets were identified through shape rather than intensity. The false alarms seen
in Threat03 are due to particularly strong reflections from the subjects scapula
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Table 2. Threat Identification & Target tracking

Sequence Frames Threat? Error Efalse Emiss Average Targets RMSE
Plain01 211 No — — — — —
Plain02 252 No — — — — —
Plain03 218 No — — — — —
Plain04 236 No — — — — —

Threat01 242 Yes 8% 0% 100% 2.4 8.1
Threat02 155 Yes 3% 0% 100% 2.1 11.6
Threat03 179 Yes 5% 22% 78% 1.3 5.1
Threat04 136 Yes 8% 0% 100% 1.1 5.5

(shoulder blades). The effect is inherent within this sensor and is similar to the
bright spot (specular reflection) seen in visual images.

Table 2 (columns 7 & 8) shows results for EM classification and RPF target
tracking, giving the average number of targets (true target + clutter) per frame
for the sequence and RMSE of the tracked position. The ground truth for the
target position was established manually and is accurate to ±2 pixels. It can be
seen that very good target tracking has been achieved, even in the sequences
with considerable clutter (Threat01, Threat02). The classification false alarms
produced in Threat03 have no negative impact on the PF tracking accuracy. The
comparatively poorer tracking results seen in Threat02 are due to the very short
time span over which the threat is visible (approx. 9 frames on each occasion
compared to an average of 15 frames for other sequences). In this instance, the
particle filter does not have enough time to converge.

5 Conclusion

We have described the formation and simulation of MMW images as well as
an automatic system to detect and track metallic threats concealed on people.
Initial results show that the geometric and physical models deployed yield good-
quality MMW sequences compared to real ones. We have also demonstrated an
automatic system for metallic threat detection, showing good performance with
eight real sequences in field conditions. Key future work will address the inclusion
of low-level speckle noise, non-uniform sampling and post-processing of images
for the simulator, and of a wider range of materials, more complex tracking
scenarios, and human body models for tracking. Further work will concern 3-D
visualisation techniques preserving privacy.
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Abstract. Many biometrics, such as face, fingerprint and iris images,
have been studied extensively for personal verification purposes in the
past few decades. However, verification using vein patterns is less devel-
oped compared to other human traits. A new personal verification system
using the thermal-imaged vein pattern in the back of the hand is pre-
sented in the paper. The system consists of five individual steps:Data Ac-
quisition, Image Enhancement, Vein Pattern Segmentation, Skeletoniza-
tion and Matching. Unlike most biometric systems that carry out com-
parisons based on a pre-selected feature set, this system directly recog-
nizes the shapes of the vein pattern by measuring their Line-Segment
Hausdorff Distance. Preliminary testing on a database containing 108
different images has been carried out and all the images are correctly
recognized.

1 Introduction

Public awareness of security issues has been greatly heightened since September
2001. This has led to a massive rise in demand for the personal identification
systems. Traditional methods make use of smart cards or Personal Identification
Numbers (PIN) etc to identify a person. However, these methods only offer
limited security and are usually unreliable. Over the past few years, various
biometric systems have been developed to overcome these disadvantages.

Biometrics is the science of identifying a person using its physiological or be-
havioral features [1]. These features range from physical traits like fingerprints,
faces, retina etc. to personal behaviors (such as signatures). Compared to tra-
ditional methods, biometric features are much harder for intruders to copy or
forge, and it is very rare for them to be lost. Hence, for identification systems
making use of biometric features, they offer a much more secure and reliable
performance.

During the past few decades, many researchers have carried out extensive
studies on utilizing various biometric features (both physiological and behav-
ioral) for personal verification. Amongst those biometric features, the most pop-
ular ones are fingerprints, faces, and iris scans for physiological biometrics, as
well as signatures for behavioral one. Each of these biometric features has its
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Fig. 1. Hand vein pattern verification system model

strengths and weaknesses [2]. Recently, hand vein pattern biometrics has at-
tracted increasing interest from both research communities [3,4,5] and industries
[6]. Anatomically, aside from surgical intervention, the shape of vascular patterns
in the back of the hand is distinct from each other [7], and it remains stable over
a long period. In addition, as the blood vessels are hidden underneath the skin
and are invisible to the human eye, vein patterns are much harder for intruders
to copy as compared to other biometric features. All these special properties of
hand vein patterns make it a potentially good biometrics to offer more secure
and reliable features for personal verification.

In this paper, a new personal verification system using vein patterns in the
back of the hand is proposed. The system consists of five individual processing
stages: Hand Image Acquisition, Image Enhancement, Vein Pattern Segmenta-
tion, Skeletonization and Matching, as shown in Figure 1. The system captures
the vein pattern images using a thermal camera. Unlike other vein pattern veri-
fication systems that compare the vein patterns based on a predefined set of fea-
tures extracted using techniques like Multiresolution analysis [5], the proposed
system recognizes the shapes of the preprocessed vein patterns by calculating
their line segment Hausdorff distances.

2 Data Collection

2.1 Image Acquisition

Veins are hidden underneath the skin, and are generally invisible to the naked
eye and other visual inspection systems. However, human superficial veins have
higher temperature than the surrounding tissue. Based on this fact, the vein
pattern in the back of the hand can be captured using a thermal camera. In this
work, an NEC Thermal Tracer is utilized to acquire thermal images of the back
of the hand. Figure 2 shows some of the images collected from different people in
a normal office environment (20−25◦C), and it can be seen that the veins appear
to be brighter in the images and are now visually distinguishable. A rectangular
region in the hand images can be defined as the region of interest (ROI). The
technique of locating the ROI is similar to the one proposed by Lin and Fan
[5], where the landmarks of the hand such as finger tips and valleys between the
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Fig. 2. Thermal images of the back of the hands in normal office environment

Fig. 3. Thermal images of the back of the hands in an outdoor environment

fingers are first located, then a fixed size rectangular region is defined as the ROI
based on the location of these landmark points. The image on the left of Figure
4 shows the result of the extracted ROI.

The images in Figure 2 were captured in a normal office environment, where
the temperature and humidity are lower than outside. Figure 3 shows another
set of images captured in a tropical outside environment (30− 34◦C and > 80%
humidity). It can be seen that the ambient temperature and humidity have a
negative impact on the image quality, and the vein patterns in these images are
now not easily visually distinguishable. Therefore, in our work, we use the image
data collected in a normal office environment instead of an outside environment
for better system performance.

2.2 Image Enhancement

The clearness of the vein pattern in the extracted ROI varies from image to
image, therefore, the quality of these images need to be enhanced before further
processing. A 5x5 Median Filter was used to remove the speckling noise in the
images. Then, a 2-D Gaussian low pass filter H(u, v) = e−D2(u,v)/2σ2

with stan-
dard deviation σ = 0.8 was applied to the vein pattern images to suppress the
effect of high frequency noise.

After removing the speckling and other high frequency noise, the vein pat-
tern images are normalized to have pre-specified mean and variance values. The
normalization process is to reduce the possible imperfections in the image due
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to the sensor noise and other effects. The method for normalization employed in
this work is similar to the one suggested by Hong et al [8]. Let I(x, y) denote the
intensity value at position (x, y) in a vein pattern image. The mean and variance
of image are denoted as μ and σ2 respectively. For an image sized N × M , they
are computed using Equation 1 and 2.

μ =
1

N × M

N−1∑
x=0

M−1∑
y=0

I(x, y) . (1)

σ2 =
1

N × M

N−1∑
x=0

M−1∑
y=0

(I(x, y) − μ)2 . (2)

Then the normalized image I
′
(x, y) is given by the pixel-wise operations

in Equation 3, where μd and σ2
d are the desired values for mean and variance

respectively.

I
′
(x, y) =

⎧⎨
⎩μd +

√
σ2

d·(I(x,y)−μ)2

σ2 , I(x, y) > μ

μd −
√

σ2
d·(I(x,y)−μ)2

σ2 , Otherwise
. (3)

Figure 4 shows the vein pattern image after normalization. It can be seen that
the quality of the image has been improved significantly

 

Fig. 4. Left: Region of interest; Center: After normalization; Right: After local thre-
holding.

3 Vein Pattern Extraction

3.1 Local Thresholding

After noise reduction and normalization, the quality of the image improves.
However, the vein pattern is still surrounded by many faint white regions. To
obtain a better representation of the shape of the vein pattern, it is necessary to
separate the vein pattern from the image background. Due to the fact that the
gray-level intensity values of the vein vary at different locations in the image,
global threholding techniques do not provide satisfactory results. Hence, a locally
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adaptive thresholding algorithm was utilized to segment the vein patterns from
the background. The algorithm chooses different threhold values for every pixel
in the image based on the analysis of its surrounding neighbors. For every pixel in
the image, its threhold value is set as the mean value of its 13×13 neighborhood.
The binary image on the right side of Figure 4 shows the vein pattern has
been successfully segmented from the original image after applying the local
threholding algorithm.

3.2 Skeletonization

As the size of veins grow as human beings grow, only the shape of the vein pattern
is used as the sole feature to recognize each individual. A good representation
of the pattern’s shape is via extracting its skeleton. Figure 5 shows the skeleton
of the vein pattern after applying the thinning algorithm proposed by Zhang
and Suen [9] . It can be seen that after the pruning process, the skeletons of the
vein pattern are successfully extracted and the shape of the vein pattern is well
preserved.

 

Fig. 5. Left: Skeleton of the vein pattern in Figure 4; Right: After pruning.

4 Vein Pattern Matching

Vein pattern matching is done by measuring the line segment Hausdorff distance
between a pair of vein patterns. Hausdorff distance is a natural measure for
comparing similarity of shapes. It is a distance measure between two point sets,
and Equation 4 and 5 give the definition for a modified version of Hausdorff
distance.

H(Mp, T p) = max (h(Mp, T p), h(T p, Mp)) . (4)

h(Mp, T p) =
1

Np
m

∑
mp

i ∈Mp

min
tp
j∈T p

‖ mp
i − tpj ‖ . (5)

Hausdorff distance uses the spatial information of an image, but lacks local
structure representation such as orientation when it comes to comparing the
shapes of curves. To overcome this weakness, in this paper, the line segment
Hausdorff distance (LHD) is calculated to match the shapes of vein patterns.
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Line segment Hausdorff distance was proposed by Gao and Leung [10] for
a face matching application. It incorporates the structural information of line
segment orientation and line-point association, and hence is effective to compare
two shapes made up of a number of curve segments.

Given two finite line segment sets M l = {ml
1, m

l
2, ..., m

l
p} and T l = {tl1, t

l
2, ...,

tlp}, LHD is built on the vector −→
d (ml

i, t
l
j) representing the distance between the

two line segment sets, and the vector is defined as

−→
d (ml

i, t
l
j) = [ dθ(ml

i, t
l
j), d‖(ml

i, t
l
j), d⊥(ml

i, t
l
j) ]T (6)

where dθ(ml
i, t

l
j), d‖(ml

i, t
l
j) and d⊥(ml

i, t
l
j) are the angle distance, parallel dis-

tance and perpendicular distance respectively. The numerical value of the dis-
tance is given by equation 7. The directed and undirected LHDs are defined in
equation 8 and 9, where lml

i
is the length of line segment ml

i.

d(ml
i, t

l
j) =

√
(Wa · dθ(ml

i, t
l
j))2 + d2

‖(m
l
i, t

l
j) + d2

⊥(ml
i, t

l
j) (7)

hl(M l, T l) =
1∑

ml
i∈Ml lml

i

∑
ml

i∈Ml

lml
i
· min

tl
j∈T l

d(ml
i, t

l
j) (8)

Hl(M l, T l) = max(hl(M l, T l), hl(T l, M l)) (9)

In this application, the vein patterns are divided into a number of curve seg-
ments. For each individual curve segment, a few points are sampled to represent
the curve segment. Using these sample points as the end points, a set of line seg-
ments representing the shape of the vein pattern are obtained. By this means,
the undirected LHD can then be calculated to measure the similarity of two vein
patterns.

5 Testing Results

Testing was carried out on a vein pattern image database consisting of 108
images from 12 people (9 from each person). Prior to testing, three images for
each person were selected randomly to form the class templates for that person.
During the verification stage, three undirected LHDs (H1,H2,H3) are computed
between the incoming vein pattern image and the three template images. The
average value H ′ of H1, H2 and H3 is then calculated, which is the similarity
measure between the incoming vein pattern and the target class. Figure 6 shows
the distribution of the genuine and intruder accesses against the value H ′. It can
be easily seen from the figure that the smaller H ′ is, the higher the probability the
vein pattern belonging to the genuine class. By choosing 9.0 to be the threhold
value, the system achieves 0% false acceptance rate (FAR) and 0% false rejection
rate (FRR) for all the 108 images in both the testing set (containing 72 images)
and the template set (containing 36 images).

The results of the experiment are encouraging. However, the images in the
current database are taken in a more controlled manner, where the participants
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Fig. 6. Distribution of genuine and intruder accesses against similarity measure H ′

are fully cooperative and the image acquisition is carried out in a normal office
environment with ambient temperature around 20◦C and humidity of < 50%.
For a real life application, the surrounding conditions are unknown. Therefore
the quality of the vein pattern images may reduce, and as a result, a decrease of
verification accuracy can be expected.

6 Conclusions

This paper presents a biometric system that recognizes the shapes of the vein
pattern in the back of the human hands captured using a thermal camera. Unlike
other approaches, the system directly recognizes the shapes of the vein pattern
using line segment Hausdorff distance. Preliminary testing results show that all
the vein pattern images in the database have been correctly recognized, and it
demonstrates the potential usefulness of such a system. Nevertheless, a number
of research issues need to be addressed in the future. First of all, the clearness of
the vein pattern in the image is affected by a number of factors such as ambient
temperature, nearness of the vein to the skin etc. An investigation is needed into
the impact of these factors on the quality of the vein pattern image. Secondly,
more experiments need to be carried out using a larger image database for a
thorough evaluation on the efficacy of hand vein pattern biometrics. Lastly, it is
likely that the vein patterns will be used in conjunction with other biometrics
in a multi-modal system.
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Abstract. This paper presents a robust method for recognizing human faces 
under varying illuminations. Unlike conventional approaches for recognizing 
faces in the spatial domain, we model the phase information of face images in 
the frequency domain and use them as features to represent faces. Then, 
Support Vector Machines (SVM) are applied to claim an identity using different 
kernel methods. Due to large variations of the face images, algorithms which 
perform in the space domain need more training images to achieve reasonable 
performance. On the other hand, the SVM combined with the phase-only 
representation of faces performs well even with small number of training 
images. Principal Component Analysis (PCA), Linear Discriminant Analysis 
(LDA), and 3D Linear Subspace (3DLS) are included in the experiment 
changing the size of images and the number of training images in order to find 
the best parameters associated with each method. The illumination subset of the 
CMU-PIE database is used for the performance evaluation. 

1   Introduction 

Recognizing faces under different illumination conditions is an essential part of face 
recognition systems. Since a face is essentially a 3D object, lighting sources from 
different directions may dramatically change visual appearances due to self-
shadowing and specular reflections. Currently there are many algorithms that have 
been developed with the aim of handling visual face recognition in the presence of 
illumination variations. Most algorithms developed for face recognition perform in 
the spatial domain by reducing the dimensionality of the face spaces. Such subspace 
analysis methods include PCA (Eigenfaces) [1], LDA (Fisherfaces) [2], 3DLS, Local 
Feature Analysis (LFA) [3], and Independent Component Analysis (ICA) [4] and 
those are still active research fields due to the unsatisfactory performance in practical 
applications [5][6]. 

In this paper, we present a robust method for dealing with illumination tolerant 
face recognition utilizing the phase information in the frequency domain. Although 
the importance of the phase information has been addressed by several researchers 
[7][8], the effectiveness of the phase spectrum has not been explored extensively in 
the face recognition area. We also argue that current unsatisfactory performance of 
face recognition results from the fact that the number of training images or gallery 
images per individuals is limited therefore a face image cannot represent the identity 
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of a person efficiently because of large variations in facial images caused by lighting 
changes, expressions, poses, makeup, aging, and eyeglasses. Therefore, algorithms 
typically need multiple training images such as Individual PCA (IPCA), 3D Linear 
Subspace [9], LDA, Neural Networks (NN), and SVM can be employed in real 
applications by representing an identity in a compact way or by finding an optimal 
decision boundary among individuals. In this experiment we seek the best 
performance of each algorithm and claim that each algorithm can produce reasonable 
performance depending on the number of gallery images per individuals. On the other 
hand, the SVM combined with the phase information performs well even with small 
number of training images. 

2   Background 

As suggested by researchers, the phase spectrum contains the structural information 
of the images and is less prone to the effects of lighting variations. Figure 1 shows a 
representation of the phase spectrum by applying the inverse Fourier transform of the 
phase-only spectrums. As shown in Figure 1, the phase spectrum of the faces looks 
like containing structural information of the faces thus can provide an alternative face 
representation that is more tolerant to illumination variations. 

 

          

         
 

Fig. 1. Examples of the images used in the experiment (top) and the inverse Fourier transform 
of the phase spectrum with unit magnitude respectively (bottom) 

 
We utilize the phase information with and without performing PCA using the 

SVM. Support Vector Machines [10][11][12] have been successfully applied in the 
field of object recognition utilizing the reduced features sets and mapping data into 
higher-dimensional feature spaces using the kernel trick. The SVM finds the optimal 
separating hyperplane that maximizes the margin of separation in order to minimize 
the risk of misclassification not only for the training samples, but also in hopes of 
generalizing to the unseen data in the test set. Although it is not so obvious that the 
SVM can produce better classification performance over other classifiers, an 
appropriate choice of kernels and feature sets leads to maximize the performance of 
the SVM. In this paper, we apply linear machines as well as different kernel methods 
such as Radial Basis Functions (RBF) and Polynomial Kernels in order to find the 
best separating vectors varying parameters associated with each kernel method.  
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3   Experiments 

In this experiment, we selected different sets of training images which were constant 
for experiment across different pattern recognition methods. Table 1 shows the test 
database used in the experiment. We divided into two groups of the database 
depending on the light conditions such as the dataset which contains ambient 
background lighting (room lights on) and the second dataset with no ambient 
background lighting (room lights off). Each database contains 65 individuals with 21 
different images under different illumination variations. Figure 2 shows examples of 
the images used in the experiment and Figure 3 shows 21 different illumination 
conditions in the dataset 2. We also experimented with the number of training images 
used (first 5 labeled images in Figure 3) and varying the resolution of these images to 
examine the actual dimensionality of the face spaces. 

Table 1. Subset of the PIE illumination database 

 Gallery  (65 individuals) Probe (65 individuals) 
Dataset 1  
(Room lights on) 

 1~5 images/person  
 

16 images /person 
 

Dataset 2 
(Room lights off) 

 1~5 images/person  
 

16 images / person 
 

 

 
(a) 

 
(b) 

Fig. 2. Examples of the images used in the experiment, (a) from dataset 1(room lights on), and 
(b) from dataset 2(room lights off) 

 
The face images were cropped and normalized for scale using the eye-locations 

provided. In some experiments we also performance histogram equalization to 
compensate for illumination variations. In case of the PCA, after computing the 
eigenface subspace, the images are projected on this basis and the resulting projection 
coefficients are stored for matching between gallery images and probe images. We 
normalized these coefficients by making them zero-mean and unit-variance as an 
improvement in performance which was observed by doing so. Such a preprocessing 
is an important step to improve the performance not only for the PCA and other 
algorithms. Since dataset 1 contains simple illumination sets, we achieve relatively 
high performance even with a single training image from each class for training as 
shown in Figure 4. The performance of Eigenphases outperform over Eigenfaces and 
Fisherfaces. The classifiers used here is nearest neighbor rule. One thing we notice  
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here is that large normalized faces do not necessarily guarantee better performance 
since large portions of the face images are filled with redundant information. 

 

 
 

Fig. 3. 21 labeled images from a subject in the PIE database illumination subset captured with 
no background lighting (dataset 2) 

 

Fig. 4. Performance comparison with Eigenfaces, Fisherfaces and Eigenphases from dataset 1 
varying the size of the normalized faces 

 
Throughout the analysis of the dataset 1, we assume each algorithm is somewhat 

optimized and produces reasonable performance in case of small illumination 
variations. On the other hand, we evaluate the performance on the harder illumination 
set (dataset 2) as shown in Figure 3. In order to find out the best feature representation 
in the SVM, we apply kernel methods such as RBF, and Polynomial kernels as well as 
Linear SVM as shown in Figure 5. We achieve the best performance using the Linear 
SVM after cross validation, therefore the Linear SVM used instead of mapping onto 
higher dimensional space. This process also gives an intuition about the database 
whether it can be linearly separable or not. 
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Fig. 5. Evaluation of kernel methods for the SVM using dataset 2 

 
As shown in Figure 6, with the phase information combined with the SVM 

produces the best performance although only one training image per individuals is 
used in the experiment. Figure 7 shows the effect of the number of training images. 
Regardless of the algorithms, better performance is achieved than single training 
image used in the experiment. Still best performance comes from the utilizing the 
Phase-Only with SVM. 

 
Fig. 6. Performance comparison using dataset 2 varying the size of the normalized faces with 1 
training image per individuals 
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Fig. 7. Performance comparison using dataset 2(room lights off) varying the size of the 
normalized faces with 3(top graph) and 5(bottom graph) training images per individuals 

 
Regarding the features and classifiers used in the experiment, only holistic 

features are applied without performing any local feature extraction methods. In case 
of Eigenfaces and Eigenphases, the number of eigenvectors is defined up to 95% of 
the reconstruction rate regardless of the number of the training images. Fisherfaces 
uses c-1 projection vectors where c is the number of classes. The nearest neighbor 
classifier is used commonly for Eigenfaces, Fisherfaces, and Eigenphases. In stead of 
using Eigenphases with the nearest neighbor classifier, we apply SVM with 
Eigenphases. On the other hand, the Phase-Only SVM does not involve with any 
dimensionality reduction schemes. Figure 8 shows the summary of the overall 
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Fig. 8. A summary of performance; each five bar indicates the performance of Eigenfaces, 
Fisherfaces, Eigenphases, SVM with Eigenphases, and Phase Only SVM (from left to right). 

 
performance evaluated in the paper with different number of training images. We seek 
the best performance of each algorithm regardless of the size of the faces. 

So far we do not consider any particular choice of the training images. It can be 
shown that a particular choice of database such as 7, 10 and 19 labeled images in 
Figure 3 enhances the performance as shown in Figure 9. Most Eigen-based methods 
give better performance instead of using first 5 illumination sets as training images 
(Figure 3). On the other hand, the SVM methods give almost perfect classification 
results with these training images. This can be interpreted as the performance of the 
SVM schemes seem to less prone to the choice of the training images while others do. 

 
Fig. 9. Performance comparison with particular training images (7, 10 and 19 labeled images 
used in the training -dataset 2) 
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4   Discussion 

Unlike conventional approaches for recognizing faces that typically work in the 
spatial image domain, we model the phase information of face images in the 
frequency domain and try to find optimal hyperplane decision boundaries for 
classifying each class using the phase-only representation. We show that Phase-Only 
SVM performs extremely well in the presence of illumination variations even with 
small number of training images compared to traditional spatial domain methods such 
as Eigenfaces, Fisherfaces, 3D-Linear subspace method and even previously proposed 
Eigenphases method. Most Eigen-based methods give better performance with a 
proper choice of the training images. This can be interpreted as there is a strong 
correlation among classifiers in terms of making mistakes due to large variations 
between the test and training images. On the other hand, the performance of the SVM 
scheme seems to less prone to the choice of the training images. Our results on the 
CMU-PIE database show that our proposed method outperforms previous methods for 
achieving illumination tolerant face recognition.  
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Abstract. Within this paper a new data clustering algorithm is proposed based
on classical clustering algorithms. Here k-means neurons are used as substitute
for the original data points. These neurons are online adaptable extending the
standard k-means clustering algorithm. They are equipped with perceptive fields
to identify if a presented data pattern fits within its area it is responsible for.

In order to find clusters within the input data an extension of the ε-nearest
neighbouring algorithm is used to find connected groups within the set of k-
means neurons.

Most of the information the clustering algorithm needs are taken directly from
the input data. Thus only a small number of parameters have to be adjusted.

The clustering abilities of the presented algorithm are shown using data sets
from two different kind of applications.

1 Introduction

To find clusters within given input data using an unsupervised clustering algorithm the
k-means clustering or the k-nearest neighbouring may be used. k-means clustering uses
k representatives each of them standing for one cluster centre. Since an input pattern
is assigned to the closest of the k cluster centres it is not possible to cluster e.g. two
concentric circles. The k-nearest neighbouring algorithm builds a neighbourhood graph
using all of the input data and therefore may be used to cluster input data from any kind
of shape. Since all data points are used to build the neighbourhood this clustering algo-
rithm needs a lot of memory. The presented algorithm doesn’t store any data patterns
but only stores representative neurons and thereby reduces the necessary memory.

Furthermore, both clustering algorithms are not online adaptable. The here pre-
sented clustering algorithm is online adaptable, it adapts after each presented pattern.
Therefore while learning no additional temporal memory is needed. When presenting
patterns in the recall phase both algorithms always return the centre or the area with the
shortest distance to the presented pattern. Thus both algorithms are not able to detect
new input patterns appertaining new clusters.

The clustering algorithm presented within this paper combines the advantages of
both clustering algorithms and introduces some improvements:

– Representatives are used to reduce memory
The learnt neurons represent the input data. Only the neurons are stored, not the
original input data.

S. Singh et al. (Eds.): ICAPR 2005, LNCS 3687, pp. 74–83, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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– Contiguous areas are detected
Since the clustering algorithm detects contiguous areas within the input space, it is
useful to detect partitions, well separated clusters, within the input space.

– Online adaptable
The net learns while presenting pattern by pattern.

– Perceptive fields detect new input patterns
The algorithm is capable to detect patterns belonging to new clusters.

1.1 Neural Structure

The presented algorithm uses special artificial neurons that have a perceptive area. As
illustrated in fig. 1 each neuron is defined by its position or centre c and by its width
σ. During the learning phase the centre c adapts towards the mean of the input data
covered by the perceptive area while σ adapts towards the standard deviation.

To calculate each neuron’s perceptive area the parameter ρ is used. ρ depends on the
probability distribution of the input data and defines the accepting area of the neurons.
ρ is constant. The radius r of the active area is defined as

r = ρ · σ.

Since each neuron is equipped with a perceptive area it is able to decide whether
it accepts a presented input pattern or not. Input patterns are accepted by a neuron if
the pattern is positioned within the perceptive area of the neuron. Otherwise the neuron
will not accept the provided input pattern.

Fig. 1. Neuron with perceptive area: The figure illustrates the structure of the neurons. Each neu-
ron is defined by its position c, here c = (3 : 4) in the n dimensional input space (here: 2) and by
its width σ (here: 1.5). The radius r of the perceptive area is r = ρ · σ. With ρ = 2.0 the neuron
in the figure has a perceptive area with radius r = 3.0.

1.2 Initial Values

The presented algorithm has only a few initial values to be set. For equally distributed
input data ρ = 2.0 showed good results since this neuron covers mean±2.0 · σ. For
Gaussian distributed input data ρ should be about 3.0 to cover the input data. ησ and ηc

are the learning rates of the net. The smaller they are the longer it takes the net to learn a
good representation of the input data. σinit is the most influential initial value. It appoints
the size of the perceptive areas. The value should be selected big enough to cover the
structure of the input data and it should be small enough to enable the separation of the
clusters.
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1.3 Learning Algorithm

Two different parts of the learning algorithm have to be contemplated: the learning
algorithm of a single neuron and the learning algorithm of the whole net. A single
neuron learns by providing input patterns. The neuron only learns, if it accepts the
presented input pattern. It learns by adapting c and σ. The whole net learns by adapting
the winning neuron if it accepts the input pattern. It creates a new neuron if no accepting
neuron exists. When the learning phase is completed the net builds a neighbourhood
graph to detect contiguous areas.

Online Adaptation of Neurons. Every neuron is defined by the two parameters c and
σ. In an n dimensional data space c as an n dimensional vector represents the centre or
the position of the neuron. σ is the width of the neuron representing the mean distance
of the input data patterns within its perceptive field and thereby σ is scalar.

Adapting c. The centre c of a neuron will be adapted by presenting a pattern with
position p to the net. Thereby the current position of the centre at time t, c(t) will be
adapted towards the position p of the pattern. Thus a new position c(t + 1) will be
calculated:

c(t + 1) = c(t) + ηc · (p − c(t))

This calculation rule is equivalent to the instruction for adapting the winning neuron
in a self-organised map as described in [1]. ηc is the learning rate used for adapting
centres. The instruction considers no neighbourhood of the neurons at all. Thus the
here presented algorithm only adapts the winning neuron.

Adapting σ. Independent from the dimensionality of the input data σ is always scalar.
σ will be adapted towards the distance d = ‖c − p‖. ησ is the learning rate used for
adapting σ. Thus σ adapts towards the mean distance between the accepted patterns and
the centre of the neuron.

σ(t + 1) = σ(t) + ησ · (d − σ(t)) with d = ‖c(t) − p‖

Learning Algorithm of the Neural Net. The classification algorithm is designed for
online learning. Thus the training patterns are normally presented only once and not
stored. After learning phase has finished the space covered by the input data should
be completely represented by the neurons and their perceptive areas. Since the neurons
have a perceptive area (see fig. 1) two possibilities arise while presenting training pat-
terns: a) an accepting neuron may exist which has to be adapted or b) no accepting
neurons exist and a new neuron has to be created.

If there are accepting neurons, the closest accepting neuron will be adapted. Its
centre moves towards the pattern and its σ moves towards the distance between the
centre and the pattern. If no accepting neuron exists, a new neuron will be created.
Therefore the centre of this new neuron is set to the position of the presented pattern. σ
may be set to one of the following strategies:

– Init-σ: Use an initial value σinit for σ
– Minimum-σ: Use the minimum value of all σ
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– Maximum-σ: Use the maximum value of all σ
– Mean-σ: Use the mean value of all σ

Since the parameters of the classification algorithm should arise from the presented
data we propose the mean-σ as favourite strategy. After adding a new neuron
re-clustering of the patterns is not necessary since the algorithm is designed for on-
line learning. Therefore input patterns do not have to be stored. The learning algorithm
of the neural net can be described in meta language:

for each PATTERN with position p
if exists accepting NEURON

get closest accepting NEURON
adapt c and σ of this NEURON

elseif
create new NEURON
set c = p
set σ

Building Neighbourhood. After the training phase has finished the neighbourhood
will be built to find contiguous areas. Since the neurons still have perceptive areas the
network is able to detect novel patterns and may build new neurons.

During the training phase no neighbourhood between the neurons is calculated or
used to adapt the neurons. Only the accepting and winning neuron will be adapted. The
winning neuron is the neuron with the shortest distance to the currently provided input
pattern.

Before starting the recall phase a neighbourhood graph is created using an algorithm
we call the σ nearest neighbouring algorithm. This algorithm is a modification of the
ε nearest neighbouring algorithm. Within the ε nearest neighbouring a fixed boundary
around each neuron is used to compute connections between two neurons with centres
c1 and c2. The σ nearest neighbouring uses the perceptive area around each neuron to
compute these connections. Two neurons with centres c1 and c2 will be connected with
an edge if the perceptive areas of the two neurons overlap. Therefore the distance d
between c1 and c2 is calculated:

d = ‖c1 − c2‖
The neurons with centres c1 and c2 are connected with an edge if:

d ≤ (σ(c1) + σ(c2)) · ρ
After building edges between neurons with overlapping perceptive areas it is possi-

ble to find connected groups of neurons which belong to the same cluster.

2 Main Results

Within this section the clustering abilities of the presented algorithm are shown. First a
two dimensional input consisting of two concentric circles and another two dimensional
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input consisting of several rectangles are used to show the functionality of the approach
and to show how the neighbourhood between the neurons is built. Then high dimen-
sional input patterns are used to show that the presented algorithm can cope with high
dimensional data. These input patterns are 720 dimensional and extracted from audio
data.

2.1 Two Concentric Circles

The algorithm is designed for clustering input data and for self-detecting the number of
clusters covered by the input data. A standard k-means clustering fails to cluster two
concentric rings as shown in figure 2(a). Since the shown data is divided into two rings
the parameter k should be 2. Hence the rings are concentric both clusters have the same
centre and the k-means clustering is not able to discern the two clusters or the two rings
respectively.

To show the abilities of the presented algorithm input data as shown in figure 2(a)
are used. The input data comprise 20000 two-dimensional data points with approxi-
mately 10% of these data points in the outer ring. Thus, 1866 data points are in the
outer and 18134 data points are in the inner ring.

Training Phase. All 20000 data points are presented once to the algorithm. The fol-
lowing parameters are used: ρ: 2.0 ηc: 0.01 ησ: 0.01 σinit: 0.4, mean-σ strategy.

After all 20000 patterns have been presented, the algorithm created 76 neurons with
mean σ=0.335. Two connected groups within these neurons are found as shown in
fig. 2(b).

During the 20000 learning steps the number of neurons increases while the number
of classes decreases. The development of these numbers during the training phase is
shown in figures 3(a) and 3(b).

(a) (b) (c)

Fig. 2. To show the abilities of the algorithm and to test it two 2D concentric rings as shown in
the figure are used. (a) shows the input data comprising of 20000 data points with approximately
10% of these data points (1866) in the outer ring. (b) shows the training results after 20000 input
patterns. Parameters: ρ: 2.0, ηc: 0.01, ησ : 0.01, σinit: 0.4, mean-σ strategy. 76 neurons were created
with mean σ=0.335. 2 connected groups were detected. (c) shows the input space divided into
patterns which are accepted by the network and patterns which are not accepted by the network.
19881 data points were presented to the algorithm starting with -2.0 up to 12.0, step size 0.1.
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(a) (b) (c)

Fig. 3. The figure shows the development of internal parameters during the training phase. The
parameters are the same as used in fig. 2(b) except the σ strategy. (a) shows the development of
the number of the neurons for all four mentioned strategies. (b) shows the development of the
number of connections between the neurons, the number of clusters. (c) shows the development
of σ of the neurons. The minimum, maximum, and mean σ are shown. Also mean ± standard
deviation is shown.

Not only the number of neurons or classes develop during the training phase but also
the size of the neurons. The development of σ is shown in fig. 3(c). It can be seen that
the neurons shrink with parameter ρ = 2.0 and therefore the number of neurons must
increase to cover the input data. With ρ = 3.0 the neurons tend to grow and therefore
the number of neurons is limited. 23 to 25 neurons are created depending on the strategy
used to initialise σ. Nevertheless, the algorithm is still able to separate the two rings but
since the perceptive area of the neurons is larger, a larger part of the free space outlying
the two rings will be assigned to one of the rings.

Recall Phase. To verify the algorithm’s functionality it is useful to cluster the input data
again after the algorithm has been trained. The results of this recall phase are shown in
table 1(a). The input data comprise of two clusters, the outer and the inner ring. When
presenting a pattern to the algorithm it returns the label of the cluster the algorithm
has built. We have chosen numbers as labels. If no neuron accepts the input pattern the
algorithm returns -1.

Table 1(a) shows, that one input pattern taken from the outer ring is marked “-1”
which means that the algorithm didn’t find any accepting neuron. 19 neurons taken
from the inner ring are marked as “-1”. Hence 20 out of 20000 patterns (only 0.1%!)
were unclassified, the algorithm didn’t find any matching neuron. The algorithm did no
misclassification, it only said “unknown” pattern.

Another possibility to verify the results of the algorithm is to present patterns equally
distributed within the input space. Thereby you get a “map” of the input space showing
areas where the algorithm accepts patterns as shown in fig. 2(c).

2.2 Rectangles

The two concentric rings shown in fig. 2(a) could be easier classified using polar coor-
dination. But therefore a priori knowledge would be necessary. In the general case no
coordinate transformation will be available.

The input data shown in figure 4(a) could not be classified using transformations
into polar coordination. The input data comprise 50000 two-dimensional data points
with approximately 2

3 of these data points on the outer square.
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Fig. 4. To show the abilities of the algorithm and to test it some rectangles as shown in the figure
are used. (a) shows the input data comprising of 50000 data points with approximately 2

3 of
these data points (33295) on the outer square. (b) shows the training results after 50000 input
patterns. Parameters: ρ: 2.0, ηc: 0.01, ησ : 0.01, σinit: 0.2, mean-σ strategy. 63 neurons were created
with mean σ=0.153454. 3 connected groups were detected. (c) show the input space divided
into patterns which are accepted by the algorithm and patterns which are not accepted by the
algorithm. 14641 data points were presented to the algorithm starting with -3.0 up to 3.0, step
size 0.05.

Table 1. Recall results

(a) Two concentric rings

outer ring inner ring
-1 1 19
0 0 18115
1 1865 0

(b) Rectangles

inner square inner rectangle outer square
-1 0 3 0
0 8302 0 0
1 0 0 33295
2 0 8400 0

Training Phase. All 50000 data points are presented once to the algorithm. The fol-
lowing parameters are used: ρ: 2.0 ηc: 0.01 ησ: 0.01 σinit: 0.2, mean-σ strategy.

After all 50000 patterns have been presented, the algorithm created 63 neurons with
mean σ=0.153454. Three connected groups within these neurons are found as shown in
fig. 4(b).

Recall Phase. The results of the recall phase are shown in table 1(b). The input data
comprise of three clusters, the outer and two inner rectangles.

Table 1(b) shows, that three input pattern taken from the inner rectangle are la-
belled “-1” which means that the algorithm didn’t find any accepting neuron. Hence 3
out of 50000 patterns (only 0.006%!) were unclassified, the algorithm didn’t find any
matching neuron. But the algorithm didn’t classify these 3 patterns wrong, it only said
“unknown” pattern.

As before patterns equally distributed within the input space are provided to the
network to evaluate the clustering capabilities. The resulting “map” is shown in fig. 4(c).
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2.3 Audio Data

To check if the developed algorithm is really capable to find an adequate clustering, 7
auditory patterns spoken by a human were presented. The patterns were the 7 words
“Start”, “Stop”, “Go”, “Kurt”, “Left”, “Right”, and “Back” each repeated 35 times by
one speaker and recorded with a microphone with a sample frequency of 8 kHz.

An implementation for audio signal processing is described in [2] and in [3]. There
the k-means clustering algorithm is used to distinguish between these seven words. The
silhouette coefficient as described in [4] is used to rate a clustering and to determine the
parameter k. Many initialisations with different k have to be run in parallel.

The approach presented in this paper detects groups within the input data by itself
and therefore it should be able to find a good clustering with only one initialisation.

To get input data for the clustering algorithm the raw audio data is divided into
windows each containing 512 audio points. These windows are weighted using the
Blackman window function and Fourier transformed. To increase the temporal reso-
lution these windows are shifted by 256 points. To transform the data routines available
on [5] will be used. Binaries for MS Windows are available on [6].

To reduce the data 24 linear critical bands are used. To enhance the clustering results
it could be useful to use nonlinear critical bands. E. Zwicker described in [7] the division
of human sensible frequencies in critical bands. These critical bands may be rationed
linearly or geometrically (logarithmically).

The patterns in this experiments contain 30 time slices and therefore they are 960
ms long. Thus we get 720-dimensional input patterns for the clustering algorithm.

Training Phase. The 245 preprocessed audio patterns are presented once to the clus-
tering algorithm. The following parameters are used: ρ: 2.0 ηc: 0.01 ησ: 0.01 σinit: 1.49,
mean-σ strategy.

After all input patterns have been presented to the algorithm 245 neurons were cre-
ated, one for each pattern. The connected neurons build 11 clusters.

Recall Phase. Presenting again all patterns to the algorithm and comparing these pat-
terns to the 11 clusters the system computed it can be seen that the algorithm was able to
distinguish the seven spoken words. Just 4 patterns (1.63%) were not clustered correctly.
A closer look at the patterns revealed that these 4 were spoken unclear. The algorithm
managed to find these patterns on its own. The results are shown in table 2(a).

If σinit is set to 1.5 the system returns in the recall phase table 2(b). The table shows,
that the system is not able to distinguish between the commands “Left” and “Back”.

3 Further Work

The presented neural network showed its clustering abilities with three input data ex-
amples. It managed to cluster the input data unsupervised into the estimated clusters.

While clustering input data it could be expected, that the neurons behave almost
similar. The centres c of the neurons should be equally distributed within the input data
space and the σ should be alike.
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Table 2. Recall results: Audio Data

(a) σinit: 1.49, mean-σ strategy

Start Stop Go Kurt Left Right Back
0 35
1 35
2 35
3 34
4 32
5 1
6 35
7 35
8 1
9 1
10 1

(b) σinit: 1.50, mean-σ strategy

Start Stop Go Kurt Left Right Back
0 35
1 35
2 35
3 34
4 32 35
5 1
6 35
7 1
8 1
9 1

Figure 2(b) shows that the centres c are distributed very well within the input data
space but figure 3(c) shows that the standard deviation of the σ grows. If the neurons
belonging to the same cluster would be equally sized the standard deviation of σ should
shrink, not grow. Therefore it could be useful to adapt also the neurons within the cal-
culated neighbourhood similar to the neurons of a self-organised map.

4 Conclusions

Within this paper an unsupervised clustering algorithm is presented. The algorithm
combines two standard clustering algorithms, the k-means clustering and the ε near-
est neighbour clustering.

Adaptation rules known from self-organising maps are transferred to the k-means
clustering algorithm to make it online-adaptable. The perceptive area of the neurons
serves as a novelty detector for patterns. Thus the net is able to grow and to build
representatives to reduce the input data for the ε nearest neighbour.

After the k-means clustering has computed the perceptive neurons, a variation of the
ε nearest neighbour is used to build a neighbourhood between these neurons to detect
contiguous areas.

Since the perceptive area of the neurons is still enabled after learning it is possible to
detect new incoming data not covered by the neurons so far and to create new neurons
with new contiguous areas.

The functionality and the structure of the presented neural algorithm is shown with
two concentric rings and with rectangles in 2D. Moreover audio data in 720 dimensional
input space was clustered. The algorithm detected the contiguous areas correctly and
showed its high reliability in the recall phase. Moreover the combination of the k-means
clustering and the ε nearest neighbour clustering managed to separate clusters with the
same cluster centre as show for the two concentric rings example.
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Abstract. The reliable identification of human activities in video, for example 
whether a person is walking, clapping, waving, etc. is extremely important for 
video interpretations. Since different people could perform the same action 
across different number of frames, matching two different sequences of the 
same actions is not a trivial task. In this paper we discuss a new technique for 
video sequence matching where the matched sequences are of different sizes. 
The proposed technique is based on frequency domain analysis of feature data. 
The experiments are shown to achieve high recognition accuracy of 95.4% on 
recognizing 8 different human actions, and out-perform two baseline methods 
of comparison. 

1   Introduction 

Human activity recognition from video streams has a wide range of applications such 
as human-machine interaction, surveillance, choreography, content-based 
image/video retrieval, biometric applications, etc. [17,19]. In our work, we distinguish 
between two main categories of actions: passive actions e.g. sit and do nothing, 
thinking, turning the head to follow someone across the room (watch the world go 
by), etc.; and active actions e.g. waving, clapping, lifting objects, reading (some of 
these actions are repetitive, and others are non-repetitive), etc. These actions can be 
performed with the person sitting or standing. Our aim is to develop a machine 
learning system that uses training data of different actions (performed by a number of 
subjects) to automatically classify (identify) actions in test videos. 

The main problem with matching training and test video shots (a shot is a sequence 
of video frames) is that each shot is of a different length and exact matching is 
impossible. For example, consider two people waving in two different videos. This 
action in the first video 1v , say, takes 1L  frames and this action in the second video 2v  

takes 2L  frames. In addition, these actions would most likely start at different times in 
their corresponding videos. The matching problem can be defined as follows: 

Given: Videos 1v  and 2v  that contain shots: ),...,,( 211 naaav = and 

),...,,( 212 nbbbv = . The video 1v is training video, with shot ia  ground truthed as 

class kc , "e.g. kc =waving" and 2v  is test video.  

Problem: Match all shots of 2v with ia to confirm if any of them are "waving". This 

will be based on a measure of similarity. The problem of speed variation makes the 
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matching process difficult. In most real cases, the same activity is usually performed 
with different speed and acceleration by different people. The solution to such a 
problem requires a complex search for the optimum match with various sequence 
lengths and phase shifts.  

The problem of video shot matching has been tackled in the past with a view to 
video retrieval. For this purpose, only key frames rather than all frames are mostly 
used for matching. Such methods have achieved limited success by matching a set of 
key frames that are assumed to be unique for actions. There are four mentionable 
solutions to the problem of matching two video sequences containing human 
activities. These approaches are based on either matching a set of key frames or a 
continuous set of frames, and are described in the works of Kim and Park [8], Ben-
Arie et al. [3], Duda and Hart [5] and Tsai et al.[17]. 

In Kim and Park’s [8] approach for matching video sequences, they extract the key 
frames and these key frames are matched for similarity using modified Hausdorff 
distance. In Ben-Arie et al.’s [3] approach, they describe human activity as a temporal 
sequence of pose vectors that represent sampled poses of body parts. Multi-
dimensional indexing is used to represent angles and angular velocities of each body 
part. For the 9 body parts considered, votes are accumulated and the voting is done 
only on a few representative frames which are sparsely sampled from the test video 
sequence. It is also possible to use edit-distances [5] for matching video sequences. A 
number of statistical features can be extracted from each video frame that are then 
recoded as discrete alphabets, where each alphabet represents an interval within the 
overall min-max range of that feature. A video sequence can be represented as a one 
dimensional vector of multidimensional vectors (string of strings). The process of 
matching is now based on calculating the cost of transforming one string into another 
and the best match is based on the least cost. Finally, correlation techniques can be 
used to detect cycles in 2D trajectories created by points on a moving object [17]. The 
trajectories are represented as two 1D trajectories, namely speed and direction, and 
the cyclic motions (e.g. walking motions) are detected by finding cycles in the 
curvature of the spatio-temporal curve. The detected cycles are then applied to a 
method proposed by Rangarajan et al. [13] for matching pairs of single trajectories. 

There are two major limitations of the above approaches: (a) A number of methods 
are based on sparse matching of frames, e.g. matching key frames alone, which fails 
to consider the temporal aspect of activity recognition. It is possible for similar 
actions to have different temporal information across frames but still have similar key 
frames; and (b) Approaches based on cyclic actions can be applied only to a limited 
number of actions where the action primitives repeat themselves. 

Apart from these main approaches in human dynamics, there have been other 
approaches proposed in other fields of research related to time series analysis aimed at 
solving the problem of matching two time indexed data sequences of different 
lengths. The approaches used can be divided into two main categories:  sub-sequence 
matching and energies transform based matching. 

The idea behind sub-sequence matching is that: Given a collection of N  sequences 
of varying length, NSSS ,,, 21 K , the user specifies a query subsequence Q  of 

variable length )(QLen  and tolerance ε  (maximum acceptable dissimilarity or 

distance). The aim is then to find all sequences )1(: NiSi ≤≤ , along with correct 
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offsets k , such ]1)(:[ −+ QLenkkSi that matches the query subsequence Q , such 

that the distance D  is less than the threshold, i.e. ε≤−+ ])1)(:[,( QLenkkSQD i .  

Faloutsos et al. [6] proposed a method of mapping each data sequence into a small set 
of multidimensional rectangles in feature space which are indexed using spatial access 

methods such as *R  trees [2]. Moon et al. [9,10] proposed a Dual Match method that 
uses the Faloutsos et al. [6]’s approach in constructing windows, where the data 
sequence is divided into disjoint windows and a query sequence is divided into sliding 
windows. Whereas Faloutsos’s method could lead to several false alarms by only 
storing the minimum bounding rectangles rather than individual data points, Moon’s 
Dual Match approach is able to store individual points in the index. Savnik et al. [14] 
uses matching algorithm to extract all possible windows of length ω  from the input 
sequence us .  

Energy transform approaches either use wavelet transform [4] or Fourier transform 
[1,11,12]. Chan and Fu [4] used Discrete Wavelet Transform (DWT) to accommodate 
vertical shift of time series which leads to an efficient k-nearest neighbour query in 
time series databases. Agrawal et al. [1] introduced a solution where each data 
sequence of length n  is transformed into the frequency domain by using Discrete 
Fourier Transform (DFT), and the first )( nf ≤  features are extracted for matching. 

Rafiei and Mendelzon [11,12] studied a set of linear transformations on Fourier series 
representation of a sequence which is used as the basis for similarity queries on time-
series data.  

Unfortunately, most of the above approaches proposed to solve the problem of 
time series data matching assume that either there is no speed variation, i.e. the strings 
that matched are of the same length in terms of number of frames, or if they assume 
that there is speed variation (and hence we have different length sequences), then data 
is interpolated to make the sequences matched to be of the same length. The sub-
sequence matching approaches are limited to using small window sizes that limits the 
query length, and increases false alarms. In energy transform approaches, a high 
number of false positives are observed because only the first f energy features are 
used. In our previous work [19] we proposed a frequency based analysis solution to 
overcome these limitations for human activity recognition. A modified WFT 
(Windowed Fourier Transform) approach was used to extract features from each 
sequence and these features were used to calculate a dissimilarity measure that 
assigns the sequence to the least dissimilar action type. We experimented on synthetic 
data (simulating real life actions) and real data. Result showed that our approach not 
only overcomes the limitations of the previous approaches mentioned above, but it 
also shows that using Fourier features improves the classification accuracy 
considerably compared to using raw features. The recognition accuracy in [19] ranged 
between 56.1% (7 classes) to 83.6% (2 classes).  

In this paper we present a novel technique for recognising human activities in 
video. As shown later, this method outperforms our previous efforts [19] significantly 
and takes the temporal information of human actions into full consideration when 
extracting features. The paper is organised as follows. In section 2, we detail our 
methodology along with the set of features used. The experimental details with data 
description are presented in section 3. Section 3 also presents the results of our 
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proposed method, comparisons with a baseline results from [19] and recognition 
results using Ben-Arie’s method in [3]. Some key conclusions are drawn in section 4. 

2   Methodology 

The recognition of human activities in video requires a range of image processing 
operations coupled with sophisticated pattern recognition techniques. The main steps 
involve image pre-processing, image co-registration, video capturing, skin detection, 
region identification, ellipse fitting, feature extractions, and classification (see Fig. 1). 
In this section we describe briefly the feature extraction and feature selection steps. 

Image  
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Color Camera 
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Capture

Feature 

Selection

 

Fig. 1. Flowchart for recognising human dynamics in video sequences 

2.1   Feature Extraction 

The classification accuracy depends on the quality of features used. We generate 
features at two levels. Firstly, features ),...,( 1 pff are computed directly from the 

hand and face region location information. For a video sequence V  consisting of N  
frames, we get a set of features per frame. Secondly, these features are processed in 
the frequency domain to generate a new set of features ),...,( 1 qgg that define the 

overall video sequence V . In the following description we first define the features 
),...,( 411 ff that can be computed from the output of hand/face localisation step. 

Features ),,,( 4321 ffff  are type of triangles formed with head, left and right arm 

regions; feature 5f  is used to determine whether the area of triangle formed changes 

significantly or not; features ),( 76 ff denote the direction of change, i.e. area 

increases or decreases; features ),...,( 348 ff  are calculated to find the spatial 

relationships between head, left arm and right arm regions. The spatial relationships 
can be computed based on determining the 3 sets of sub-features: sub-features 

),,( 321 sfsfsf determine the spatial proximity of left arm and the head regions; sub-

features ),,( 654 sfsfsf determine the spatial proximity of right arm and the head 
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regions and sub-features ),,( 987 sfsfsf determine the spatial proximity of left and the 

right arm regions. Features ),,( 373635 fff determine the movement and direction of 

left arm oscillation when moving in horizontal directions (left and right); feature 
),,( 403938 fff determine the amount and direction of right arm oscillation when 

moving in horizontal plane (left and right); and feature )( 41f determine whether the 

area of the head region changes significantly across two frames which indicates head 
movement. 

2.2   Feature Selection 

For each video sequence we extract the above described 41 features. Each feature 
contains a binary vector of size N , ),...,( 1 Nbb , for a total of N  frames. From the 

above set of features, we generate a new set of Fourier features that separate the high 
and low frequency components in our data. The temporal information is best 
preserved using Fourier analysis and the speed of movement of body parts is encoded 
within the frequency data. We use 1D Discrete Fourier Transform for further analysis. 
The basic algorithm of feature extraction is described below. 

Algorithm Fourier Feature Selection : 

Given: A video containing N  frames, from which 41 features ),...,( 411 ff  have been 

extracted. Each feature can be represented as a vector of binary numbers, i.e. 
),,( 1 iNii bbf K= .  

Step 1: Discrete Fourier transform is applied on a given feature which generates a 
Fourier representation ),,()( 1 iNii uuf K=ℑ , where iu  is a complex number, 

and its magnitude can be used for further analysis. 
Step 2: Compute the mean iμ  and standard deviation iσ  of the Fourier magnitudes 

of iu . 

Step 3: The final 82 Fourier features used for classification are now given as 
),,...,,( 414111 σμσμ . This can now be represented as the new feature set 

),...( 821 gg . 

3   Experimental Details and Results 

A total of 22 subjects were asked to perform the 8 actions of 1) sitting and do nothing; 
2) turning the head; 3) thinking1 (with one of the hands under the chin), 4) clapping; 
5) waving; 6) drinking; 7) reading; and 8) thinking2 (with both hands under the chin). 

The classification performance of our proposed technique can be discussed under 4 
separate sections: (a) classification using all of the 82 Fourier features (section 3.1); 
(b) classification after some basic feature selection (section 3.2); (c) comparison with 
baseline results published in [19] (section 3.3); and d) comparison with Ben-Arie’s 
method in [3] (section 3.4). 
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3.1   Classification with Complete Feature Set 

We use a k-nearest classifier to generate 4-fold cross-validation results. The results 
are shown in Table 1. Table 1 shows the classification results of data with classes 
ranging from 2 to 8. 

Table 1. Overall classification accuracy using Fourier features on data ranging from 2 to 8 
classes 

No. of Classes 2 3 4 5 6 7 8 
Fold1 Classification % 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
Fold2 Classification % 100.0 100.0 100.0 100.0 97.6 96.3 95.3 
Fold3 Classification % 100.0 100.0 100.0 100.0 97.6 96.3 95.3 
Fold4 Classification % 100.0 100.0 100.0 100.0 100.0 98.6 97.6 
Ave. Classification % 100.0 100.0 100.0 100.0 98.8 97.7 97.1 

3.2   Classification with Reduced Feature Set 

Not all of the features used necessarily distinguish between the different actions we 
are interested in. On the training data we calculate correlation coefficients between 
the features ),...( 821 gg  and the class label for all actions. Out of 82 features, only 42 

showed correlation > 0.03, and these are shown in Fig. 2 (dark colour represents high 
correlation with the class label). 
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Fig. 2. Correlation of each feature to the classes 
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The k-nearest neighbour classifier is used as before for 4-fold cross-validation. The 
results are shown in Table 2. The results show that the reduced feature set is adequate 
for recognition since the recognition accuracy only drops by 1.1% even though 40 
features have been removed from the data set. These removed features could be useful 
if we have more actions, and therefore it is recommended that for any problem with a 
given set of actions, feature reduction should be performed first to find which features 
are discriminatory for that problem. 

Table 2. Overall classification accuracy using reduced Fourier features using data ranging from 
2 to 8 classes 

No. of Classes 2 3 4 5 6 7 8 
Fold1 Classification % 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
Fold2 Classification % 100.0 100.0 100.0 96.3 96.6 94.3 95.0 
Fold3 Classification % 100.0 100.0 100.0 100.0 96.6 94.3 95.0 
Fold4 Classification % 100.0 100.0 100.0 100.0 100.0 97.1 97.6 
Ave. Classification % 100.0 100.0 100.0 99.1 98.3 96.4 96.9 

3.3   Comparison with Baseline Approaches 

In our previous study [19] we used modified Windowed Fourier Transform on the 
same video data considered in this paper. In total 55 features were used – these were 
based on the difference in angles of the major axis of the fitted ellipse around hand 
and face regions, and change in centroid positions of each region. In our previous 
study, the actions of thinking with one and two hands were analysed as a single class. 
The results of [19] are shown as a baseline comparison in Table 3, which shows the 
results of classifying varying number of classes (¬C denotes the classes not included 
in classification) using a k nearest neighbour classifier with 4 fold cross-validation.  

The results below showed that the classification performance is quite poor for real 
data in comparison with Table 2.  

Table 3. The classification result based on modified WFT from approach [18] 

No. of Classes 2 3 4 5 6 7 8 
Fold1 Classification % 75.0 75.0 69.2 71.0 63.9 56.1 49.2 
Fold2 Classification % 91.7 83.3 77.0 71.0 66.7 63.4 59.1 
Fold3 Classification % 76.9 71.4 69.2 67.7 63.9 56.1 52.7 
Fold4 Classification % 90.9 81.3 69.6 64.3 57.6 48.8 41.3 
Ave. Classification % 83.6 77.8 71.2 68.5 63.1 56.1 50.6 

3.4   Comparison with Multidimensional-Indexing 

The principle of Ben-Arie et al.‘s [3] approach is to recognize activity based on 

angular poses θ and velocities θ&  of 9 body parts, where human activity is describes 
as a temporal sequence of pose vectors that represent sampled poses of these body 
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parts. Our activities only involves upper body movement, therefore in our 
implementation only 5 body parts are used, namely the torso, the upper left arm, the 
lower left arm, the upper right arm and the lower right arm. All sequences are 
interpolated into the same length, by inserting between frames. 

For training, three hash tables are built, 1h for the torso, 2h  for upper and lower 

left arm and 3h  for upper and lower right arm. The indices in these hash tables are the 

poses of the corresponding body parts and the contents of these hash tables are the 
identities of the activities and their time labels. 

The recognition consist of three stages: 1) voting for individual body parts; 2) 
combining the votes of all body parts for each test frame; and 3) integrating the votes 
of all frames in a test sequence. 

The vote for each frame k , an activity type m  at frame number t , in hash table 

ih is denoted as )(tV hi
mk . When voting for the torso, it is calculated as 

),()( '
22

'
11

1 qqqqftV kkh
mk −−= , where kq1  denotes the bin of the angular pose of the 

torso in test frame k , kq2  denotes the bin of the angular velocity of the torso in test 

frame k , '
1q  and '

2q  denote 1 of the neighbouring bins and the mapping function f  

is a logarithm of a 2D Gaussian ]log[),(
])()[(

2

1 2020

ba

bbaa

ebaf σσ
−

+
−−

= , where 

aσ and bσ  denotes the scale of the Gaussian along the respective axes, and 0a  and 

0b  represent the center of the function. 

The votes are calculated for each activity type of each body part, and for each 
activity type, votes are accumulated from all body parts of the frame, then votes of 
each frame are integrated for the whole sequence to get the final vote for each activity 
type. The test sequence is recognized as the activity type that returns the maximum 
final vote. 

The experiment is performed using 4-fold cross-validation and the results are 
shown in Table 4. 

Table 4. Recognition result using Ben-Arie’s method on 4-fold cross-validation from 2 classes 
to 8 classes 

No. of Classes 2 3 4 5 6 7 8 
Fold1 Classification % 80.0 60.0 42.9 29.6 27.6 20.0 17.5 
Fold2 Classification % 60.0 53.3 38.1 44.4 41.4 34.3 30.0 
Fold3 Classification % 70.0 66.7 47.6 37.0 34.5 25.7 22.5 
Fold4 Classification % 80.0 73.3 52.4 44.4 41.4 31.4 27.5 
Ave. Classification % 72.5 63.3 45.2 38.9 36.2 27.9 24.4 

The comparison shows that our new features can out perform the comparison 
method by significant margin. Even on comparison with our previous approach, 
which uses angular features as well, the result shows better improvement then the 
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comparison method, proving that our energy-based approach are better at recognizing 
complicated activities and giving the right features can correctly recognize a large 
number of activities. 

4   Conclusion 

One of the major difficulties in analysing human dynamics data is the fact that each 
person performs the same action at different speeds with large variation in terms of 
the movement of their body parts. This makes the process of matching action 
sequences of different lengths difficult. Several approaches have been attempted to 
solve these problems, however, most of these have been successful only in tackling 
the time shift problem and not speed variations. Our approach shows that robust 
features can be extracted from human dynamics video data with adequate image 
analysis for skin identification, and hand/face detection. Our scheme of using Fourier 
based features generates feature sequences used in classification to be of the same 
length irrespective of the length of video clips. The results generated on real data in 
this paper are very promising at 95.4%. We expect that similar performances can be 
achieved on a larger number of classes with adequate feature extraction and temporal 
feature analysis using our Fourier method. It is however important to remember that 
high quality features can only be extracted subsequent to robust image analysis, which 
requires substantial work before real systems can be built. 
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Abstract. Pattern Recognition (PR) techniques have proven their ability for 
detecting malicious activities within network traffic. Systems based on multiple 
classifiers can further enforce detection capabilities by combining and 
correlating the results obtained by different sources. 

An aspect often disregarded in PR approaches dealing with the intrusion 
detection problem is the use of temporal information. Indeed, an attack is 
typically carried out along a set of consecutive network packets; therefore, a PR 
system could improve its reliability by examining sequences of network 
connections before expressing a decision. 

In this paper we present a system that uses a multiple classifier approach 
together with temporal information about the network packets to be classified. 
In order to improve classification reliability, we introduce the concept of 
rejection: instead of emitting an unreliable verdict, an ambiguously classified 
packet can be logged for further analysis. 

The proposed system has been tested on a wide database made up of real 
network traffic traces. 

1   Introduction 

The most common and best known tools used to ensure security of companies, 
campuses and, more in general, of any network, are Firewalls and Antiviruses. 
Though famous and well known, such tools alone are not enough to protect a system 
from malicious activities. Based on such assumption, many researchers started to 
develop systems able to successfully detect intrusions and, in some cases, trace the 
path leading to the attack source. 

On the basis of the information sources analyzed to detect an intrusive activity, the 
Intrusion Detection Systems (IDS) can be grouped into different categories. In the 
following, we will concentrate our attention on Network-based IDS (N-IDS) [1]. On 
the other hand, depending on the detection technique employed, they can be roughly 
classified as belonging to two main groups as well [2]. The first one, that exploits 
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signatures of known attacks for detecting when an attack occurs, is known as misuse 
(or signature) detection based. IDS’s that fall in this category are based on a model of 
all the possible misuses of the network resources. The completeness request is 
actually their major limit [3]. 

A dual approach tries to characterize the normal usage of the resources under 
monitoring. An intrusion is then suspected when a significant difference from the 
resource’s normal usage is revealed. IDS’s following this approach, known as 
anomaly detection based, seem to be more promising because of their potential ability 
to detect unknown intrusions (the so-called zero-day attacks). However, there is also a 
major challenge, because of the need to acquire a model of the normal resources 
usage which is general enough to allow authorized users to work without raising false 
alarms, but specific enough to recognize unauthorized usages [4,5]. 

The network intrusion detection problem can also be formulated as a binary 
classification problem: once the information about network connections between pairs 
of hosts is given, the task is to assign each connection to one out of two classes, which 
represent normal traffic conditions or an attack. Here the term connection refers to a 
sequence of data packets sharing some properties. In this framework, several 
proposals have been made in order to extract high-level features from data packets 
[6,7]. Each network connection can be then described by a “pattern” to be classified, 
and a pattern recognition (PR) approach can be followed.  

PR systems typically follow the misuse detection approach. Their main advantage 
is the ability to generalize. They are able to detect some novel attacks, since different 
variants of the same attack will be typically described by very similar patterns. 
Moreover, the high-level features extracted from connections relative to a totally new 
attack should exhibit a behavior quite different from those extracted from normal 
connections.  

Summarizing, these PR systems don’t need a complete description of all the 
possible attack signatures. This overcomes one of the main drawbacks of the misuse 
detection approach. Signature based systems, in fact, may fail in detecting attacks 
undergone to even slight modifications from a known pattern. 

Different misuse-based PR systems have been reported in the recent past for 
realizing an IDS, mainly based on neural network architectures [8,9]. In order to 
improve the detection performance, approaches based on multi-expert architectures 
have been also proposed [10,11,12].  

Indeed, also anomaly-based systems have been considered in the PR field. Here, 
they can be ascribed to the more general category of approaches based on the novelty 
detection, i.e. the identification of new or unknown data or signal that a system is not 
aware of during training [13]. Examples of neural-based systems that follow the 
anomaly detection approach can be found in [14,15]. 

However, one of the main drawbacks occurring when using PR techniques in real 
environments is the high false alarm rate they often produce [10]. This is a very 
critical point, as pointed out in [16].  

An information source that is commonly disregarded in PR systems is the temporal 
sequence of the traffic network patterns. According to our opinion, however, this kind 
of information can be profitably used for augmenting the reliability of the attack 
detection. An attack is, in fact, typically spread along several network packets close to 
each other. Even though high level features are extracted from the traffic, it is quite 
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unusual for an attack to spread over a single connection pattern isolated within a 
sequence of normal connections. A PR system could then improve its performance by 
examining sequences of network connections. 

In order to realize an IDS that is capable of detecting intrusion by keeping the 
number of false alarms as low as possible, in this paper we propose a multiple 
classifier system that combines the behavior knowledge space with temporal 
information coming from a real-time analysis of the network traffic. 

In particular, starting from the proposal made in [6], a framework for extracting 
features from real traffic is adopted [7]. Then the collected data are fed to a multiple 
classifier system that employs the Behavior Knowledge Space rule for combining the 
output of the composing classifiers. The standard BKS rule is here generalized for 
coping with the temporal information of a connection pattern sequence. In order to 
maximize the complementariness of the decisions to be combined, a rule-based 
classifier [17] and a neural network are employed as base classifiers. 

The organization of the paper is as follows: in Section 2 the proposed approach is 
presented, while in Section 3 the database obtained form real network traffic is 
described. Tests of the proposed IDS are reported in Section 4; finally, some 
conclusions are drawn in Section 5. 

2   A Behavior-Knowledge Space Combining Rule Using Temporal 
Information Algorithm 

In [18], Huang and Suen proposed a combining rule that does not require the 
independence assumption of the base classifiers. It derives the information needed to 
combine a set of classifiers from a knowledge space, which can concurrently record 
the decision of all the classifiers on a suitable set of samples. This means that such a 
space records the behavior of all the classifiers on this set, and thus it is called the 
Behavior Knowledge Space. The combining rule that uses it is called the Behavior-
Knowledge Space (BKS) rule. 

More in details, a Behavior-Knowledge Space is a K-dimensional space where 
each dimension corresponds to the decision of a classifier. Given a pattern x to be 
assigned to one out of M possible classes, the ensemble of classifiers can in theory 
provide MK different decisions. Each one of these decisions (D1(x), D2(x), … , DK(x)) 
- where Dj(x) represent the guess class supplied by the j-th classifier - constitutes one 
unit of the BKS. In our case M is equal to 2, so the number of units is 2K.  

The BKS combining rule operates in two phases: a learning phase for knowledge 
modeling and an operating phase for decision-making. 

In the learning phase the BKS look-up table is built-up: each BKS unit U can 
record M different values ei, one for each class. Given a suitably chosen training set, 
each pattern xtr of this set is classified by all the classifiers and the unit (called focal 
unit) that corresponds to the particular decision of the ensemble of classifiers (D1(xtr), 
D2(xtr),…, DK(xtr)) is activated. Let us denote this unit with FU(xtr). It records the 
actual class C(xtr) of xtr, say j, by adding one to the value of ej. 

At the end of this phase, each unit can calculate the best representative class 
associated to it, say C(U), defined as the class that exhibits the highest value of ei, i.e.: 
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C(U) = j         where i
i

ej argmax=  (1) 

In other words, this class corresponds to the most likely class, given a classifiers' 
decision that activates that unit. 

In the operating mode, for each pattern xtest to be classified, the decisions (D1(xtest), 
D2(xtest), … , DK(xtest)) of the classifiers are collected and the corresponding focal unit 
FU(xtest) is selected. Then the class attributed to xtest is the best representative class 
associated to that focal unit, i.e.: 

C(xtest) = C(U)    where  U = FU(xtest)  (2) 

Since in our case the temporal sequence of the patterns to be classified assumes a 
particular significance, the BKS can be augmented with a temporal dimension. In this 
case, the number of units becomes 2K⋅t, where t is the size of the considered  
temporal window. Each unit, in fact, has to record a sequence of t values for each of 
the K classifiers, so the new behavior knowledge space assumes a dimensionality 
equal to K⋅t. 

In operating mode, t successive decisions for each classifier (relative to a sequence 
of t consecutive patterns) need to be collected. Then, these K⋅t values will select a 
focal unit whose best representative class will be associated to the last pattern of the 
sequence. The next pattern will be classified by shifting the temporal window one 
pattern forward, so individuating a (possibly) different focal unit. 

The sequence of decisions relative to a temporal window can also be used for 
evaluating the reliability of each classification act. A reliability R(U) can be in fact 
associated to each unit, as specified in the following. In operating mode, all the times 
a focal unit is selected, its reliability will be the reliability of the performed 
classification.  

We have chosen to evaluate R(U) in the following way: 
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In other words, R(U) is the ratio between the values associated to the first and the 
second most representative class of this unit. If the value associated to the most 
representative class of a unit is zero (i.e., the considered unit was never activated by 
the patterns belonging to the training set), the reliability of this unit is set to zero. 

The value of R(U) can be profitably used for choosing to reject a pattern instead of 
running the risk of misclassifying it. Rejection, in this context, implies that the data 
about a ‘rejected’ connection are only logged for further processing, without raising 
an alert for the system manager [12]. 

In order to make a rejection, a suitably chosen threshold has to be fixed. This could 
be done, by using the method proposed in [19], in an adaptive way with respect to the 
requirements of the application at hand. This notwithstanding, in Sect. 4 results with a 
reliability threshold value fixed to 0.6 will be reported. 

Finally, in order to choose the optimal value of the temporal window, an analysis 
of the performance of the proposed approach on a suitable set of data can be 
performed as a function of the value of t. Then, the value of t that allows us to obtain 
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the best trade-off between reject and error rate can be selected. If the chosen set is 
sufficiently representative of the target domain this should guarantee the best 
performance also in the operating mode. 

3   A Real Network Traffic Database 

One of the main issues related to PR in intrusion detection is the use of a proper 
database. Two main approaches are possible: the former relies on simulating a 
real-world network scenario; the latter builds the data set using actual network traffic. 

The first approach has been usually adopted. The most well-known dataset is the 
so-called KDD Cup 1999 Data1, which was created for the Third International 
Knowledge Discovery and Data Mining Tools Competition, held within KDD-99, 
The Fifth International Conference on Knowledge Discovery and Data Mining. It was 
created by the Lincoln Laboratory at MIT in order to conduct a comparative 
evaluation of intrusion detection systems, developed under DARPA (Defense 
Advanced Research Projects Agency) and AFRL (Air Force Research Laboratory) 
sponsorship2. This set was created in order to evaluate the ability of data mining and 
PR algorithms to build predictive models able to distinguish between a normal and a 
malicious behaviour. The KDD Cup 1999 Data contain a set of connection records 
coming out from a pre-processing of raw TCPdump data. Each connection is labelled 
as either normal or attack. The connection records are built from a set of higher-level 
connection features, defined by Lee and Stolfo [6], that are able to tell apart normal 
activities from illegal network activities. Although it is widely employed [9,10,12,20], 
some criticisms have been raised against such database [21]. 

Indeed, numerous research works analyze the difficulties arising when trying to 
reproduce actual network traffic patterns by means of simulation [22]. Actually, the 
major issue resides in the effectiveness of reproducing the behaviour of network 
traffic sources. On the basis of the above considerations, we have concluded that the 
KDD Cup 1999 Data can just be used to make a first evaluation of the effectiveness of 
the PR algorithms under study, rather than providing useful indications for a real 
application of intrusion detection systems.  

On the other hand, collecting real traffic can be considered as a viable alternative 
approach for the construction of a traffic data set [23]. Although it can prove effective 
in real-time intrusion detection, it still presents some concerns. In particular, the 
collection of a real traffic data set needs a data pre-classification process for packet 
labelling. Indeed, no information is available in the real traffic to distinguish the 
normal activities from the malicious ones in order to label the data set. Last but not 
least, the issue of privacy of the information contained in the real network data has to 
be considered: payload anonymizers and IP address spoofing tools are needed in order 
to preserve sensitive information.  

This notwithstanding, we decided to collect real traffic traces. We deem that such 
an approach represents an enforced solution in case the computed patterns have to be 

                                                           
1  http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html 
2  http://www.ll.mit.edu/IST/ideval 
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applied in a system that must exploit temporal information. Our data set has been  
built by collecting real traffic on the local network at Genova National Research 
Council (CNR). 

The raw traffic data set contains about one million packets, equivalent to 1GByte 
of data. The network traffic has been captured by means of the TCPdump tool and 
logged to a file. In order to solve the pre-classification problem (which, as already 
stated, requires labelling the items in the data set), we have used a previous work of 
Genova’s research team. By using different intrusion detection systems, researchers 
in Genova have analyzed the generated alert files and manually identified, in the 
logged traffic, a set of known intrusions. We have leveraged the results of this 
research in order to extract the connection features record and properly label it with 
either a normal or an attack tag. The number of attack packets in the whole data set 
is about 3,500; both Denial of Service and Probing attacks have been found in the 
traffic data. 

As regards the considered connection features, starting form the Lee and Stolfo 
work [6], we extracted 26 features for each network connection. More details about the 
feature extraction process – that can be carried out in real time - can be found in [7]. 

4   Experimental Results 

As stated before, we defined 26 features starting from the 41 proposed by Lee and 
Stolfo in [6]. Such a high number of features, indeed, may result in redundancy in the 
information provided about each traffic pattern to be analyzed; furthermore, not all 
the features are necessary to detect the presence of a particular attack type. Regarding 
the particular attack distribution and normal traffic characteristics of the analysed 
network scenario, it is desirable to reduce the feature space dimensionality by 
preserving most of the information. Thus, we applied a feature selection process to the 
above described database, by adopting a Sequential Forward Selection strategy, with 
the Minimum Estimated Probability classification criterion. Though Best Feature 
Selection would probably lead to slightly better results, its heavy computation load 
and the huge amount of data to be analyzed led us to choose the quoted technique. At 
the end of the feature selection process, each network connection was represented by 
a feature vector of 8 components. 

The whole database was then split into three disjoint sets: a training set (in the 
following TRS) used for training the base classifiers and for calculating the BKS 
look-up tables, a validation set (in the following VS) used for stopping the learning 
process so as to avoid a possible overtraining and for choosing the optimal value of t, 
and a test set (TS). 

In particular 30% of the data (about 300,000 patterns) was used as TRS, 30% as 
VS (about 300,000 patterns) and the remaining 40% as TS (about 400,000 patterns). 

As base classifiers, we employed a neural network, namely a LVQ classifier - with 
10 prototypes for the attack class and 50 prototypes for the normal class - and a 
rule-based learning system –SLIPPER - that creates a rule set by iteratively boosting a 
greedy rule-builder [17]. In Table 1 the results of these classifiers, in terms of the 
overall error rate on TRS, VS and TS, are shown. 
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Table 1. Results obtained by the base classifiers on the three considered data sets 

Classifier Data Set  Error rate 
TRS 0.265 % 
VS 0.456 % LVQ 
TS 1.004 % 

TRS 0.204 % 
VS 0.223 % SLIPPER 
TS 0.261 % 

As it is evident from Table 1, the performance of the base classifiers is certainly 
good. Nevertheless, the best result on the TS, obtained by SLIPPER, indicates that 
there is still a thousand of connection records that are misclassified. 

In order to choose a value for t by following the approach described in Sect. 2, 
Table 2 reports the results obtained by the proposed system on the VS, for different 
values of the temporal window t. From this table it is evident that the optimal value 
of t can be fixed to 4, even if also values of t equal to 3 and 5 give rise to good 
results. 

Table 2. Results obtained by the proposed system on the VS as the value of t varies. The 
reliability threshold was fixed to 0.6. The optimal value of t is reported in bold. 

t Error rate Reject rate 
1 0.198 % 0.216 % 
2 0.191 % 0.153 % 
3 0.189 % 0.165 % 
4 0.187 % 0.179 % 
5 0.187 % 0.202 % 
6 0.294 % 0.118 % 
7 0.289 % 0.153 %  

In order to verify the exactness of this choice, Table 3 reports the results obtained 
on the TS as a function of t. 

In this case, indeed, the best results were obtained for a slightly different value of t 
(i.e., 3 instead of 4). However, also the results obtained for the selected value of t are 
very significant. In particular, the proposed system is able to reduce the number of 
errors, which are about halved with respect to the best base classifier.  

The use of the temporal window allows us to have a slight improvement in terms 
of error rate with respect to the case t = 1 (i.e., when the standard BKS rule is used). 
But the temporal information improves the reliability of the system: the adoption of a 
value of t equal to 4 instead of using the standard BKS rule implies that the reject rate 
decreases from 0.922% to 0.735%. Since the error rate remains practically the same, 
this means that about eight hundred patterns are now correctly classified and no more 
rejected. 
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Table 3. Results obtained by the proposed system on the TS as the value of t varies. The 
reliability threshold was fixed to 0.6. 

t Error rate Reject rate 
1 0.163 % 0.922 % 
2 0.162 % 0.666 % 
3 0.162 % 0.656 % 
4 0.162 % 0.735 % 
5 0.162 % 0.861 % 
6 0.536 % 0.522 % 
7 0.522 % 0.688 % 

 

5   Conclusions 

In this paper we proposed a multiple classifier approach to the problem of detecting 
intrusions in computer networks. It makes an explicit use of temporal information for 
improving the reliability of the detection. 

The approach has been tested on a wide database of patterns extracted from real 
traffic network traces. It demonstrated to be able to improve the classification 
capability of the base classifiers, as well as the reliability of the performed detection, 
by suitably exploiting the temporal information. 

As a future development of the proposed multi classifier approach, we have 
planned to address the problem of automatically selecting the optimal reject threshold 
value. Moreover, we will work on the analysis of the rejected packets with slower but 
more accurate algorithms, in order to further improve the detection capability of the 
proposed approach. 
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Abstract. This paper presents a view independent video-based face recognition
method using posterior probability in Kernel Fisher Discriminant (KFD) space.
In practical environment, the view of faces changes dynamically. The robustness
to view changes is required for video-based face recognition in practical envi-
ronment. Since the view changes induces large non-linear variation, kernel-based
methods are appropriate. We use KFD analysis to cope with non-linear variation.
To classify image sequence, the posterior probability in KFD space is used. KFD
analysis assumes that the distribution of each class in high dimensional space
is Gaussian. This makes the computation of posterior probability in KFD space
easy. The effectiveness of the proposed method is shown by the comparison with
the other feature spaces and classification methods.

1 Introduction

Face recognition has many potential applications such as security system, man-machine
interface, and the search from video databases or WWW. Therefore, many researchers
work actively and many still image based face recognition methods have been proposed
[1,2]. In recent years, some video-based face recognition methods which use the tem-
poral information are proposed [3,4,5,6,7]. It is reported that the recognition rate is
improved by using temporal information.

In practical environment, the view of faces changes dynamically. Therefore, the
robustness to view changes is necessary for video-based face recognition in practical
environment. Since the view changes of faces induce large non-linear variation in fea-
ture space [8,9], almost of conventional video-based face recognition methods can not
cope with view changes. However, if non-linear variation induced by view changes are
treated well, it is not so difficult to realize the view independent recognition. For ex-
ample, Aggarwal et al. [7] propose a view independent video-based face recognition
method. They use autoregressive and moving average model to cope with the view
changes. Lee et al. [4] cope with the view changes by using view dependent mani-
folds. In that method, the transition probabilities between manifolds are trained, and
classification is done by the posterior probability. Namely, they use the piecewise lin-
ear discriminant to cope with non-linear variation induced by view changes. In this
paper, non-linear variation is treated by simpler way. If we construct the new feature
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space which can represent non-linear variation well, it is expected that view indepen-
dent video-based face recognition is realized easily without special processing.

In recent years, the effectiveness of kernel based methods is reported [10,11,12].
Kernel based methods can treat non-linear variation easily. We can use kernel based
method to represent non-linear variation. However, only the representation may be in-
sufficient for accurate recognition. The difference between subjects should be empha-
sized. For this purpose, Kernel Fishier Discriminant (KFD) analysis [13] is appropriate.
If KFD analysis is used to construct the feature space by using the face images with
different views, it is expected that the influence of view changes of each subject is min-
imized and the difference between subjects is maximized. Although some face recog-
nition methods based on KFD analysis are proposed [12,14,15], conventional methods
do not use KFD analysis to cope with view changes. To classify the input sequence,
the posterior probability of image sequence can be used [4]. KFD analysis assumes that
the distribution of each class in high dimensional space is Gaussian. This makes the
computation of posterior probability in KFD space easy. By using posterior probability
in KFD space, view independent video-based face recognition is realized.

The performance of the proposed method is evaluated by using 100 subjects with
9 views obtained from HOIP (Human and Object Interaction Processing) face database
[16]. The face images with 5 views are used as the image sequence for training. The rest
untrained 4 views of each subject are used as the test image sequence. The effectiveness
of KFD space is demonstrated by the comparison with linear discriminant space and
original feature space. In addition, in order to investigate the effectiveness of posterior
probability of image sequence, the proposed method is compared with simple voting and
still image based recognition. The effectiveness of proposed method is confirmed. Fur-
thermore, the proposed method is evaluated by using UMIST (University of Manchester
Institute of Science and Technology) face database [17] which captured as image se-
quence. We show that the proposed method can recognize all test sequences correctly.

In section 2, we explain a video-based face recognition method based on posterior
probability in KFD space. Section 3 shows the effectiveness of the proposed method by
using HOIP and UMIST face databases. Conclusion and future works are described in
section 4.

2 View Independent Video-Based Recognition

In section 2.1, KFD analysis is explained. The kernel function used in the following
experiments is also described. How to compute the posterior probability of face image
sequence in KFD space is explained in section 2.2.

2.1 Kernel Fisher Discriminant Analysis

First, we explain KFD analysis [10,13] briefly. When training data {x1, . . . ,xl} are
given, all training data are mapped into high dimensional space by Φ(x). By applying
standard linear discriminant analysis in high dimensional space, KFD analysis can be
done. KFD analysis determines the weight vector w which maximizes the following
criterion.
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dimensional space. These are defined by
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where C is the number of classes, lk is the number of samples of class k, mΦ
k =

1
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∑lk
i Φ(xk

i ) is the mean vector of class k in high dimensional space, and mΦ
T =

1
l

∑l
i Φ(xi) is the mean vector of all samples in high dimensional space.

The weight vector w lies in the span of Φ(x1), . . . , Φ(xl). Therefore, the weight
vector are represented by w =

∑l
i αiΦ(xi) where αi is the coefficient. By substituting

this in equation (1), the discriminant criterion can be written as
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j K(xi, xj), Kk is a l × lk matrix

with (Kk)nm = K(xn, xk
m) = Φ(xn)T Φ(xk

m), I is the identity matrix, and 1lk is the
matrix that all entries are 1/lk. The optimal α is obtained by finding the eigenvector of
N−1M . An input vector x is mapped into discriminant space by

wT Φ(x) =
N∑
i

αiK(xi, x). (4)

Next, we consider the type of kernel function. Gaussian kernel gives good perfor-
mance when the optimal value of variance is used. However, the optimal parameter
selection is difficult. It is reported that normalized polynomial kernel gives the compa-
rable performance with Gaussian kernel [18]. In addition, the parameter dependency of
normalized polynomial kernel is low. Therefore, we use normalized polynomial kernel
as the kernel function . Normalized polynomial kernel is defined as

K(x, y) =
(1 + xT y)d√

(1 + xT x)d(1 + yT y)d
. (5)

In the following experiments, parameter d is set to 15 by preliminary experiment.
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2.2 Posterior Probability of Image Sequence

In this paper, the posterior probability in KFD space is used for video-based face recog-
nition. To classify the image sequence, we compute the posterior probability
p(C|x1, . . . ,xt) when from 1st frame to t-th frame in sequence are observed. In the
following, x1, . . . ,xt is noted as x1:t. We assume that xt is independent of x1:t−1 and
p(Ck|x0) is P (Ck). Then the posterior probability is defined as

p(Ck|x1:t) = α p(xt|Ck, x1:t−1) p(Ck|x1:t−1)
= α p(xt|Ck) p(Ck|x1:t−1)

= α

t∏
i

p(xi|Ck) p(Ck), (6)

where ∗k represents the class k and α is a normalization term. From this equation, we
understand that the posterior probability is computed recursively.

To compute posterior probability, we have to compute p(xi|Ck). KFD assumes
that the distribution of each class in high dimensional space is Gaussian. Therefore,
p(xi|Ck) in KFD space is defined as Gaussian. In the following experiment, log likeli-
hood of posterior probability is used. The log likelihood is computed by

L(Ck|x1:t)=
t

i=1

−D

2
log(2π)− 1

2
log(|Σk|)− 1

2
(xi−μk)T Σ−1

k (xi−μk) +log P (Ck),(7)

where μk is the mean vector of class k in KFD space, Σ−1
k is the inverse of covariance

matrix, |Σk| is the determinant of covariance matrix, and D is the dimension of KFD
space. The mean vector and covariance matrix of each class are estimated from training
samples. In the following experiments, P (Ck) is set to 1/K .

To classify the input image sequence, log likelihoods of all classes are computed.
The input sequence is classified to the class given highest likelihood.

3 Experiments

The proposed method is evaluated by using two databases. First, we use HOIP face
database which includes view changes. To show the robustness to view changes, face
images with untrained views are used as the test image sequence. The effectiveness of
posterior probability in KFD space is shown by the comparison with the still image
based classification and temporal voting. These results are shown in section 3.1. After
that, the proposed method is evaluated by using UMIST face database captured as image
sequence. The experimental result using UMIST database is shown in section 3.2.

3.1 Effectiveness of the Proposed Method

First, the image database is explained. We use the face images of 100 subjects with 9
views obtained from HOIP database1. The face regions of 30 × 30 pixels are cropped

1 The facial data in this paper are used by permission of Softpia Japan, Research and Develop-
ment Division, HOIP Laboratory. It is strictly prohibited to copy, use, or distribute the facial
data without permission.
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Fig. 1. Examples of HOIP face images
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Fig. 2. KFD space obtained from HOIP face images

by using the positions of eyes, nose, and mouth. Examples of face images are shown
in Figure 1. In this experiment, left 5 views shown in Figure 1 are used as the image
sequence for training. The face images with untrained 4 views shown in right side of
Figure 1 are used as the test image sequence. Each class has one training and test se-
quence. Since 5 images per person are too small to represent each class, the original
face images are shifted 1 pixel horizontally and vertically [19]. By shifting the original
images, the number of face images is increased 5 times by this processing.

KFD space is constructed by using the raster scanned 900 dimensional intensity
features of training sequences. In this experiment, the dimension of KFD space is set
to 91 that the cumulative contribution rate is 0.85. Example in KFD space is shown in
Figure 2. Figure 2 shows only 6 subjects in 100 subjects. Each class corresponds to the
training sequence of each subject. We understand that the influence of view changes is
reduced and the distribution of each subject is like a Gaussian. Therefore, it is expected
that the proposed method works well. The performance is evaluated by using the log
likelihood of image sequence in KFD space. Table 1 shows the performance of the
proposed method. Although the image sequence of untrained views are used for test,
the high recognition rate is obtained. This result shows that the proposed method can
recognize face image sequence under view changes.
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Table 1. Classification performance in different feature space

KFD space LD space Original space
0.97 0.68 0.55

Table 2. Classification performance in different classification method

Posterior probability Still image Temporal voting
0.97 0.72 0.94

To show the effectiveness of KFD space, the proposed method is compared with
other feature space. In this experiment, Linear Discriminant (LD) space and original
intensity feature space are used in comparison. The training images and classification
method are same as the proposed method. The probability distribution of each class
is represented by Gaussian in each space, and log likelihood of posterior probability
shown in equation (7) is used for classification. In the case of LD space, the perfor-
mance is evaluated while changing the dimension of LD space. Table 1 shows the per-
formance of LD space. When LD analysis is used to construct the discriminant space,
the best recognition rate is 68%. Since LD analysis can not represent non-linear varia-
tion induced by view changes well, the performance becomes low. The performance of
original intensity feature space is also shown in Table 1. The performance of original
intensity feature is very low by the influence of view changes. These results show the
effectiveness of KFD analysis. Since KFD analysis can represent non-linear variation,
the high recognition rate is obtained.

Next, the effectiveness of temporal information in probabilistic formulation is inves-
tigated when feature space is fixed to KFD space. First, the proposed method is com-
pared with still image based classification. Still image based method classifies every
image in input sequence independently by using Mahalanobis distance in KFD space.
Namely, 400 images (= 100 subjects × 4 images in test sequence) are classified inde-
pendently. The performance is shown in Table 2. The performance becomes low with-
out temporal information. This results shows the effectiveness of temporal information.
Second, in order to show the effectiveness of temporal information in probabilistic for-
mulation, the performance is compared with temporal voting of image sequence. Each
image in test sequence is classified by using Mahalanobis distance in KFD space, and
voting is performed to the class which gives the minimum distance. After all images
in sequence are classified, the input sequence is classified to the class which has the
maximum number of votes. The performance of temporal voting is also shown in Ta-
ble 2. We understand that the performance is improved by using temporal information
in probabilistic formulation.

These experimental results demonstrate the effectiveness of the posterior probability
in KFD space.

3.2 Evaluation Using UMIST Face Database

In this section, the proposed method is evaluated by using UMIST face database [17].
UMIST database includes the image sequences of 20 subjects with view changes. In
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Fig. 3. Examples of UMIST face images
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Fig. 4. KFD space obtained from UMIST face images

training phase, the typical views of each subject are needed to reduce the influence of
view changes. Therefore, 4 face images with about 0, 30, 60, and 90 degrees are selected
manually from video sequence of each subject. The face images shifted 1 pixel horizon-
tally and vertically are also used in training. The rest images of each subjects are used as
test sequences. The length of test sequence is different between subjects. The maximum
number of frames in test sequence is 44 and the minimum is 15. In this experiment, the
training and test sequence are fixed. Examples of training and test sequences are shown
in Figure 3. The size of face images is set to 56×46 pixels. The left 4 images and right 6
images in Figure 3 show the training sequence and some images in test sequence. KFD
space is constructed by using the training sequences of 20 subjects. The dimension of
KFD space is set to 30 that the cumulative contribution rate is 1.05. Example in KFD
space is shown in Figure 4. Only 7 subjects in 20 subjects are shown. Each subject con-
structs a cluster in KFD space, and the variation between subjects are large. Therefore,
in this experiment, all 20 test sequences are classified correctly. This result shows that
the proposed method can recognize image sequence including view changes.

4 Conclusion

For video-based face recognition in practical environment, the robustness to view
changes is required. In this paper, the robustness of view changes is realized by us-
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ing KFD analysis. KFD analysis assumes that the distribution of each subject in high
dimensional space is Gaussian. This makes the computation of posterior probability
easy. The combination of KFD analysis and posterior probability of image sequence
are the main contribution of this paper. The effectiveness of the proposed method is
demonstrated by the comparison with other feature spaces and classification methods.

As the future direction, the robustness to partial occlusion will be added to the pro-
posed method. It is reported that the robustness to partial occlusion is realized by using
the summation of local kernels arranged at local regions of a recognition target [20,21].
If we use KFD analysis with local kernels, it is expected that the robust video-based
face recognition under view and partial occlusion will be realized. Furthermore, new
KFD algorithm is proposed in recent years [22]. That method gives better performance
in face recognition than normal KFD analysis. The use of that method is one of the
future works.
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Abstract. Symmetry is a fundamental structure that is found to some extent in 
all images.  It is thought to be an important factor in the human visual system 
for obtaining understanding and extracting semantics from visual material.  This 
paper describes a method of detecting axes of reflective symmetry in faces that 
does not require prior assumptions about the image being analysed.  The 
approach is derived from earlier work on visual attention that identifies salient 
regions and translational symmetries. 

1   Introduction 

Symmetries abound both in man made objects and in the structures to be found in nature 
itself.  Symmetry is an important feature in natural scenes that attracts our attention and 
seems to guide the process of recognition.  This has motivated many studies of 
symmetry and associated techniques that might be applied to image processing. 

Symmetry analysis compares image regions and their transforms through 
translation, rotation and reflection in order to detect relevant structure.  Most 
approaches avoid exhaustive search and reduce the enormous computational 
requirements by measuring intuitive features that characterise the presence of 
symmetrical structures.  Marola [1] describes a method that can only be applied to 
shapes that are almost symmetric and requires the computation of the centre of mass.  
Sun et al [2] also make the assumption that the image is symmetric and measure the 
correlation between orientation histograms to detect planes of symmetry.  Loy et al [3] 
use gradients to detect points of radial symmetry, but encounter problems of noise 
which are offset to some extent through the introduction of thresholds.  Gradients and 
edges are also used by Reisfeld et al [4] who requires that symmetry transforms are 
local.  Autocorrelation peaks are employed to determine the presence of symmetry in 
research by Liu et al. [5].  It was observed in this approach that significant parts of the 
image were overwhelmed by large expanses of background and that geometric 
distortions affected the results.  Kiryati et al [6] develop a measure of local symmetry 
which is optimised using a probabilistic genetic algorithm. In the context of faces 
Mitra et al. [7] require an initial manual indication of the axis of symmetry, and Wu et 
al [8] need an alignment stage between the original and a reflected version. Symmeter 
[9] are able to measure the level of symmetry in faces but only if the axis is provided. 

The approach taken in this paper is based upon a model of human visual attention 
[10] that identifies what is important in a scene.  The next sections briefly outline this 
model and how it is modified to extract reflection symmetries.  Some illustrative 
results on human faces are provided. 
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2   Visual Attention 

Salient regions in images may be detected through a process that compares small 
regions with others within the image. A region that does not match most other regions 
in the image is very likely to be anomalous and will stand out as foreground material. 
For example, the edges of large objects and the whole of small objects normally 
attract high attention scores mainly because of colour adjacencies or textures that only 
occur rarely in the image. Repetitive backgrounds that display a translational 
symmetry are assigned low attention scores. No weight is given to the presence or 
otherwise of reflection or rotation symmetries.    

Region matching requires a few pixels (a fork) within that region to match in a 
translated position in another region.  If the difference in colour of one pixel pair 
exceeds a certain threshold a mismatch is counted and the attention score is 
incremented. 

Let a pixel x in an image correspond to a measurement a where 

x = (x1, x2)  and  a = (a1, a2, a3) 

Define a function F such that  a = F(x).   
Consider a neighbourhood N of x with radius r  where 

{x' ∈ N iff  |xi - x'i| < ri ∀ i} 

Select a fork of m random points Sx in N where  

Sx = {x'1, x'2, x'3, ..., x'm} 

Shift Sx by a displacement  in the image to become Sy where 

Sy = {x'1+ , x'2+ , ..., x'm+  } and y = x +  

X

y

 

Fig. 1. Fork at x mismatching at y with  = (6,4) 
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The fork Sx matches Sy if 

|Fj(x'i) - Fj(x'i+ i )| < εj  ∀ i,j . 

In Fig. 1 a fork of m = 4 pixels x′  is selected in the neighbourhood of a pixel x and 
is shown mismatching in the neighbourhood of pixel y.  The neighbourhood of the 
second pixel y matches the first if the colour intensities of the corresponding pixels all 
have values within ε of each other.  The attention score V(x) for each pixel x is 
incremented each time a mismatch occurs in the fork comparisons with a sequence of 
pixels y.  A location x will be worthy of attention if a sequence of t forks matches only 
a few other neighbourhoods in the space.   Pixels x that achieve high mismatching 
scores over a range of t forks Sx and pixels y are thereby assigned a high estimate of 
visual attention.  An application to image compression is described in [11]. 

3   Symmetry Detection 

In this paper symmetries are detected using the same mechanism for measuring 
attention, but transforming forks through reflections before translation and testing for 
a match.  Peaks in the distributions of reflection axis angles at which matches are 
found indicate the locations and strengths of the symmetries present in the image.  
Forks must include some (h) pixels that mismatch each other otherwise large 
background tracts of self-matching sky, for example, would appear to exhibit trivial 
symmetries. 

A fork of m random pixels Sx is defined as a set of pixel positions where  

Sx = {x1, x2, x3, ..., xm} . 

A series of M such forks is given by 

k
xS  = {x1k, x2k, x3k, ..., xmk}   k = 1,2,… , M   

with |Fj(xpk) - Fj(xqk)| > εj  for at least h values of p. (1) 

Randomly translated and reflected forks k
yS  are generated by transforming the k

xS as 

follows 
k
yS  = {y1k, y2k, y3k, ..., ymk}   

with  yik – y1k  = [ ]kik xxR 1−θ      ∀ i,k                        (2) 

and θR  
−

=
θθ

θθ
2cos2sin

2sin2cos , 21 αθα ≤≤  

where 1α and 2α  are lower and upper bounds on the random values of θ , the angle 

of the axis of reflection. 

The fork k
yS  is now a reflected and shifted version of k

xS  and matches k
xS  

indicating a possible symmetry if 
|Fj(xik) - Fj(yik)| < εj  ∀ i,j . 
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Fig. 2. Symmetric forks matching pattern with θ = /2 

Fig. 2 shows a 5 pixel fork and its reflection about an axis at 90º with both forks 
fitting a vertically symmetric pattern.  The mid points of lines joining corresponding 
fork pixels lie along the axis of symmetry of the shape as indicated by the dots.  In 
this case reflected versions of all white or all black pixel forks would trivially match 
the background or totally within the shape and are excluded by (1). 

Distributions of reflection or rotation symmetries are described in the following 
steps: 

1. Set histogram of reflection axis angles to zero. 

2. Generate a fork k
xS  with  h pixels mismatching remaining (m-h) pixels 

3. Reflect k
xS about an axis at a random angle θ and apply a random shift.  

4. If no match is found loop to step 3, P times else increment histogram bin at 
θ following a match. 

5. Loop to step 2, k = M times. 

4   Results 

Parameter values used to generate forks and symmetry distributions reported here are 

m = 12, h = 3, M = 10000, P = 100, 1α = 45º, 2α = 135º, ε = 80.  The location of axes 
of reflection can be revealed by plotting pixels at the mid points of corresponding 
pixels in matching forks.  The mid points will lie on the axis that was used to generate 
the reflected fork and a concentration of plotted points will indicate the presence of an 
axis of reflective symmetry.  Fig. 3 shows a grey level face image (276x245) together 
with a display of the mid points in matching forks, a display of the optimum axis of 
reflection, and the distribution of reflection axis angles for matching forks.  The 
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distributions of mid points and axis angles indicates a range of spurious or less 
significant symmetries, but the central line of symmetry at 90º predominates. 

Some grey level faces (320x243) from the Yale database B [12] are analysed in a 
similar fashion.  Fig. 4 shows a more oval shaped face with more peaked 
distributions.  Figs 5, 6 and 7 have slight tilts producing reflection axis peaks at 86º, 
87º and 86º, respectively.  In contrast Fig. 8 has a slight tilt to the left with an axis 
angle of 91º.  In addition this face is much rounder and this is reflected in the spread 
of the midpoint and axis angle distributions. 

To test the effectiveness of the symmetry detection on more significant deviations 
from the vertical, the face in Fig. 4 was rotated by 25º and analysed in the same way.  
The axis was located at an angle of 112º representing a 23º rotation in Fig. 9. 

In addition the face in Fig. 1 was analysed with 1800 ≤≤ θ .  This revealed a 
secondary horizontal axis of symmetry in Fig. 10 just above the eyes that seems to 
balance areas of forehead against the cheeks. 
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Fig. 3. Original, fork pixel midpoint locations, axis display, and axis angle distribution 
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Fig. 4. Original, fork pixel midpoint locations, axis display, and axis angle distribution 
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Fig. 5. Original, fork pixel midpoint locations, axis display, and axis angle distribution 
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Fig. 6. Original, fork pixel midpoint locations, axis display, and axis angle distribution 
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Fig. 7. Original, fork pixel midpoint locations, axis display, and axis angle distribution 
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Fig. 8. Original, fork pixel midpoint locations, axis display, and axis angle distribution 
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Fig. 9. Original, fork pixel midpoint locations, axis display, and axis angle distribution 
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Fig. 10. Original, fork pixel midpoint locations, axis display, and axis angle distribution 

5   Discussion 

The results presented here only refer to grey level images, but the mechanisms apply 
equally to colour images.  Pixel matching for colour requires that all three colour 
components independently have values within εj of each other.  Preliminary 
experiments indicate that the choice of colour space makes little difference, but that 
thresholds tailored to specific images yield more informative results. 

Key advantages in this approach over other techniques include the absence of any 
need for the specification of any a priori features that might characterise aspects of 
symmetrical structures.  In addition no restrictions are placed on the minimum 
strength of any symmetry that must be present in the data for the algorithm to function 
effectively.  Finally there is no manual intervention necessary to either initialise or 
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guide the process.  To the author’s knowledge this is the first approach that is fully 
independent of any human involvement and therefore it would be difficult to make 
any fair comparisons with other methods as it is always possible to provide intuitive 
heuristics that gain improvements on specific sets of data.  However, further work is 
clearly necessary to measure the errors in the estimation of angles of symmetry on 
much larger sets of data. 

It is worth stressing that the random generation of pixel forks ensures that no 
solution is unwittingly precluded from the search space by the imposition of guiding 
heuristics.  The universe of possibilities is huge but this should not be a deterrent for a 
simple trial and error process that is scalable and yields results.  Nothing is known 
with logical certainty about natural image search spaces and we believe that any 
intuitive assumptions may only have short term benefits. 

The method is not specific to the analysis of facial images but can be applied to 
any pattern.  This necessarily means that any symmetrical form appearing in the 
image that does not align with the facial structure will cause errors.  Asymmetrical 
lighting introduces shadows which do cause serious disturbance and this will be the 
subject of some future work on illuminant correction. 

Rotation symmetries are not analysed in this work as faces do not possess this 

structure.  However, initial experiments replacing θR in (2) with the rotation 

transform θR  
−

=
θθ
θθ

cossin

sincos  indicate similar success in extracting rotation 

symmetries when they are present. 
The results reported in this paper have been produced with 10000 iterations of 

fork generation in order to yield accuracies of the order of one degree.  Although the 
computational steps are very simple there are a large number of them and a symmetry 
analysis takes about 10 seconds on a 1.8GHz machine running in C++.  However, the 
matching of forks can be carried out in parallel as each match is independent of the 
next and related implementations on the Texas Instruments DM642 DSP platform 
indicate that processing can take place at video speeds. 

6   Conclusions 

This paper has described a technique for extracting symmetries from 2D facial images 
that does not require manual intervention or the prior specification of features that 
characterise those symmetries.  The features or forks are produced through a modified 
attention focussing mechanism that selects the best combination of positional and 
reflection transforms that maximises the matching of forks.  Future work will be 
directed at natural colour images and illuminant correction where the objective will be 
to extract image relationships that can be used in Content Based Image Retrieval 
applications. 

This research has been conducted with the support of BT and within the 
framework of the European Commission funded Network of Excellence “Multimedia 
Understanding through Semantics, Computation and Learning” (MUSCLE) [13]. 
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Abstract. In this paper, an efficient iris segmentation method for recognition is 
described. The method is based on crossed chord theorem and zigzag collarette 
area. We select the zigzag collarette region as personal identification pattern, 
which can remove unnecessary areas and get good recognition rate. Zigzag 
collarette area is one of the most important parts of iris complex pattern. It is 
insensitive to the pupil dilation and not affected by the eyelid or eyelash since it 
is closed with the pupil. In our algorithm, we could avoid procedure for eyelid 
detection and searching the radius and the center position of the outer boundary 
between the iris and the sclera, which is difficult to locate when there is little 
contrast between iris and sclera regions. The method was implemented and 
tested using two iris database sets, i.e CASIA and SJTU-IDB, with different 
contrast quality. The experimental results show that the performance of the 
proposed method is encouraging and comparable to the traditional method. 

1   Introduction 

In recent years, the increasing security requirement has led to a rapid development of 
personal identification systems based on biometrics. Iris recognition is one of the 
most reliable biometric technologies, the most important part for an iris recognition 
system is the iris segmentation. The goal of iris segmentation is to separate the iris 
from the surrounding noises, such noises include the pupil, the sclera, the eyelids, the 
eyelashes, the eyebrows, the reflections and the surrounding skin. Isolating such 
noises is of great importance for iris recognition system performance.  

However, it is difficult to separate the iris from the surrounding noises. The main 
reason is that the eyelid or eyelashes usually occlude the iris and the incorrect outer 
boundary detection between the iris and sclera, especially when there is little contrast 
between iris and sclera regions. In previous segmentation methods, most of which are 
based on Hough transform or integrodifferential operator. John G. Daugman [1][2][3] 
proposed an integrodifferential operator for localizing iris regions along with 
removing the possible eyelid noises. Wildes [4] processed iris segmentation through 
filtering and histogram operations. Eyelid edges were detected when edge detectors 
were processed with horizontal and then modeled as parabolas. Ma et al. [5][6] 
processed iris segmentation by edge detection and Hough Transform. Huang et al. [7] 
proposes a new noise-removing approach based on the fusion of edge and region 
information. Edge information extraction was based on phase congruency. The iris is 
segmented using edge detection and Hough transform. There are some disadvantages 
in conventional Hough transform algorithm, such as the huge computation and time 
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consumption. Space and time complexities are the main concerns in the application of 
Hough transform for detecting circles. Direct application of the Hough transform for 
detecting circles and eyelid in images is not practical due to the expensive 
requirements of 3-dimensional parameter spaces. Moreover, if boundaries of iris pupil 
and sclera were clearly distinguished, most the automatic segmentation methods will 
be proved to be successful. However, in practical application, it is very difficult to 
locate the boundary between the iris and the sclera. Difficulties arise from the fact that 
edge detection will fail to find the edges of the iris border. 

In this paper, we proposed a new iris segmentation method based on crossed chord 
theorem and zigzag collarette area. Zigzag collarette area is one of the most important 
parts of iris complex pattern. It is insensitive to the pupil dilation and not affected by 
the eyelid or eyelashes since it is closed with the pupil. In our algorithm, we could 
avoid procedure for eyelid detection and searching the radius and the center position 
of the outer boundary between the iris and the sclera. So, it can reduce computational 
cost and the circle can be located through the crossed chord method which parameters 
can be calculated by triple-points method. 

The remainder of this paper is organized as follows: Section 2 provides a 
description of the proposed method for iris segmentation. Section 3 introduces the 
zigzag collarette area and localization. Normalization is also given in this section. 
Section 4 simply describes the feature extraction and recognition method. Section 5 
reports experiments and results. Section 6 concludes this paper. 

2   Iris Segmentation 

The iris is an annular part between the pupil (inner boundary) and the sclera (outer 
boundary). Both of them can approximately be taken as circles. Using the iris prior-
knowledge, we first roughly determine the iris region in the original image and use 
intensity threshold to binarize the iris together with morphological operations. Then 
use the geometrical method to exactly calculate the parameters of the inner circle in 
the determined region after edge detection. 

2.1   Rough Localization 

To capture the rich details of iris patterns, an imaging system should resolve a 
minimum of 70 pixels in iris radius [3]. In most deployments of these algorithms to 
date, the resolved iris radius has typically been 80 to 130 pixels, though some 
companies have minute differences. So we can use the prior-knowledge to roughly 
locate the iris region. This will reduce the region for subsequent processing, which 
results in lower computational cost. Then we use intensity threshold to binarize the iris. 

2.2   Edge Detection 

From the above processing, we usually get a noised binary image, especially the 
eyelashes, since the intensity of the eyelash is similar to the pupil. All these may 
affect the subsequent processing, so we use morphological operations to exclude 
unnecessary regions in order to get a connected adjacent region. Then we use Sobel 
operator to extract the edges. In order to evaluate our algorithm, we applied the 4-
directional Sobel operator to segment the iris region. 
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2.3   Pupillary Localization 

We use the crossed chord theorem to locate the pupil. From crossed chord theorem, 
we can see that if two chords of a circle AB and CD intersect at the point P, as shown 
in the diagram in Fig.1(a), then get the equation: PA×PB=PC×PD. In order to 
simplify the problem, we use two perpendicular chords AB and CD intersect at P. IF 
the four points (A, B, C, D) satisfy the crossed chord theorem, then use three of the 
four points to calculate the radius and the center coordinates of the circle, since three 
points which are not on the same line can determine a circumcircle. 

                  

(a)                                                              (b) 

Fig. 1. Circle localization. (a) Diagram. (b) Perpendicular chords overlaid on iris image. 

We project the binary image in the vertical and horizontal direction to 

approximately estimate the centroid P ( , )p px y , which is usually not the center of the 

pupil. But at least we can see that P ( , )p px y is the inner of the pupil since the pupil is 

usually darker than other areas. We draw two perpendicular chords AB and CD 

through the inner point P ( , )p px y , shown in Fig.1 (b). If the four points (A, B, C, D) 

satisfy the crossed chord theorem, then use three of the four points to calculate the 
radius and the center of the circle, else rotate a certainty degree along the 
anticlockwise direction until find the satisfactory points. The result of the pupil 
localization can be seen in Fig.2. 

    

(a)                                 (b)                               (c)                               (d) 

Fig. 2. Pupil localization. (a) Original image. (b) Binary image. (c) Edge image. (d) Localized 
image. 
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3   Zigzag Collarette Detection 

Iris complex pattern contains many distinctive features such as arching ligaments, 
furrows, ridges, crypts, rings, corona, freckles, and a zigzag collarette area [2][3]. 
Zigzag collarette area is one of the most important parts of iris complex pattern. It is 
insensitive to the pupil dilation and not affected by the eyelid or eyelash unless the 
pupil is partly not visible since it is closed with the pupil. We have found empirically 
that zigzag collarette area is usually concentric with the pupil and the radius of the 
zigzag collarette areas is restricted in a certain range. Some samples are shown in  
Fig. 3. So we can get the zigzag collarette area easily through the center of the pupil. 

     

(a)                                              (b)                                     (c) 

Fig. 3. Zigzag collarette area localization. (a) From SJTU-IDB. (b) and (c) From CASIA iris 
database. 

Because we only use zigzag collarette area for iris recognition, so it is unnecessary 
to detect eyelid since zigzag collarette area is not occluded by the eyelid in most 
cases. We use intensity threshold to denoise the eyelashes and reflection. In order to 
achieve invariance to translation and scale, the annular iris region is further 
normalized to a rectangular block of a fixed size using Daugman’s Rubber Sheet 
model [1], shown in Fig.4. 

  

  (a)                                      (b) 

 

(c) 

 

(d) 

Fig. 4. Normalization. (a) Localized iris. (b) Noise detection overlaid on iris image. (c) 
Normalized image. (d) The detected noise. 
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4   Feature Extraction and Recognition 

In this work, feature encoding was implemented by convolving the normalized iris 
pattern with Log-Gabor wavelets and use phase-quadrant demodulation coding 
method, which is proposed by John G. Daugman. Log Gabor filters allow arbitrarily 
large bandwidth filters to be constructed while still maintaining a zero DC component 
in the even-symmetric filter. (A zero DC value cannot be maintained in Gabor 
functions for bandwidths over one octave.) [8]. 

Hamming Distance is widely used as the measure of the dissimilarity between any 
two irises [1]. At matching stage, we select the Hamming distance as a metric for 
recognition. The Hamming distance algorithm employed also incorporates noise 
masking, so that only significant bits are used in calculating the Hamming distance 
between two iris templates. 

5   Experimental Results 

The proposed methods have been implemented using Matlab 6.5 on a PC with an X86 
Family 6 Model 810 Dell processor and 512MB system memory. In this work, we 
exploited two iris database sets. The first database (DB1) has been realized in our 
Institute, i.e Iris DataBase of Shanghai Jiao Tong University (SJTU-IDB). The SJTU-
IDB contains 400 grayscale eye images collected from 100 persons (100 classes) and 
4 different images of each person. The size of eye images in this database is 372×245. 

The second database (DB2) comes from the National Laboratory of Pattern 
Recognition (NLPR) in China, that is the CASIA Iris Database [9] collected by the 
Institute of Automation of the Chinese Academy of Science, which contains 756 
grayscale eye images with 108 unique eyes or classes and 7 different images of each 
unique eye, captured in 2 sessions. The size of eye images in this database is 320×280. 

We evaluated the success rate for the proposed methods using above two iris 
database sets for finding the inner boundary and the zigzag collarette area. The 
success rate was 100% both at DB1 and DB2. Also, we evaluated the recognition rate 
using the zigzag collarette area for recognition. In DB1, one iris is chosen to build the 
template and the rest for testing. For each iris pattern in DB2, three irises which are 
collected in the first session are chosen to build the template and the rest for testing. 
We evaluated recognition in two methods. In the case of using the whole iris 
information between the pupil boundary and the sclera boundary, we called traditional 
method. Another method is using the zigzag collarette area. Results are given in terms 
of false acceptance rate (FAR) and false rejection rate (FRR) and also represented by 
the ROC curves. We consider that a false acceptance error was made by the system 
when an iris code and a template corresponding to two different persons lead to a 
Hamming distance lower than the threshold. In the same way, we consider that a false 
rejection error was made by the system when an iris code and a template 
corresponding to the same person lead to a Hamming distance higher than the 
threshold. 

Figure 5 represents the comparison of the ROC results. In the case of that eyelid 
and eyelashes occlude iris or when there is little contrast between iris and sclera 
regions which results in the failure detection of the outer boundary, the traditional 
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approach performs poorly both on DB1 and DB2. In this case, the proposed method is 
more robust because the zigzag collarette does not be affected by the eyelid and 
eyelashes noise. Also, In the case of that eyelid and eyelashes occlude iris badly so 
that the pupil is partly invisible, our proposed method leads to false rejections since in 
this case the zigzag collarette area contains too much noise. 

  

(a)                                                                    (b) 

Fig. 5. ROC curves comparing the traditional method and our method on DB1 and DB2, (a) 
ROC curve on DB1. (b) ROC curve on DB2. 

In general, under the same conditions and using the same iris database, the localized 
zigzag collarette area of the proposed method contains abundant information for 
personal identification. In the case of that iris is occluded by eyelid and eyelashes or 
when there is little contrast between iris and sclera regions, our method seems to be 
more advantageous than the traditional method. 

6   Conclusion 

In this paper, we have presented an efficient iris segmentation method based on 
crossed chord theorem and zigzag collarette area, which is insensitive to glasses 
reflection, rotation invariant, eyelashes and eyelid occlude. Though zigzag collarette 
area seems contain less information than the previous method, it can also be used for 
personal identification since zigzag collarette has enough discriminating features. We 
evaluated recognition rates in two iris database sets. Experimental results have 
illustrated the encouraging performance of the current method in accuracy. 

In the future work, we will conduct experiments on a large number of iris databases 
in various environments for the proposed method to be more stable and reliable. 
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Abstract. This paper describes a novel method for palmprint recognition 
based on registration information and 2D Gabor features. After 
preprocessing, a unified coordinate system is constructed for each palmprint 
image and used to guide ROI extraction. A multi-scale matching strategy is 
employed to match registration information and 2D Gabor features. In the 
first two levels, registration information is extracted and used to measure the 
global similarity between two palmprint patterns. In the third level, two 
palmprints are aligned with their registration information and then are 
matched using their corresponding Gabor features. The experimental results 
demonstrate the effectiveness of the method. 

1   Introduction 

In information and vastly interconnected society, biometric technologies have been 
paid more attention in personal authentication since they are more convenient, reliable 
and stable. Different techniques have been developed and applied in many fields. From 
all these techniques, palmprint is considered as a relatively new biometric feature for 
personal verification and have several advantages: stability and uniqueness; medium 
cost as it only needs a platform and a low/medium resolution CCD camera or scanner; 
it is very difficult to be mimicked; high user acceptance. It is for these reasons that 
palmprint recognition has attracted more interests from researchers.  

There are many features in a palmprint image that can be extracted for 
authentication. Principal lines, wrinkles, ridges, minutiae points, singular points, and 
textures are regarded as useful features for palmprint pattern representation[1]. For 
palmprint, though, there is no universal method of feature extraction and recognition. 
In existing research, the majority focused on: points and lines[2][3][4][5]; texture 
analysis[6][7][8]; statistic features[9][10] and hybrid of different types of features[11].  
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In this paper we investigate a novel palmprint recognition method which uses 
multi-scale verification strategy based on registration information and 2D Gabor 
features. In Level-1 stage we register two ROI images and extract their registration 
information using Fourier-Mellin Transformation (FMT) and phase correlation 
technique. In Level-2 stage, each ROI image is divided into 2×2 blocks and each pair 
of corresponding blocks is registered to obtain more detailed registration information. 
Registration information describes global similarity between two palmprint patterns at 
coarse level. In Level-3 stage each pair of blocks is firstly aligned with their 
registration information previously extracted, then a Gabor feature based image 
matching is performed in the superposition area of two blocks at fine level for the 
final confirmation. Our method is focusing on palmprint verification and is different 
with the method proposed in [12], which adopted multiple features and matching 
criteria and mainly used for palmprint identification in a large database. 

The rest of this paper is organized as follows. In the Section 2 is the preprocessing 
stage. Section 3 presents palmprint registration with FMT and Section 4 is devoted to 
multi-scale palmprint verification strategy. Experimental results are listed in Section 5. 
At last, we discuss our algorithm and future work in Section 6. 

2   Preprocessing 

Our work is carried on the PolyU Palmprint Database[13]. The images of this 
database contain the whole palmprint and other parts of a palm and background. 
Therefore a preprocessing step is needed to extract the ROI. The detailed information 
about preprocessing steps can be referred [14]. Fig.1 shows these steps and ROI 
image after preprocessing. 

         

                      a)                                       b)                                        c) 

                        

                     d)                                        e)                                      f) 

Fig. 1. The main steps of preprocessing. (a)Original database image, (b)Binarizing half of 
image, (c)Tracking boundary and searching line segment, (d)Building coordinate system, 
(e)Extracting ROI, (f)Normalizing ROI. 
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3   Palmprint Registration Using FMT 

The Fourier-Mellin Transformation is a useful mathematical tool for the recognition 
of images because its resulting spectrum is invariant in rotation, translation and scale. 
The Fourier Transformation itself is invariant in translation in Cartesian coordinate 
system and in rotation by converting the Cartesian coordinate system to Polar 
coordinate system; the Mellin Transformation provides the invariant results for 
scales[15]. 

Here we use FMT for automatic image registration. We make a hypothesis that 
one palmprint image is a translated, rotated and scaled replica of another one with 
translation ),( yx TT , rotation θ  and uniform scale factor σ . From this point of 
view, the amounts of translation, rotation, and scale in constant time irrespective of 
the type of images can be computed by phase correlation technique based on their 
FMT features. Fig. 2 shows a registration example of genuine match and imposter 
match. The second row of the images in Fig.2 is FMT spectra derived by the FFT of 
the Log-Polar transformation.  

 

Fig. 2. Example of palmprint registration. a) Genuine registration, b) Imposter registration 

Transformation 

Registration 

a)                                                                        b)
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4   Multi-scale Palmprint Recognition 

In complex classification tasks it is widely used the approach which adopts multi-
scale or hierarchical matching strategy in order to find the right trade-off between 
accuracy and speed. Specifically for palmprint recognition, we study a system where 
two palmprint images are firstly classified by a 2-scale classifier based on FMT 
features. Only patterns not rejected by the 2-scale classifier are forwarded to a fine 
classifier based on 2D Gabor features. This method combines multi-scale features and 
multi-stage verification strategy and it is possible to reach the trade-off between error 
and response time. 

4.1   Level-1 Stage 

Firstly, each ROI image is transformed to frequency domain by using FMT as 
described above. Before being mapped to log-polar plane, the FMT spectra need to be 
multiplied with a highpass filter to reduce the effect of discretization and logarithm 
resampling. Secondly, we use FMT-based registration technique to obtain the 
translation, rotation and scaling information of each pair of images. The vector that 
describes the similarity of two images is given by 

),,(1 σθdVlevel =−  (1) 

where )1800(, oo ≤≤ θθd  and σ  are the translation distance and rotation angle 

and scaling factor respectively. Ideally the values of d  and θ  are near to zero, and 
the values of σ  are near to 1. In realistic situation where displacements exist in 

acquisition, the probability that the value of d  and θ  is zero is very small when 
genuine match, because even two images captured in the same session will have a 
amount of offsets in translation, rotation and scale. However the amount of 
registration parameters when imposter match is much larger than the one when 
genuine match. 

The main purpose of this paper is to investigate the effectiveness of multi-scale 
features and multi-stage verification strategy,  therefore, we just define a simple linear 

similarity function )( 11 −levelVS  to test classification performance of registration 

information. This function is given by 
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where α , β  and γ  are the weight factor and α + β + γ  = 1. α , β  and γ are the 

experiential values and their values are set in terms of the discriminability of 

d ,θ and σ , respectively. maxd , maxθ , maxσ  , du , θu and σu will be found out in 

training stage in terms of the sample distribution of d ,θ and σ ,respectively, see in 

Section 5.2. )( 11 −levelVS  will give the similarity score which is between 0 and 1. If 

this score is smaller than a threshold 1τ , 2 ROI images are verified as imposter match, 

otherwise, 2 images will be matched in Level-2 stage. 
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Fig. 3. a) Divided ROI, b) FMT feature images of blocks. 

4.2   Level-2 Stage 

In this stage, ROI images are divided equally into 22 × blocks and extracted their 
FMT features of each block if they are not rejected by Level-1 classifier, as shown in 
Fig.3. Each pair of corresponding block of two images is registered in a similar way 
described in Section 4.1. By dividing the ROI, more detailed registration information 
will be extracted. A feature vector is computed as  

),,,,,,,,,,,( 4321432143212 σσσσθθθθddddVlevel =−  (3) 

Also, a similarity function )( 22 −levelVS  is employed to give the similarity score in 

terms of 2−levelV , and a threshold 2τ is used to make classification decision in this 

stage. If this score is higher than a threshold 2τ , two palmprints will be matched in 

Level-3 stage. 
Registration information describes the global similarity between two palmprints at 

coarse level. Moreover, registration information can be used to register two palmprint 
images and we can match them at fine level after alignment, see in Section 4.3. 

1τ and 2τ can be considered as a relaxing factor that controls the speed of recognition 

algorithm and the value of FAR in some specific occasions when necessary. The 
response time for the classifier at the first two levels can be reduced by using 

relatively large values for both 1τ and 2τ . 

4.3   Level-3 Stage 

In order to improve the robustness of recognition algorithm, a fine verification stage 
was needed in Level-3 stage especially for genuine match. The circular Gabor filter is 
an effective tool for texture analysis and has been proved its efficiency for palmprint 
recognition and iris recognition[7][16]. We adopt 2D Gabor phase coding scheme for 

a)                                                         b) 
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palmprint representation and hamming distance for feature matching. It’s noted that 
we also adopt the optimized parameters used in [7].  

Since the amount of vertical and horizontal translation, rotation angle and scaling 
factor have been obtained in previous stage, it’s very convenient to align two 
palmprint blocks according to their registration parameters. Alignment process can 
counteract the displacement in acquisition to some extent and, therefore, is useful for 
Gabor feature matching. For two corresponding blocks of ROI images, the 
superposition area of two blocks and a mask which encloses the superposition area is 
generated after alignment. The normalized hamming distance is described as 
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where )( RR QP , )( II QP ,’ ⊗ ’, and ‘ ∪ ’have the same meanings as in [7]. The size 

of the mask is NM × . 
Then we compute the distance by 
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Obviously 0D  is between 0 and 1. For the best matching, 0D  should be 1. 

5   Experimental Results 

5.1   Palmprint Image Database 

The PolyU Palmprint Database is so far the first and the largest open palmprint 
database, which contains 600 grayscale images corresponding to 100 different palms 
in BMP image format. These images were captured from above 300 different palms 
and each palm was captured 10 images. Factors such as population coverage and 
capturing time interval had been considered when constructing database. Six samples 
were selected from 10 images of each of these palms were collected from the same 
person in two sessions, where 3 samples were captured in the first session and the 
other 3 in the second session. The average interval between the first and the second 
collection was two months. 

5.2   Training Stage 

In our experiment, we divide the Database into 2 subsets. The first subset includes 
total 300 images of the first 50 palms and is used to train the parameters of 

)( 11 −levelVS  and )( 22 −levelVS , e.g. maxd , maxθ , maxσ  , du , θu and σu etc. The 
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a)                                                                b) 

 

c) 

Fig. 4. Distribution of training samples. a) Distribution of d , b) Distribution of θ , c) 
Distribution of σ . 

second one includes the rest of images and is used to test the recognition performance. 
The training subset and test subset were from different palms. This kind of partition 
can be helpful to test the generality of recognition algorithm. 

According to the distribution of training samples when genuine match, we can train 

the parameters of )( 11 −levelVS  and )( 22 −levelVS , which will be used to compute 

similarity score. The distribution of d ,θ  and σ  obtained in Level-1 stage can be 

seen in Fig.5. As it is clearly seen, d  and θ  have a strong discriminability in 
distribution while the discriminability of σ  is weaker. 

5.3   Test Stage 

In this stage, each sample in test subset is matched against the remaining samples of 
the same palm to compute the False Rejection Rate (FRR). The first sample of each 
palm in the test subset is matched against the first sample of the remaining palms in 
this subset to compute the False Acceptance Rate(FAR). 
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a)                                                                  b) 

Fig. 5. a) Receiver operating curve for Level-1, Level-2 and Level-3 matching scheme, b) 
Genuine and imposter match score distributions in Level-3. 

Table 1. Performance Evaluation 

Matching Scheme EER(%) 
Level-1 6.83 
Level-2 5.32 
Level-3 2.42 

To test performance of different verification levels, we carried out totally 6 
verification for imposter and genuine match and for Level-1,Level-2 and Level-
3,respectively. It is noted that Level-2 and Level-3 are combining classifiers. The 
performance of different levels on test subset is presented by Receiver Operating 
Characteristic (ROC) curves. Fig.5(a) illustrates the ROC curves for 3 levels and 
Table 1 shows the performance evaluation in terms of EER. Note that Level-3 
matching scheme achieves better performance than Level-2, while Level-2 better than 
Level-1, the experimental results reveals the efficiency of combining levels matching 
scheme compared to both Level-1 and Level-2 in the verification task, this also can be 
seen from the Table 1. The normalized score of genuine match and imposter match in 
Level-3 is illustrated in Fig.5(b). 

6   Clusions and Future Work 

A novel method to palmprint feature matching strategy is proposed in this paper. A 
multi-scale verification strategy is employed to match registration information and 2D 
Gabor feature. Registration information is extracted to describe the global similarity 
and make classification at coarse level and 2D Gabor feature is extracted to verify two 
palmprints at fine level. The experimental results show that this strategy achieves 
good performance for palmprint recognition and still have potential to improve. In the 
future work, we will investigate the fusion of registration information with the other 
features. The design of compact classifier will be investigated as well. 
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Abstract. In this paper we analyse the effects that JPEG and JPEG2000 
compression have on subspace appearance-based face recognition algorithms. 
This is the first comprehensive study of standard JPEG2000 compression 
effects on face recognition, as well as an extension of existing experiments for 
JPEG compression. A wide range of bitrates (compression ratios) was used on 
probe images and results are reported for 12 different subspace face recognition 
algorithms. Effects of image compression on recognition performance are of 
interest in applications where image storage space and image transmission time 
are of critical importance. It will be shown that not only that compression does 
not deteriorate performance but it, in some cases, even improves it slightly. 
Some unexpected effects will be presented (like the ability of JPEG2000 to 
capture the information essential for recognizing changes caused by images 
taken later in time) and lines of further research suggested. 

1   Introduction 

With the growing number of face recognition applications in everyday life, image- and 
video-based recognition methods are becoming more and more important research 
topic [1]. Effects of pose, illumination and expression are issues most studied in face 
recognition so far. Very little has been done to investigate the effects of compression 
on face recognition. Still-to-still image experimental setups are often researched but 
only in uncompressed image formats. Still-to-video research mostly deals with issues 
of tracking and recognizing faces in a sense that still uncompressed images are used as 
a gallery and compressed video segments are probes. Effects of compression are rarely 
discussed in such papers and rarely researched in general because there is a general 
belief that the effect of compression in machine vision applications is deleterious. The 
compression is, therefore, often avoided. Since surveillance cameras and other image 
acquisition equipment often give their output in a compressed format, exploring 
compression effects on known face recognition algorithms seems like a reasonable line 
of research and that is the one we will pursue in this paper. Another important issue 
would be ability to store compressed face images (without performance degradation 
when subject to recognition) on a low-capacity chips and smart cards. This would be a 
great advantage and would contribute to faster implementation of biometrics in every 
day life (a good example is the e-passport). 
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In this paper we will compare different face recognition algorithms' behaviour in a 
still-to-still setup with uncompressed training and gallery images and probe images 
compressed with various compression ratios. This setup mimics the expected real-life 
circumstances where the image captured by a surveillance camera is probed to 
existing high-quality gallery images. Algorithms tested in this paper are well-
established subspace face recognition projection methods: Principal Component 
Analysis (PCA) [2], Independent Component Analysis (ICA) [3] and Linear 
Discriminant Analysis (LDA) [4], combined with common distance metrics (L1, L2 
and cosine) in a nearest-neighbour matching system. Bits per pixel (bpp) will be a 
measure of compression for both tested compression algorithms: JPEG [5] and 
JPEG2000 [6]. It will be shown that compression does not significantly affect 
performance even at 0.2 bpp (a 40:1 compression). Actually, in many cases the 
performance goes slightly up for some compression ratios. 

The rest of this paper is organized as follows: Section 2 gives an overview of 
previous work, Section 3 describes experimental setup used in our research, Section 4 
reports results and analyses them and Section 5 concludes the paper. 

2   Previous Work 

FRVT 2000 [7] tried to estimate the effects of lossy image compression on the 
performance of face recognition algorithms by minimising a situation in which the 
gallery images were obtained under favourable, uncompressed circumstances, but the 
probe sets were obtained in a less favourable environment in which compression was 
applied. They used JPEG compression and tested algorithms with dup1 probe set with 
images in it compressed to 0.8, 0.4, 0.25 and 0.2 bpp. With this setup, they concluded 
that compression does not adversely affect performance and that the performance of 
algorithms drops significantly only with images compressed below 0.2 bpp. In their 
experiment the recognition rate goes up slightly for compression ratios of 10:1 (0.8 
bpp) and 20:1 (0.4 bpp). In conclusion, they recommend that additional studies on the 
effect of compression be conducted as their results are aggregated and only consider 
JPEG compression. This paper was the main motivation for our research. 

Wat & Srinivasan [8] explored the effects of JPEG compression on PCA and 
LDA with the same setup as in FRVT 2000 (compressed probes, uncompressed 
gallery). Results were presented as a function of JPEG quality factor and are therefore 
very hard to interpret (the same quality factor will result in a different compression 
ratios for different images, dependent on the given image's statistical properties). By 
using two different histogram equalization techniques they claim that there is a slight 
increase in performance with the increase in compression ratio for LDA in the 
illumination task (fc probe set). For all other combinations the results remain the same 
or decrease with higher compressions. This is in slight contradiction with results 
obtained in FRVT 2000. 

Moon & Phillips [9] examined the effects of both JPEG and wavelet compression 
(no details on wavelet compression were given). The original images were 
compressed and then uncompressed prior to being processed by the normalization 
step. For both compression methods, the images were compressed to 0.5 bpp. The 
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standard PCA+L1 algorithm was tested with eigenvectors derived using 
uncompressed images. Results show no degradation of performance for JPEG and a 
slight (questionably significant) increase in performance for wavelet compression (for 
dup1 and fb sets). 

As can be seen, none of the above papers used standard JPEG2000 compression 
and none gives a comprehensive study across various probe sets and for a larger 
number of algorithms. By experimenting with standard JPEG and JPEG2000 
compression techniques over a wide range of compression ratios, we will give the 
first comprehensive comparison of the influence of those two techniques on 
recognition performance, across 12 different subspace face recognition algorithms. 

3   Experimental Setup 

Our experiment was performed on a standard grey FERET data set [10], consisting of 
images of 1196 individuals taken under various conditions and at various points in 
time. Also, to achieve highly reproducible results, standard test sets were used, i.e. fb 
(different expression test), fc (different illumination), dup1 (images taken anywhere 
between one minute and 1,031 days after the gallery image) and dup2 (images taken 
at least 18 months after the gallery image was taken). By using all four sets, our 
results will present a substantial expansion of FRVT 2000 compression experiment. 

All images in these subsets were compressed using JPEG and JPEG2000 
compression techniques, with various compression ratios (bitrate, bpp): 0.1, 0.2, ... , 
1.0 bpp. To compress images using JPEG, the Independent JPEG Group's JPEG 
software packet (JPEG6b32) [11] was used. To yield various bitrates, quality 
parameter was iteratively set until the desired bitrate was achieved. Due to the relative 
simplicity of face images in FERET database, it was impossible to compress some of 
the images to exactly 0.1 bpp. In those cases, the lowest possible bitrate was used. 
The bitrates thus varied from 0.1 to about 0.15 in some cases. For the sake of clarity 
we will refer to all those bitrates as 0.1 bpp in further text. To compress images using 
JPEG2000 standard, a Kakadu V4.2 (up to date with Part 1 of the JPEG2000 
standard) [12] was used with the switch "-rate" set to a required bitrate value. For 
JPEG2000 there was no trouble achieving the exact predefined bitrates. 

Compression was done on original images of size of 256 × 384 pixels. After 
compression, all images (compressed and uncompressed) were rotated (using affine 
transformations with bilinear interpolation) to align the eyes at a fixed location across 
all images, cropped to the size of 128 × 128 pixels and histogram equalized to values 
0 to 255 (see Figure 1). It is important to mention that all compressed images were 
uncompressed prior to recognition stage, thus, the recognition was done in pixel 
domain. 

Algorithms were trained using uncompressed images of 225 individuals for which 
there were exactly 3 images per person in the data set. Thus, the training set consists 
of 675 images. This set of images overlaps with the query sets in the following 
manner: 224 images are in the gallery (fa set), another 224 images are in the fb set and 
of the same subject as the ones taken from the gallery. Further 3 images are from the 
dup1 set and the rest 224 images are not in any set used in the recognition stage. After 
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training, a 270-dimensional subspace (224-dimensional for LDA) was derived 
retaining more than 95% of the original information. Recognition was done in those 
subspaces by standard nearest neighbour matching with L1, L2 and cosine (COS) 
metrics. 

 

Original image 

1 bpp 0.5 bpp 0.2 bpp0.1 bpp 

JPEG 
coded images 

JPEG2000 
coded images 

1 bpp 0.5 bpp 0.2 bpp0.1 bpp 

 

Fig. 1. Example of image degradation when subject to compression 

4   Results and Analysis 

We tested all 12 algorithms with compressed probe images in four standard test sets 
against uncompressed gallery images. As can be seen, results obtained using 
compressed probe images (Tables 1-4) are comparable to the ones obtained using 
uncompressed probe images (the rightmost column in all tables). The values in tables 
present rank 1 recognition percentage. The conclusion of FRVT 2000 that 
performance goes slightly up for compression ratios of 10:1 (0.8 bpp) and 20:1 (0.4 
bpp) is confirmed in our experiment. Actually, we also show that in many other cases 
performance goes slightly up for compressions between 0.2 and 0.8 bpp. These cases 
are bolded in all tables. Our results are in some disagreement with Wat & Srinivasan 
because we found that the performance goes up with compression in quite a few cases 
and not just for LDA. Moon & Phillips' results are confirmed here also. All this gives 
us the reason to believe that our conducted experiments are consistent with previous 
studies so we can give a relevant contribution for a wide range of bitrates. Some 
recognition performance results obtained by other authors with JPEG compression 
will be confirmed and expanded. In addition, new results using JPEG2000 will be 
reported, making this paper a first comprehensive study of the effect of JPEG2000 
compression on face recognition. 

If you take a closer look at the results shown in tables, you will observe that in 36 
out of possible 48 cases, the performance goes up for one or more compression ratios 
and compression techniques tested. Even though the difference is often not 
statistically significant (we proved this by using McNemar's hypothesis test - details 
given in Appendix) we believe that this is an important result as it encourages further 
research into the theoretical properties of both compression and recognition 
algorithms that led to this performance improvement. 
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Table 1. Rank 1 recognition percentage for the fb probe set 

JPEG coded images - bitrate [bpp] JPEG2000 coded images - bitrate [bpp]  
Algorithm 

 0.1 0.2 0.5 0.8    1 0.1 0.2 0.5 0.8     1 

Original 
images 

PCA+L1 76.2 80.0 80.7 81.0 80.9 80.5 80.6 81.0 81.0 80.8  80.9 

PCA+L2 78.7 80.1 81.1 81.3 81.3 81.0 81.4 81.1 81.2 81.1  81.4 

PCA+cos 76.9 80.1 80.5 80.5 80.5 80.5 80.5 80.6 80.6 80.5  80.4 

ICA1+L1 76.9 79.8 80.0 80.0 80.2 80.0 79.9 80.0 80.0 80.0  80.1 

ICA1+L2 77.5 79.9 80.1 80.2 80.1 79.9 80.0 80.0 80.2 80.3  80.1 

ICA1+cos 76.1 80.2 80.4 80.3 80.1 79.8 80.5 80.3 80.3 80.4  80.1 

ICA2+L1 51.2 62.0 65.1 64.8 65.0 64.0 64.6 65.0 65.3 65.0  65.3 

ICA2+L2 58.6 70.7 73.3 73.6 73.5 71.8 73.1 73.8 73.5 73.4  73.5 

ICA2+cos 75.2 80.7 82.7 82.3 82.6 82.1 82.9 82.7 82.8 82.6  82.3 

LDA+L1 75.0 77.4 77.6 77.8 77.9 77.7 77.8 80.0 77.9 77.8  77.8 

LDA+L2 79.6 81.0 82.4 82.5 82.4 82.2 82.0 82.2 82.3 82.3  82.3 

LDA+cos 77.0 80.5 81.0 81.1 81.0 81.0 81.3 81.4 81.2 81.2  81.0 

Table 2. Rank 1 recognition percentage for the fc probe set 

JPEG coded images - bitrate [bpp] JPEG2000 coded images - bitrate [bpp]  
Algorithm 

 0.1 0.2 0.5 0.8    1 0.1 0.2 0.5 0.8     1 

Original 
images 

PCA+L1 33.5 47.4 50.1 49.4 49.4 46.9 48.9 49.4 49.4 50.0 49.4 

PCA+L2 21.6 24.2 23.7 24.2 24.2 23.7 24.2 24.2 24.2 24.2  24.2 

PCA+cos 13.4 18.0 18.5 18.0 18.0 18.0 18.0 18.0 18.0 18.0  18.0 

ICA1+L1 18.0 22.1 23.2 23.2 22.6 22.1 22.6 22.1 22.6 22.6  22.6 

ICA1+L2 19.0 21.6 21.6 22.1 21.6 21.6 21.6 21.6 22.1 22.1  21.6 

ICA1+cos 12.3 17.5 17.5 16.4 16.4 17.0 17.0 16.4 16.4 16.4  16.4 

ICA2+L1 12.3 16.4 15.9 16.4 17.5 15.9 15.9 16.4 17.5 17.0  17.5 

ICA2+L2 22.6 39.1 40.7 41.7 41.7 39.1 40.2 41.7 41.7 41.7  41.7 

ICA2+cos 42.2 64.4 64.4 64.4 64.4 62.8 64.9 63.9 64.4 63.9  64.4 

LDA+L1 17.5 22.1 21.6 22.1 22.1 19.5 20.6 22.1 22.1 22.1  22.1 

LDA+L2 22.1 25.7 26.2 26.2 26.2 25.2 25.7 26.2 26.8 26.8  26.2 

LDA+cos 14.4 19.0 19.5 19.5 19.0 18.5 19.0 19.5 19.5 19.5  19.5 

Many cases where performance goes up with compression are observed for the fb 
probe set (Table 1). For more difficult tasks, the improvement with compression in 
less often. For the dup1 set (Table 3) with images compressed using JPEG2000 at 0.2 
bpp there is an improvement in almost all algorithms. The trend continues for dup2 
set (Table 4), but is not so emphasized. The fact that performance, almost persistently, 
goes up with JPEG2000 compression for dup1 and dup2 set indicates that JPEG2000 
compression is able to efficiently eliminate the differences between original images 
and the ones taken later in time. Besides, our results show that this effect is consistent 
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Table 3. Rank 1 recognition percentage for the dup1 probe set 

JPEG coded images - bitrate [bpp] JPEG2000 coded images - bitrate [bpp]  
Algorithm 

 0.1 0.2 0.5 0.8 1 0.1 0.2 0.5 0.8 1 

Original 
images 

PCA+L1 33.5 36.0 36.9 36.9 36.9 36.7 37.4 37.4 36.9 37.1 37.1 

PCA+L2 32.8 33.1 33.8 33.9 33.8 33.2 33.9 33.9 33.8 33.8 33.8 

PCA+cos 31.3 33.3 33.2 33.5 33.5 33.3 33.9 33.5 33.5 33.5 33.3 

ICA1+L1 31.5 32.5 32.5 32.4 32.4 32.5 32.5 32.4 32.2 32.2 32.4 

ICA1+L2 31.4 32.5 32.8 32.6 32.9 32.9 32.8 32.8 32.8 32.9 32.9 

ICA1+cos 30.8 33.9 33.8 33.6 33.8 33.9 34.0 33.8 33.6 33.6 33.8 

ICA2+L1 19.8 26.5 29.7 29.7 29.9 28.3 30.1 29.9 29.9 30.0 29.9 

ICA2+L2 22.3 29.2 32.1 32.2 32.4 30.1 32.2 32.4 31.9 32.1 32.5 

ICA2+cos 34.0 39.2 43.0 42.5 42.8 40.5 42.5 42.2 43.0 43.0 42.8 

LDA+L1 31.8 32.8 33.5 33.5 33.5 34.3 33.6 33.5 33.6 33.3 33.3 

LDA+L2 33.1 32.9 33.2 33.2 33.2 32.6 33.3 33.3 33.2 33.2 33.2 

LDA+cos 31.1 33.2 33.2 33.3 33.3 33.5 33.5 33.3 33.3 33.3 33.3 

Table 4. Rank 1 recognition percentage for the dup2 probe set 

JPEG coded images - bitrate [bpp] JPEG2000 coded images - bitrate [bpp]  
Algorithm 

 0.1 0.2 0.5 0.8    1 0.1 0.2 0.5 0.8    1 

Original 
images 

PCA+L1 14.1 17.5 17.9 17.9 17.5 17.1 18.3 18.3 17.5 17.9 17.9 

PCA+L2 9.8 9.8 10.2 10.2 10.2 8.5 10.2 10.2 10.2 10.2 10.2 

PCA+cos 10.2 11.1 10.6 11.1 11.1 10.6 11.1 11.1 11.1 11.1 11.1 

ICA1+L1 10.6 11.9 11.1 11.1 11.1 10.6 11.1 11.1 11.1 11.1 11.1 

ICA1+L2 10.2 10.6 11.1 10.6 11.1 10.2 10.6 10.6 11.1 11.1 11.1 

ICA1+cos 10.2 11.9 12.3 12.3 12.3 11.5 11.9 12.3 12.3 12.3 12.3 

ICA2+L1 12.3 14.5 16.6 16.2 16.2 16.2 18.3 16.6 16.6 16.6 16.2 

ICA2+L2 14.1 17.5 18.8 19.2 18.8 17.9 19.6 18.8 18.8 18.8 19.2 

ICA2+cos 21.3 25.2 26.9 26.9 27.7 23.5 26.9 26.5 27.7 26.9 27.3 

LDA+L1 12.3 14.1 14.5 13.6 13.2 14.1 14.5 14.5 13.2 13.2 13.2 

LDA+L2 10.2 9.8 9.4 9.4 9.4 8.9 10.2 9.8 9.4 9.4 9.4 

LDA+cos 9.4 10.6 10.2 10.6 10.2 10.6 10.2 10.6 10.6 10.6 10.2 

across almost all algorithms, and it indicates that the information eliminated is not 
algorithm specific but is a property of compression of those images. The fc test  
(Table 2) turns out to be the most difficult one regarding performance improvement 
with compressed images. Obviously, both JPEG and JPEG2000 compression 
techniques eliminate the important information for illumination changes less efficiently 
than for changes induced by images taken later in time. We can make an ad hoc 
assumption as to why is this so by looking at the images in Figure 1. Obviously, when 
the original image is compressed, the minor differences caused by different expression 
and/or temporal changes are reduced. For example, the images compressed using 
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JPEG2000 look a bit "smeared". The fact that both JPEG and JPEG2000 are low-pass 
filters in some sense could explain the improvements in fb, dup1 and dup2 tests. 
Situation with illumination changes is a bit different because the differences in images 
that arise from different illuminations are larger and affect the whole image. Thus, the 
low-pass filtering in most cases does not improve performance. In overall, JPEG2000 
seems superior in all tests and should be considered as a standard for storing and 
transmission of face images for biometric purposes. 
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Fig. 2. ICA2+COS performance as a function of bpp: (a) fb probe set, (b) fc probe set, (c) dup1 
probe set, (d) dup2 probe set. 

Illustrated by the ICA2+COS algorithm (the best algorithm for all tasks in our 
experiments) in Figure 2, a significant superiority of JPEG2000 over JPEG on high 
compression ratios can be seen. For example, if we look at Figure 2(b), we can see 
that performance for compression ratio of 80:1 (0.1 bpp) using JPEG2000 is only 
slightly (statistically insignificant difference) lower than with original images. Using 
JPEG compression for that same case deteriorates performance for more than 20%. 
Again, this trend is persistent throughout all cases and is therefore a rule in our 
experiments. All the conclusions brought in the previous text are also clearly 
illustrated by Figure 2(a)-2(d). 

And finally, a word about metrics. Our results show that cosine (angle) metric 
takes the most advantage out of compression across all algorithms (you can easily 
confirm this by looking at the bolded values in Table 1). The reason for this behaviour 
stays unclear. 
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5   Conclusions and Further Work 

In this paper we explored the effects of JPEG and JPEG2000 compression techniques 
on face recognition algorithm performance. This is the first comprehensive study of 
standard JPEG2000 compression effects on face recognition, as well as an extension 
of existing experiments for JPEG compression. A wide range of bitrates (compression 
ratios) was used on probe images and results are reported for 12 different subspace 
face recognition algorithms. We found that not only that compression does not 
deteriorate performance but it, in some cases, even improves it slightly. We believe 
that this is more than enough reason to further explore the theoretical effects of 
compression on face recognition and eventually to use some compression scheme for 
storing and transmission of face images used as a biometric (JPEG2000 seems like a 
reasonable choice by our experiments).  

The future perspectives of using standard surveillance equipment as input into 
superior performance recognition systems are becoming a reality. Storing compressed 
face images on low-capacity chips, ID and smart cards are a reality also. A general 
belief that the effect of compression in machine vision applications is deleterious is 
proven to be questionable by this study. 

Our further research will focus on explaining the noticed unexpected effects, like 
the effect that JPEG2000 is able to efficiently capture information essential for 
recognizing changes caused by differences between images taken later in time or that 
cosine metric seems to take the most advantage of compression. Quantifying image 
quality (for compressed and uncompressed images) prior to using it as input to 
recognition systems, in a way that the best image be chosen as input, is another 
subject worth researching. 

 

Acknowledgment 

Portions of the research in this paper use the Color FERET database of facial images 
collected under the FERET program. 

References 

1. W. Zhao, R. Chellappa, J. Phillips, and A. Rosenfeld, "Face Recognition in Still and Video 
Images: A Literature Survey", ACM Computing Surveys, Vol. 35, Dec. 2003, pp. 399-458 

2. M. Turk, A. Pentland, "Eigenfaces for Recognition", Journal of Cognitive Neuroscience, 
Vol. 3, No. 1, 1991, pp. 71-86 

3. M.S. Bartlett, J.R. Movellan, T.J. Sejnowski, "Face Recognition by Independent 
Component Analysis", IEEE Trans. on Neural Networks, Vol. 13, No. 6, November 2002, 
pp. 1450-1464 

4. P. Belhumeur, J. Hespanha, D. Kriegman, "Eigenfaces vs. Fisherfaces: Recognition Using 
Class Specific Linear Projection", Proc. of the Fourth European Conference on Computer 
Vision, ECCV'96, Vol. 1, 15-18 April 1996, Cambridge, UK, pp. 45-58 

5. G. Wallace, "The JPEG Still-picture Compression Standard", Communications of the 
ACM Vol. 34, No. 4, 1991, pp. 31-44 



144 K. Delac, M. Grgic, and S. Grgic 

 

6. C. Chistopoulos, A. Skodras, T. Ebrahimi, "The JPEG2000 Still Image Coding System: 
An Overview", IEEE Trans. on Consumer Electronics, Vol. 46, November 2000, pp. 1103-
1127 

7. D.M. Blackburn, J.M. Bone, P.J. Phillips, "FRVT 2000 Evaluation Report", February 
2001, Available: http://www.frvt.org/FRVT2000/documents.htm 

8. K. Wat, S.H. Srinivasan, "Effect of Compression on Face Recognition", Proc. of the 5th 
International Workshop on Image Analysis for Multimedia Interactive Services, WIAMIS 
2004, 21-23 April 2004, Lisboa, Portugal 

9. H. Moon, P.J. Phillips, "Computational and Performance Aspects of PCA-based Face-
recognition Algorithms", Perception, Vol. 30, 2001, pp. 303-321 

10. P.J. Phillips, H. Moon, S.A. Rizvi, P.J. Rauss, The FERET Evaluation Methodology for 
Face Recognition Algorithms, IEEE Trans. on Pattern Analysis and Machine Intelligence, 
Vol. 22, No. 10, October 2000, pp. 1090-1104 

11. Independent JPEG Group's JPEG software packet, Available: ftp://ftp.uu.net/graphics/ 
jpeg/jpegsrc.v6b.tar.gz 

12. Kakadu JPEG2000 software, Available:http://www.kakadusoftware.com/win32_ 
executables.zip 

Appendix 

Hypothesis testing using McNemar's test on results of comparisons in Tables 1 - 4. 
Here we report p-values for performance of a given algorithm on original images and 
the best case for compressed images (p-1) and between performance on original 
images and the worst case for compressed images (p-2). Table 5 gives results for 
JPEG compression and Table 6 for JPEG2000. When p-value is higher than 0.05 
(standard cut-off) the difference in performance is statistically insignificant. 

Table 5. p-values obtained by McNemar's test for results with JPEG compression 

fb probe set fc probe set dup1 probe set dup2 probe set 
Algorithm 

p-1 p-2 p-1 p-2 p-1 p-2 p-1 p-2 

PCA+L1 0.50 10-12 0.50 10-10 0.50 10-4 1.00 0.03 

PCA+L2 0.50 10-5 0.75 0.15 0.50 0.13 1.00 0.50 

PCA+cos 0.25 10-7 0.50 0.02 0.50 10-3 0.50 0.31 

ICA1+L1 0.25 10-7 0.50 0.01 0.50 0.19 0.25 0.50 

ICA1+L2 0.31 10-5 0.50 0.13 1.00 0.03 1.00 0.36 

ICA1+cos 0.12 10-10 0.25 0.01 0.50 10-4 1.00 0.03 

ICA2+L1 0.37 10-39 1.00 0.02 0.68 10-17 0.50 10-3 

ICA2+L2 0.50 10-44 1.00 10-11 0.50 10-18 1.00 10-4 

ICA2+cos 0.08 10-15 1.00 10-12 0.36 10-12 0.50 10-3 

LDA+L1 0.50 10-5 0.75 0.03 0.50 0.02 0.12 0.36 

LDA+L2 0.12 10-5 0.50 0.03 1.00 0.50 0.50 0.34 

LDA+cos 0.50 10-10 1.00 10-3 1.00 10-3 0.50 0.34 
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Table 6. p-values obtained by McNemar's test for results with JPEG2000 compression 

fb probe set fc probe set dup1 probe set dup2 probe set 
Algorithm 

p-1 p-2 p-1 p-2 p-1 p-2 p-1 p-2 

PCA+L1 0.50 0.21 0.50 1.00 0.36 0.31 0.50 0.31 
PCA+L2 0.62 0.25 1.00 1.00 0.50 0.19 1.00 0.06 
PCA+cos 0.12 0.50 1.00 1.00 0.06 0.62 1.00 0.50 
ICA1+L1 0.68 0.38 1.00 0.50 0.50 0.50 1.00 0.50 
ICA1+L2 0.25 0.40 0.50 1.00 0.60 0.50 1.00 0.25 
ICA1+cos 0.12 0.26 0.50 1.00 0.31 0.50 1.00 0.25 
ICA2+L1 0.65 0.02 0.75 0.22 0.40 0.02 0.03 0.65 
ICA2+L2 0.22 10-3 1.00 0.06 0.50 10-3 0.50 0.18 
ICA2+cos 0.11 0.44 0.20 0.22 0.31 10-3 0.50 0.01 
LDA+L1 0.31 0.50 1.00 0.03 0.25 0.07 0.18 1.00 
LDA+L2 1.00 0.50 0.50 0.25 0.19 0.19 0.25 0.50 
LDA+cos 0.06 0.61 1.00 0.25 0.50 0.50 0.50 1.00 
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Abstract. In this paper we present a technique for predicting the 2D
human body joints and limbs position in monocular image sequences, and
reconstructing its corresponding 3D postures using information provided
by a 3D action model. This method is used in a framework based on
particle filtering, for the automatic tracking and reconstruction of the
3D human body postures. A set of the reconstructed postures up to
time t are projected on the action space defined in this work, which is
learnt from Motion Capture data, and provides us a principled way to
establish similarity between body postures, natural occlusion handling,
invariance to viewpoint, robustness, and is able to handle different people
and different speeds while performing an action. Results on manually
selected joint positions on real image sequences are shown in order to
prove the correctness of this approach.

1 Introduction

Human motion analysis is a very challenging and active domain. It is a fact that
it has become one of the most interesting and intensive study areas by many
researchers all over the world. The motivations for this increasing interest are,
on one hand, the non-stopping advancements in computing power which has
turned cheap computers into machines able to deal with big amounts of data
in nearly real-time, thus making the analysis of video sequences an achievable
task by desktop computers. On the other hand, visual human analysis brings a
wide range of promising applications which are especially in touch with today’s
needs, i.e. automatic video surveillance, advanced interfaces, augmented reality
applications, sports performance analysis and motion synthesis among others.

These applications strongly demand the reconstruction and analysis of un-
derlying 3D information of the human body from 2D images [10, 2, 5]. Towards
this end, there have been many approaches for reconstructing the 3D full-body
motion from 2D image sequences. For example, Wachter and Nagel [9] use an
iterated extended Kalman filter (IEKF) to propagate a 3D model of the body
joints over time. They assume a constant velocity dynamic model and use region
and edge information in order to match the model to the data, thus recovering
the 3D body configuration from monocular image sequences. Bregler and Malik
[1] aim to track 3D motion at the level of joints by integrating twists and products
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of exponential maps into region based motion estimation, thus obtaining both
image motion and kinematic chain parameters at the same time. Alternatively,
other approaches make use of particle filtering techniques [4] to incorporate a
priori knowledge about the non-linear human dynamics [8] into the tracking.

Likewise our strategy relies on successfully tracking the 2D body joints posi-
tions on monocular video sequences by means of a 3D model of human dynamics
embedded into a particle filtering framework, thus reconstructing the 3D body
positions using the information provided by our action model.

In this paper, we first present a procedure derived from [6] to recover the 3D
model configuration of the human body from monocular video sequences. The
method is based on assuming an orthographic projection camera model, and
known topological restrictions of the human body. Afterwards, we present the 3D
action model, which is built using prerecorded 3D motion patterns acquired with
a commercial Motion Capture System. Such a model provides us a framework
for comparing 3D human body postures and developing a dynamic model for
predicting postures over time. We use a Bayesian filtering technique implemented
as a particle filter derived from [4] which will track the model parameters over
time within such space. The use of a particle filter provides us a principled way
to incorporate a priori knowledge about human motion dynamics by means of
our 3D action model.

In order to evaluate our method, we manually introduce the 2D body joints
positions of a video sequence, reconstruct its 3D structure, and define a fitness
function of the estimated 3D body position to the 2D image. This likelihood or
prediction evaluation function is defined as a Mahalanobis distance between the
manually reconstructed sequence and the estimated one from the particle filter.

The reminder of this paper is organized as follows: section 2 explains the
3D recovering algorithm used in this work. Section 3 describes the basis of the
3D action model, and states some properties of the action space developed to
represent the human postures. Section 4 focuses on the probabilistic framework
used to face the tracking problem, and the probabilistic match between actions.
Section 5 shows experimental results on real image data, and section 6 concludes
this paper.

2 The 3D Reconstruction Algorithm

We aim to recover the 3D positions of the human body from monocular im-
age sequence data. However, algorithms for the accurate 3D reconstruction of
any object in a scene rely on the collinearity equations, which demand having
two images from different viewpoints of the object to be reconstructed. Thus,
a point in the object space must have at least one corresponding point on each
image which must be estimated accurately for the algorithm to work properly.
Unfortunately, this is a too-strong requirement for many applications of visual
human analysis, where recovering a very accurate 3D model might not be as
important as recovering qualitative 3D information which permits us to make
complex reasoning about the scene.
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Our reconstruction algorithm is based on the method presented by
Remondino in [6], and performs a reliable and accurate enough reconstruction
of the 3D human postures from monocular image sequences. By simplifying the
collinearity equations, we obtain the perspective projection equations:

x = −c · X

Z
,

y = −c · Y

Z
, (1)

which relate the (x, y) image coordinates of each point to its corresponding
(X, Y, Z) scene coordinates only by the camera constant c. By making some
more assumptions on the scene and the involved points, Eq.(1) can be further
simplified, thus deriving the orthographic projection equations scaled by a factor
s = −c/Z:

x = s · X,
y = s · Y.

(2)

The use of an orthographic projection model implies a planar approximation
to the 3D scene. Therefore, this assumption holds when the relative depths
between the implied points, i.e. the object points to be reconstructed, are much
smaller than their distance to the camera. Hence, the scale factor s will remain
almost constant in Eq. (2) for all the involved points.

However, this scale factor cannot be determined only by Eq. (2), since this is
an under-determined system, so more constraints need to be introduced. Fortu-
nately, our aim is to reconstruct human body postures rather than any generic
object. Thus, we can introduce more constraints to the system by means of topo-
logical restrictions of the bodies to be recovered. Hence, our algorithm needs to
be initialized by a calibration process that extracts the relative proportions of
the limbs for each subject to be reconstructed.

Given that the already-known limb length between joint i and joint j is the
relative length between 2 adjacent points in the space, we can compute such a
length as L2

ij = (Xi − Xj)2 + (Yi − Yj)2 + (Zi − Zj)2 . By combining it with Eq.
(2), the relative depth between two adjacent joints can be expressed as:

(Zi − Zj)2 	 L2
ij − [(xi − xj)2 + (yi − yj)2]/s2. (3)

Notice that in order to compute the relative depth from Eq. (3) we need
to find a suitable scale factor s for a particular configuration of 2D image
points. In order to have a real solution, we must find an s that satisfies s ≥
[
√

(xi − xj)2 + (yi − yj)2]/Lij for each limb of the human model.
Once an appropriate s is estimated, we must set an arbitrary depth for the

first joint, and use Eq. (3) to calculate the relative depth of the rest of the joints.
We might use the 3D human model and the history of reconstructed postures in
order to decide which of the two possible solutions of Eq. (3) is the appropriate
one for each point, depending on which joint is closer to the camera.

Finally, in order to deal with 2D joint position estimation errors, the results
are improved by some additional constraints, such as imposing the parallelism
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conditions for two limbs in some known cases, or forcing that a predefined set of
joints must lie in the same plane.

Summarizing, this procedure allows us to recover the 3D configuration of
the human body from monocular video sequences. Within this work, such a
reconstruction will be used for the initialization step of the tracking process,
and for defining a fitness function of predicted postures within a particle filtering
framework. The particle filter will propagate the parameters of a human body
model within an action eigenspace, as described next.

3 The 3D Action Model

We acquired by means of a commercial Motion Capture system, several sequences
of 3D postures performed by several actors for several actions in order to compile
a database of human motion. In this work we use the human action model and
the human action space defined in [3], called p-action and aSpace respectively.
We use this action model to develop a dynamic model suitable to be used for
human posture prediction, which focuses and restricts the search space to those
postures that will have higher likelihoods in factored sampling techniques.

An action Ai is represented as a sequence of fi postures, each posture ψj

defined by means of a 37 dimensional body model. The body model employed is
composed of twelve rigid body parts (hip, torso, shoulder, neck, two thighs, two
legs, two arms and two forearms) and fifteen joints. These joints are structured
in a hierarchical manner, where the root is located at the hip. Subsequently, we
represent the human postures by describing the relative elevation and orientation
of each limb using three different angles which are natural to be used for limb
movement description. As a result, each human body posture ψj is defined by
thirty-six relative joint angles, and the height of the hip at each posture. See [3]
for further details.

As a result, we define the complete set of human postures for an action Ai as
Ai = {ψ1, ψ2, ..., ψfi}. Then, we perform a Principal Component Analysis (PCA)
on the training set Ai to build the lower dimensional space called aSpace. The use
of the aSpace provides us a natural approach for identifying the main modes of
variation of human gait, as well as a principled way to define distances between
human postures: close points within the aSpace correspond to similar human
postures. We project the set Ai of 3D postures in this space, thus obtaining
a lower dimensional representation of the postures, i.e. Âi = {ψ̂1, ψ̂2, ..., ψ̂fi}.
Thus, the Mahalanobis distance between two points ψ̂k, ψ̂l in the aSpace can be
considered as a measure of similarity between postures.

4 Probabilistic Tracking Framework

The objective of visual tracking is to estimate the parameters of a model over
time. In this paper, we estimate φt at time t given the sequence of images It up
to that moment. In other words, we need to compute the posterior probability
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density function (pdf) p(φt|It) over the parameters φt of the model to be tracked
at time t. Thus, using the Bayes’ rule, we formulate the computation of our model
parameters over time as:

p(φt|It) = k p(It|φt)
∫

p(φt|φt−1) p(φt−1|It−1) dt, (4)

where φt represents the estimated 3D pose of the human body at time t, It is the
image sequence up to time t, k is a normalizing factor, p(It|φt) is the likelihood
of observing the image It given the parametrization φt of our body model at
time t, and finally p(φt|φt−1) is the transition model, or dynamic model in this
paper.

The recursive Bayesian filter provides the theoretical optimal solution. Un-
fortunately, Eq.(4) relies on an integral which cannot be analytically calculated
unless strong assumptions about Gaussianity and linearity on the involved dis-
tributions are made. Instead, we can approximate the true posterior distribution
p(φt|It) by means of a particle filter [4].

Each particle φs
t represents a particular body posture, and has its own proba-

bility of being propagated over time, depending on how likely is the body posture
that it represents to be found on the image It. The method works as follows:
the posterior pdf at time t − 1 is represented by a weighted set of samples,{
φs

t−1, π
s
t−1; s = 1 : N

}
. The temporal prior {φs

t} is obtained by applying the
dynamic model p(φt|φt−1) to each sample. The likelihood p(It|φt) is represented
by weights πs

t . The set is re-sampled using normalized weights πs
t as probabil-

ities. This sample set represents the posterior pdf at time t, i.e. p(φt|It). The
final estimated body posture at time t is calculated as follows:

φt =
N∑

s=1

πs
tφ

s
t (5)

This Bayesian model-based tracking approach brings us a principled way
for considering multiple hypotheses about the human body posture, and allows
us to integrate prior knowledge about the non-linear human dynamics into the
tracking, thereby making it more robust and efficient.

On the other hand, a proper dynamic model should capture the behaviour
of human motion accurate enough to predict only new feasible postures, but
generic enough to be able to track different actors and human motions. Actu-
ally, the aSpace learns the implicit probabilistic model of 3D human motion by
using an example-based approach. Consequently, the dynamic model will use
the database of learnt performances of an action Âi in order to predict the
most suitable future body poses. Subsequently, we will perform a probabilistic
search within the aSpace between the last estimated subsequence of d postures
Φt = [φT

t , ..., φT
t−d]

T and all the subsequences of d postures from the aSpace, i.e.
Ψ̂i = [ψ̂T

i , ..., ψ̂T
i−d]T . Following the approach described by Sidenbladh in [8], our

dynamic model can be defined as :

p(φt|φt−1) = p(φt|Ψ̂i−1)p(Ψ̂i−1|Φt−1), (6)
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where p(φt|Ψ̂i−1) is defined as 1 if φt = ψ̂i, or 0 otherwise. Assuming that
subsequences Φt of estimated postures follow a Gaussian distribution around
matching subsequences Ψ̂i on the aSpace , p(Ψ̂i|Φt) is defined as :

p(Ψ̂i|Φt) = k e−
1
2 (Ψ̂i−Φt)T Δ−1

d (Ψ̂i−Φt), (7)

where k is a normalizing factor, Δd is a covariance matrix defined by calculating
the covariance Δ of the aSpace, and storing d copies of Δ along the diagonal
of the covariance matrix Δd. By doing this, we give the same importance to
each posture when matching the sequences. Thus, new predicted postures φt

will be the immediately following postures of the recognized subsequence Ψ̂t−1
from the database plus some Gaussian noise empirically determined. Details on
the probabilistic matching process and posture sampling technique can be found
in [7].

5 Experimental Results

In order to evaluate the correctness of this approach, we have tested this frame-
work with a real image sequence of an actor performing a bending action. The
motion presented in the image sequence has been reconstructed from 2D se-
quences by hand. Fig. 1 shows the manually introduced 2D stick figure, and
the resulting 3D reconstructed posture using the technique described in sec-
tion 2. On the other hand, the dynamic model has been trained with a set
A1 = {ψ1, ψ2, ..., ψf1} of 49 different performances of a bending action executed
by 8 different actors, resulting in a total of f1 = 3258 3D body postures for this
action. Subsequently, we have calculated its corresponding aSpace as defined in
Section 3.

The first 10 reconstructed postures are used to initialize the particle filter as
the first 10 estimated postures, i.e. Φ1 = [φT

1 , ..., φT
10]

T . Hereafter, the last d = 10

(a) (b)

Fig. 1. (a) 2D stick figure of the manually entered joints on a frame of the sequence.
(b) Recovered 3D posture from it.
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(a) (b)

Fig. 2. (a) Manually recovered 3D postures (big dots) projected in the action space
with 9 different types of actions. (b) Estimated postures from the dynamic model at
each time step (big dots).

(a) (b)

Fig. 3. (a) Randomly selected set of predicted postures {φs
t} projected in the image

2D space. (b) 2D projection of the final estimated posture φt for a particular frame.

estimated postures at time t, are projected in the aSpace in order to perform
the probabilistic match described in section 4.

In Fig. 2.(a) it is shown the projection in the aSpace of the manually recon-
structed 3D performance (big dots) which lies in the same portion of the space
than the mean bending performance of the dynamic model’s training set (solid
line). This action space has been built in the same fashion than the aSpace for
the single bending action, but including 9 different types of actions. Dashed lines
correspond to the projections Ψ̂j of the mean performances for each action.

Subsequently, we sample new N = 500 predicted postures at time t + 1,
i.e.

{
φs

t+1
}
. In order to assign weights to each sample, we use the manually

recovered 3D performance to determine how well each predicted sample φs
t+1

fits to real data. The Mahalanobis distance in the aSpace is used as the measure
of similarity between human postures: Consequently, we use this distance as a
fitness function of the predictions φs

t+1. According to the weights assigned to
each particle, a mean weighted posture φt+1 is finally calculated.
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Fig. 2.(b) shows a run of the particle filter, where big dots correspond to
the estimated postures at each time step, i.e. [φ1, φ2, ..., φt]. The manually re-
constructed 3D performance is represented by the dashed line, although, for
visualization purposes, we have only processed half of the performance (thick
solid line).

Fig. 3.(a) shows a frame of the sequence with a randomly selected set of
predicted postures {φs

t} projected over it. In Fig. 3.(b) we can observe the same
frame with the projection of the final estimated posture φt.

6 Conclusions and Future Work

This paper introduces a framework for human action tracking and reconstruction
from monocular 2D video sequences based on a particle filtering technique and a
3D action model. The particle filter provides us a principled way for introducing
a priori knowledge about human motion when performing the tracking task, by
means of a dynamical model derived from a database of 3D actions acquired with
a commercial Motion Capture System. The use of a 3D human body model allows
the handling of self-occlusions and view-point independence of the approach.
Moreover, a technique for reconstructing the 3D human postures from 2D joints
position is presented, which is used to reconstruct the 3D human postures of a
real image sequence.

Subsequently, we built an action model called aSpace and trained with 3D
data from several performances of an action, and a dynamic model for the par-
ticle filter which predicts the most feasible postures given a reduced set of the
previous estimated postures. Besides, the action space brings us a natural simi-
larity measure between human postures by means of Mahalanobis distance, since
each dimension of the aSpace represents a particular mode of variation of human
motion. Such a similarity is used as the likelihood function in the particle filter.

In order to result in a complete automatic tracking algorithm, future work
relies on developing appropriate likelihood functions which make use of the in-
formation obtained automatically from 2D image sequences in order to evaluate
the predictions of the dynamic model. In this work we used an ideally perfect
likelihood in order to prove the correctness of the prediction process. Regardless,
the 3D reconstruction technique presented here can be used for the initialization
of the algorithm and for failure recovery.

Further work needs to be done to improve the probabilistic matching tech-
nique between human postures, which will lead to a more refined action model.
Furthermore, the action model should be extended in order to represent more
human actions: this approach is naturally extensible to a bigger set of actions by
only considering more training actions for the aSpace. Another open issue is the
high computational cost of the probabilistic search, which could be addressed
by efficient indexing the motion database.
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At the time of submission we were not aware that this concept has been previously
presented in a more general form in [1, 2]. However, the work we present here was
arrived at independently and does contain subtle differences. Nonetheless, we hope
the reader finds the examples in this paper illustrative of the basic concept described
in [1] and [2].

In a typical pattern recognition problem, we are usually faced with large sets
of features which may have utility in providing reliable classification. In practice
however many of these features may be strongly correlated with one another, or
may not contribute to classification in any way. Accordingly, we may wish to per-
form dimensionality reduction on our data for various reasons: the dimension of
the data is too large to handle from a memory or computational point of view, or
the in the case of classification, the removal of features containing no information
can improve classification results. Projection Pursuit is a popular technique for re-
ducing the dimension of large data set in which we seek a projection of the higher
dimensional data onto lower dimensions. However many projection pursuit tech-
niques attempt to maximise, or minimise, some objective function which inherently
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Abstract. We present a technique for dimension reduction. The technique uses a
gradient descent approach to attempt to sequentially find orthogonal vectors such
that when the data is projected onto each vector the classification error is min-
imised. We make no assumptions about the structure of the data and the technique
is independent of the classifier model used. Our approach has advantages over
other dimensionality reduction techniques, such as Linear Discriminant Analysis
(LDA), which assumes unimodal gaussian distributions, and Principal Compo-
nent Analysis (PCA) which is ignorant of class labels. In this paper we present
the results of a comparison of our technique with PCA and LDA when applied to
various 2-dimensional distributions and the two class cancer diagnosis task from
theWisconsin Diagnostic Breast Cancer Database, which contains 30 features.

1 Originality and Contribution

makes assumptions about the structure of the data. For Linear Discriminant Analy-
sis (LDA) the assumption is that each class distribution is unimodal gaussian, and
that the class separation information is contained in the difference of the means of
each class distribution as much as it is contained in the variance. Principal Compo-
nent Analysis (PCA) assumes that the class separation information is contained in
the direction of maximum variance of the data. We shall present a technique which
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attempts to converge on a projection which will minimise the classification error of
the chosen classifier instead of imposing a structure on the data by maximising an
objective function.

Dimensionality reduction can also be thought of as a feature selection process. In
feature selection, we generally retain the minimum (and best set) of features for a
classification. Feature selection is therefore a special case of dimensionality reduc-
tion, but where the basis is an exact subset of the feature basis. A feature selection
algorithm is a vital building block of any pattern recognition system. Feature se-
lection, the rejection of null features, those that contain no information, can greatly
improve recognition results. In theory when using features that contain little or no
relevant information in the classification process the performance of the ideal clas-
sifier will not degrade. One could simply include all features in the classification
process and features containing no information will be ignored by the classifier. In
practice this is rarely true - null features add noise to the system, and the removal of
these redundant features can greatly improve results. For example Witten [3] notes
experiments with a decision tree classifier which show that adding a binary random
variable to the feature set can deteriorate performance by 5-10%.

Here we will present a dimensionality reduction technique which sequentially
chooses the vectors of an orthogonal basis with a lower dimension than the data so
that when the data is projected onto this basis, the classifier error will be minimised.

In Section 3 we will give a brief overview of some existing techniques used for
dimensionality reduction, and their shortcomings to motivate our new technique. In
Section 4 we will give a detailed description of our technique. Section 5 outlines the
data sets, the classifier model, and the experimental procedure used in comparing
our method with LDA and PCA as a dimensionality reduction technique. Finally, in
Sections 6 and 7 we summarise the comparative results and draw our conclusions.

Firstly, we will review some methods of dimensionality reduction. In general, these
techniques try to choose a projection which preserves the class separation informa-
tion of the data but suppresses some of the noisy or null features. An intuitive
example of dimensionality reduction would be projecting 3-dimensional data onto
a 2-dimensional plane. Some techniques for doing this are Principal Component

2 Introduction

3 Review of Existing Techniques

Analysis (PCA) [4], Linear Discriminant Analysis (LDA) [5], and Orthogonal LDA
(OLDA) [6]. We will now briefly describe these algorithms in more detail.

PCA finds the directions of maximum variance of all the data by finding the
eigenvectors of the covariance matrix of all data, irrespective of class. A lower
dimension representation of the data may then be found by projecting onto the
first m eigenvectors corresponding to largest m eigenvalues. However, PCA is
ignorant of the class labels attached to the data so a good class separation in the
lower dimension data is not guaranteed.
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LDA attempts to find projections which maximise the separation between the
means of the classes while simultaneously trying to minimise the variance of each
class about its mean. LDA implicitly assumes each class belongs to a single gaussian
distribution. We will not present the mathematics of the LDA technique here, how-
ever for a C class problem LDA will return C − 1 eigenvectors corresponding to
the C − 1 non-zero eigenvalues. The magnitude of the eigenvectors correspond to
how well the objective function was maximised. A shortcoming of LDA is that the
objective function accounts for Euclidean distance or Mahalonobis distance, but
not classification error.

OLDA simply expands the concept of LDA to choose various orthogonal pro-
jections. For example if we use LDA and choose the eigenvector, corresponding
to the maximum eigenvalue, to project onto in 3-dimensional space and we then
create a 2-d basis (plane) orthogonal to that vector and project the data onto the
2-d basis, we then perform the LDA analysis on the 2-d data to obtain the second
projection vector, orthogonal to the first. Again, in general this technique does not
directly optimise with respect to classification accuracy.

As mentioned in Section 2, a more general version of this work has been ex-
plored independently in [1, 2]. We point the interested reader here.

Let X be an n x d matrix of features, where n represents the number of instances,
and d denotes the number of dimensions the features space spans. In general X is
drawn from 2 or more classes which we wish to distinguish. We wish to choose a
projection of the d dimensional data, X, onto m orthogonal vectors (m ≤ d) such
that the classification error is a minimum for whatever classifier is chosen. The
projection should also be robust when we move to independent test data.

We use a gradient descent method. We choose an initial d x 1 vector at random,
w, and project the data, X onto it:

p = Xw (1)

We pass the vector p to the classifier as both the training and test data. Hence, here
we are training and testing using the same data. In practice, of course, this would
not be the case. But, we do it here to illustrate the mechanisms of the algorithm
rather than worrying about training bias. In practice a transformation matrix is
found using the training data. Once the dimensionality reduction transformation
matrix is found it can be applied to any new data.

4 Proposed Method

For the data vector p, we identify which instances have been erroneously clas-
sified in p, using our classifier of choice. For example, Figure 1 (a)(i) shows two
gaussian distributions in a 2-dimensional feature space. Instances from class 1 are
marked with an ’x’ and those from class 2 with a ’+’. The initial vector w is shown
starting at the origin and pointing southeast. Figure 1 (a)(ii) shows a histogram of
p separated by class. The dashed vertical line shows were the classifier placed the
decision boundary of the classifier which minimises misclassification. The solid
histogram values to the left of the decision boundary and the dashed histogram
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instances. To improve our classification, we wish to adjust w so that the errors on
the right of the decision boundary move toward the left and those on the left move
toward the right. In Figure 1 (a)(i) we have marked the misclassified instances we
wish to move to the right with a ’�’ and those we wish to move to the left with an
’o’. We now compute the mean of the instances marked ’�’ and denote that vector
a, and we also compute the mean of the instances marked ’o’ and denote that vector
b. The direction we wish w to move is hence v = b − a. The vector v is shown
in Figure 1 (a)(i). We only want to move w a small increment in that direction, so
our update equation for w is:

wnew = wold + ε.v (2)
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(a) (i) 2 Gaussian distributions in a 2-
dimensional feature space, (ii) a histogram
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−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
−3

−2

−1

0

1

2

Feature 1

F
ea

tu
re

 2

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

10

20

30

40

50

Projection p=Xw

H
is

to
gr

am
 o

f d
at

a 
X

(b) The 3 class case in a 2-dimensional fea-
ture space (i) scatter plots, (ii) histogram of
projection onto w

Here ε is some small step size. We then compute the new value of p with wnew,
classify again and re-adjust w until convergence is reached. This idea generalises
easily to multiple classes. In the multi-class case, the direction in which we choose
to move the misclassified instances (left or right along w) is determined by the di-
rection along w in which the nearest correct classification of that class is located.
What we are trying to do is choose the next projection pnew = Xwnew so that on
average the misclassifications of pnew are moved closer to the correct classifica-
tions of the same class and hence encourage those misclassifications to be turned
into correct classifications. An example of a 3 class problem is shown in Figure 1

Fig. 1. Plots of 2 different distributions

values to the right of the boundary represent histograms of the wrongly classified

(b), in which the class instances are marked with ’+’, ’x’, and ’�’. Again, right
moving instances are marked ’�’ and left moving ’o’. w is shown starting at the
origin and pointing northwest.

Since we are using a gradient descent method it is possible to converge upon a
locally minimal solution, which is not necessarily globally optimal. To help over-
come this and find a global minimum we search for w from various different initial
vectors. These could be chosen using LDA or PCA, but in our case we chose them
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Once w has been found we can then create an orthonormal basis, which is
orthogonal to w but which will be of dimension d−1, and we then project data onto
this basis to create a new data set, with the information contained in the direction
of w removed. This orthonormal basis is easily created using a QR decomposition
of a d x d matrix which has w as its first column and d− 1 other random columns,
the basis is formed using the last d − 1 columns of the Q matrix. Once we have
transformed the data, X, to a new (d−1)-dimensional dataset we start the procedure
of finding a w for this reduced dimension data set. The sequence of finding w and
reducing the dimension of the data set can continue until we have foundm different
w vectors.

As we have already stated, we are passing both the training and test data to the
classifier so as to keep the concept simple and illustrate the algorithm. In practice
we may not have much training data and hence cross-fold validation will be used
to obtain a reliable estimate of classification error. This algorithm may be applied
in this case to minimise misclassification rate. If we were using 5-fold cross vali-
dation, for example, we would have 5 test-training data pairs. For one test-training
data pair we train the classifier (given a projection, ptrain, of the training data
onto w) and test with a projection, ptest,of the test data, onto w. We then decide
whether the points in the test data are left moving or right moving (as above). This
is done for all 5 sets of test data, using there corresponding training sets to train.
Then the vectors a, b, v are calculated and w is updated.

To illustrate the utility of our technique, we provide examples of the simplest pos-
sible dimensionality reduction task, from two dimensions to one. We constructed
6 different data sets all 2-dimensional which we considered interesting, i.e. LDA
and PCA may find it difficult to choose a single projection to discriminate the class
information. Plots of the data sets are shown in Figure 2. We will briefly describe
each different data set.

Data set (a) consists of 2 classes. Instances of class 1 are marked with ’+’
and class 2 with ’x’. Class 1 comprises of 3 gaussian distributions centred at
(0, 1), (1.5, 0) and (0, -1). Class 2 comprises 3 gaussian distributions centred

5 Data and Experimental Design

5.1 Data Sets

to be a set of random but orthogonal vectors. We then choose the w which has
converged upon the best projection (the lowest classification error).

at (0, 0), (0, 2) and (-1.5, 1). All gaussian distributions had covariance matrices

Σn =
[

0.05 0
0 0.05

]
. Data set (b) consists of 6 classes. Each class distribution

is gaussian, with covariance, Σn. Data set (c) consists of 2 classes. Each class
distribution is a mixture of two gaussian distributions with different means. Class 1
is marked with a ’+’ and the gaussian means are (0, 2) and (2, 0). Class 2 is marked
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Fig. 2. Data sets

with an ’x’ and the gaussian means are (0, 0) and (2, 2). All gaussians has covari-
ance, Σn. Data set (d) comprises 2 classes. Class 1, marked ’x’, is constructed of
500 instances drawn from a gaussian distribution centred at (0 ,0) with covariance,
Σn, and 1 instance at (20, 0). Class 2, marked ’+’, is constructed of 500 instances
drawn from a gaussian distribution with covariance, Σn, centred at (1 ,0) and 1
instance at (-19, 0). Data set (e) contains 2 classes. Class 1 marked ’+’ is drawn

from a gaussian distribution with mean (0, 0) and covariance Σ =
[

0.45 0
0 0.05

]
,
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and so is scaled along the x-ordinate. Class 2 marked ’x’ is drawn from a gaussian

distribution which also mean (0, 0) but has covariance Σ =
[

0.05 0
0 0.45

]
, and

thus is scaled along the y-ordinate. Finally, data set (f) contains 2 classes. Class 1
marked ’+’ is drawn from a gaussian distribution with mean (0, 0) and covariance

Σ =
[

0.45 0
0 0.05

]
, and hence scaled along the x-ordinate. Class 2 marked ’x’

is drawn from a gaussian distribution of mean (0, 0.1) which was not scaled in any
direction and has covariance matrix Σn.

The Wisconsin Diagnostic Breast Cancer Database is a database of 30 features
from 569 patients tested for breast cancer. There are two classes, Benign and Ma-
lignant. The features are computed from a digitized image of a fine needle aspirate
(FNA) of a breast mass. They describe characteristics of the cell nuclei present in
the image. The database is available from the UCI Machine Learning Repository:
http://www.ics.uci.edu/~mlearn/MLRepository.html.

The tool that we will use for classification is a quadratic discriminant classifier
(QDC), based on Bayes rule. A quadratic discriminant classifier is derived as fol-
lows. Let ωi signify the ith class. Let x denote the feature vector corresponding to
a certain instance of the data, X, i.e. x is a row of X. Using Bayes rule we wish to
find the class i which will maximise the posterior probability:

p(ωi|x) = p(x|ωi)P (ωi)
p(x) .

Maximising the p(ωi|x) is equivalent to maximising its logarithm. Therefore,
assuming a normal distribution for the feature vector, p(x|ωi) becomes:

5.2 Classifier Design

p(x|ωi) =
{

(2π)−
d
2 |Σi|−

1
2

}
exp

[−1
2(x − μi)T Σ−1

i (x − μi)
]
,

where Σi is the covariance matrix of the ith class, and μi is the mean vector
of the ith class. Substituting p(x|ωi) into the natural logarithm of p(ωi|x), our
problem is transformed into finding the class i which maximises the discriminant
value gi(x) for a given test feature vector x:

gi(x) = xT Hix + hix+ ki,

where Hi = −1
2Σ

−1
i , hi = Σ−1

i μi, and ki = − 1
2μ

T
i Σ−1

i μi − 1
2 ln| Σi| +

ln(P (ωi)). The class with the highest discriminant value is chosen as the assigned
class for that feature vector. To construct the quadratic discriminant classifier, there-
fore, we must estimate the covariance matrix and mean for the features correspond-
ing to each class, and also the prior probability of the class occurring.
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We present each of our 6 synthetic data sets and the Breast Cancer data to the three
techniques under comparison; (1) Our Gradient Descent method, (2) PCA, and (3)
LDA. The PCA projection is chosen as the eigenvector corresponding to the max-
imum eigenvalue after performing an eigenvalue decomposition on the covariance
matrix of X . The LDA projection we choose corresponds to the maximum eigen-
vector returned when maximising the objective function:

J(w) =
∣∣wT SBw

∣∣ / ∣∣wT SW w
∣∣,

where SB is matrix representing the scatter of the class means about the over-
all mean, and SW is a matrix describing the scatter of instances about each class
mean (see [6] for a detailed description of the scatter matrices), where | | denotes
the determinant. The eigenvectors are those of the matrix S−1

W SB . Each method
will return a 1-dimensional projection of the initial multi-dimensional data. This
projection will be used to train and test the QDC described in Section 5.2. We will
use classification error as a measure of performance.

We see that the gradient descent technique outperforms or equals performance of
PCA and LDA on all 6 datasets. The data sets where PCA performed worse were
simply those where the class information was not in the direction of maximum
variance. We will briefly interpret the results for each data set and explain why
LDA failed to perform as well. The multi-modal gaussian structure of the class
distribution violated the assumptions LDA is based on. In data set (b) when LDA
attempted to maximise the variance of the class means about the overall mean it
chose a projection which maximised the LDA objective function but obscured the

5.3 Experimental Design

6 Results

Gradient

Descent

Classification

Error

Projection

Chosen

PCA

Classification

Error

Projection

Chosen

LDA Classifica-

tion

Error

Projection

Chosen

Data set (a) 26% (-0.91, 0.42) 33% (-0.1, 0.98) 62%
(-0.82,

-0.58)

Data set (b) 3% (-0.44, 0.9) 17% (0.01, 0.99) 23% (-0.6, -0.8)

Data set (c) 8% (0.7, -0.72) 10% (0.72, 0.68) 49% (0, -1)

Data set (d) 1.6% (-1, 0) 1.6% (1, 0) 48% (0, -1)

Data set (e) 24% (0, 1) 39% (0.89, 0.45) 39% (0.5, 0.87)

Data set (f) 19% (1, 0) 19% (1, 0) 45% (0, -1)

Table 1. Results: synthetic data
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outlying class at (2.7, 0). In data set (c) the assumptions of LDA are again violated
with two bimodal class distributions. Also, since the class means are approximately
equal, no separating information is contained in the means, which is what LDA
depends upon. In data set (d) the two outlying points at (-19, 0) and (20 , 0) cause
the distributions to appear to be skewed along the x-axis hence the LDA technique
attempts to minimise the variance about the class means and chooses to project
onto the y-axis, which is a projection containing no class separability information.
In data set (e) both classes have the same mean and hence the projection LDA
chooses is essentially random; dependent on the variances of the distributions. In
data set (f) the means of the class distributions are offset along the y-axis, but the
information is contained along the x-axis. LDA ignores the variance and maximises
the distance between the means.

Gradient Descent Classification Error PCA Classification Error LDA classification error

Breast cancer data 1.4% 9.1% 37.6%

We see that LDA performs the worst on this dataset. This most likely due to the
data being skewed and non-gaussian. PCA performs reasonably well because it is
only two class problem and the direction of maximum variance is very likely to be
along the vector between the means of each class. In fact the data set is linearly
separable, but our choice of classifier, which assumes that the class distributions
are gaussian when projected onto w, caused some errors because the distributions
are not gaussian. Plots of the histograms of the final projections, p, are shown in
Figure 3.

Table 2. Results: Breast Cancer data
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Fig. 3. Histograms of final projections, p, for Breast Cancer data

We have described a gradient descent method for dimensionality reduction which
makes no assumptions about the structure of the data and can use an arbitrary clas-
sifier. While the system we describe here assumes that the same data is used for

7 Conclusions
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testing and training, this is only for illustration purposes. In reality the gradient
descent process would operate on the classification results from several cross-fold
validation runs. We have compared our systems performance with PCA and LDA,
both standard techniques for dimension reduction, and found it to be superior, or at
least equal, for all data sets.
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Abstract. Retinal vessel extraction has become an important task of
medical image processing applications in order to diagnose ocular dis-
eases. In this paper, a novel methodology is proposed to extract vessels
automatically from retinal angiographies. The proposed methodology has
been implemented by means of Cellular Neural Networks techniques to
take advantage of their capabilities of massively parallel processing re-
ducing computation time required.

1 Introduction

The study of vessel extraction techniques in medical images has become an
important aspect related with a variety of applications in order to diagnose
ocular diseases. Considerable research has been devoted to develop automatic
extraction algorithms [1] specially regarding on the accuracy of the obtained
results. In this sense, strategies based on active contour [2] have been used in
medical images due to their robustness against noise. The main disadvantages
of these techniques are both their high computational cost and the initialisation
which usually requires user interaction. In this sense, some research has focused
on improving computational cost required for active contour techniques [3,4].

The aim of this paper is to propose a novel methodology to extract the edge
vessel contour automatically from retinal angiographies by means of a active con-
tour technique. The proposed methodology has been tackled by means of Cellu-
lar Neural Networks [5] (CNNs) techniques instead of classical image processing
techniques [6], in order to take advantage of their suitability for hardware imple-
mentation on a chip-set architecture based on the CNN Universal Machine (CN-
NUM) paradigm [7]. One advantage of using CNN-based techniques [8] is that
image processing applications with either high computational cost or real-time
requirements could be addressed properly since they allows a massively parallel
processing reducing computational time required [9]. A further argument is that
hardware integration with any kind of input devices, such as cameras or sensors
can be made.

This paper is structured as follows: in Section 2 the proposed methodology is
discussed, in Section 3 the main results are shown and, finally, Section 4 presents
the conclusions.
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2 Automatic Vessel Extraction Methodology

In this section the proposed methodology in order to deal with the vessel extrac-
tion is explained (Fig. 1). The main goal of this methodology is to fit the vessel
edges by means of an active contour technique providing an automatic way of ob-
taining both the initial and the external potential images needed. Several stages
has been defined (Fig. 1): Vessel Segmentation, Initial Contour and External
Potential Estimation and Vessel Extraction. Each stage of the methodology has
been applied to 128x128 windows obtained from angiographies (Fig. 2).

Firstly, vessels are segmented from the background of the image in order
to identify the regions between the vessels. During the second stage, both the
initial contour and the external potential images needed by the active contours
are estimated automatically using the the images previously obtained. During
the last stage, the active contours achieve and fit the vessel edges, extracting
the vessel structure which is the initial point for several applications, like vessel
measurement.

Every stage of the proposed methodology is compounded by different process
or steps (Fig. 1) in order to be implemented by means of CNN-based techniques.
Although these steps can be implemented by means of classical image processing
techniques [10, 11, 12, 13, 14], the use of CNN-based techniques is proposed in

Retinal

Vessel
Extracted

Original
Image

Opening
Histogram

Modification

Adaptive

Segmentation

Inversion

Erosion

Edge 

Detection

+

2nd Stage. Initial Contour
& External Potential Estimation

Pixel−Level

Snakes

Initial

Contours

External

Potential

3rd Stage. Vessel Extraction

1st Stage. Vessel Segmentation

Fig. 1. Automatic Vessel Extraction Methodology: Stages and Steps
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Fig. 2. Left: Angiography image example, right: 128x128 windows obtained from the
image on the left.

order to take advantage of the computation time reduction provided by the
massive parallel processing.

2.1 Vessel Segmentation

The main issue of this stage is to segment vessels from the image background
removing noisy points as much as possible. This stage has been split into several
steps (Fig. 1): Histogram Modification, Adaptive Segmentation and, finally, an
Opening step.

Firstly, an histogram modification algorithm is used to improve image con-
trast in order to enhance vessels in low contrast images. For this step, we have
made use of the CNN-based histogram equalisation algorithm addressed in [15].

Then, during the adaptive segmentation step an optimal and suitable thresh-
old value is needed in order to segment properly the vessels. The approach used
in this paper is based on that addressed in [16], where a local threshold estima-
tion is proposed in order to determine the space-variant threshold level (Test)
computed from local statistics of the image

Test = αEm + βEv + thres, α ∈ [0, 1],β ∈ [−1, 0] (1)

where Em and Ev are the mean and the variance estimations of the considered
image, respectively, whose CNN implementation is explained in [16]; thres is
a constant threshold value which depends on the gray-level of the considered
image and α and β are scale factors, whose values are heuristically estimated.
The motivation behind the above formulation (Eq. 1) is to obtain the optimal
threshold estimation for each pixel in order to describe the object boundaries.
Since the variance in the boundaries is higher than in homogeneous regions, the
combination of both the mean and the variance estimations allows us to obtain a
suitable Test improving the segmentation results. Taking into account the retinal
images used in this paper, we propose to compute the thres value as follows

thres = max
[ ∑N

i=1 Ii1

N
,

∑N
i=1 Ii2

N
, . . . ,

∑N
i=1 IiM

N

]
(2)

where Iij is the gray-level value in the i-row and j-column in the NxM input
image and (

∑N
i=1 Iij)/N is the mean value of the j-column. It has been exper-

imentally checked that the selection of the maximum mean value improves the
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segmentation results in images whose gray-level values have less differences be-
tween them. After this step, noise and vessel discontinuities could appear. Vessel
discontinuities cannot be avoided in some images because of the non unifor-
mity of the gray level values in the vessels. The opening step tries to remove
noise maintaining at the same time the vessels. Noisy isolated points are easily
removed by means of the opening process. However, noisy regions cannot be
removed during this step. Both the noisy regions and the vessel discontinuities
can be solved during the following stages of the methodology.

2.2 Initial Contour and External Potential Estimation

The active contour technique used in this paper need two main input images,
an initial contour image and an external potential image. The external potential
image guides the active contours towards the object boundaries. The main issue
of this stage is to get automatically an initialisation for the active contours and
an estimation of the external potential image.

The initial contour image is obtained after several steps (Fig. 1): inversion,
erosion and edge detection. The aim of these steps is to minimise the discontinu-
ities appeared during the previous stage in order to get a suitable initial contour
image. First, the segmented vessel image, obtained during the first stage, is in-
verted in order to obtain the regions which are between the vessels. These regions
are eroded several times, during the erosion step, in order to avoid the vessel dis-
continuities which have appeared in the previous stage. Finally, an edge detection
is made over these eroded regions in order to obtain the initial contour image.

The external potential image is proposed to be computed as follows

Iext = ρIeq + δIop, ρ, δ ∈ [0, 1] (3)

where both Ieq and Iop images are obtained during the first stage of the method-
ology (Fig. 1), Ieq is the equalised image and Iop is the image with the segmented
vessels; ρ and δ are scale factors, which are empirically estimated. Iop image
contains the segmented vessels, whereas Ieq gives additional vessel continuity
information lost in Iop, which help the active contours to fit properly the vessels.
An appropriate scale factor is needed in order to weight properly the significance
of both images (Ieq and Iop) since Iop can contain noisy regions which have been
segmented during the first stage. The motivation behind this formulation (Eq. 3)
is that Ieq image should have the enough significance in order to allow active con-
tours to remove noisy regions and to maintain vessel continuity at the same time.

2.3 Vessel Extraction

The aim of this stage is to extract the vessel edges using a CNN-based active
contour technique, the so-called pixel-level snakes (PLS) [17]. The main input
images needed by PLS have been estimated during the previous stage. The PLS
technique can handle several snakes or contours at the same time and manage
the required changes in topology in a simple way. This kind of technique is more
dependent on the initialisation, so a suitable initial contour image is needed.
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The better control of the contour deformation makes this parametric model
suitable for tasks with a previous knowledge of the application domain and the
approximate shape of the objects into the scene.

The PLS represent a topographic iterative active contour technique where
the contours, explicitly represented, evolve guided by local information. All of
the contour points influence the contour evolution. Therefore it could be con-
sidered as a continuous treatment of the contour, given that its discretization is
of the same order as the spatial variable in the images to be treated (pixel-level
discretization). The main advantage of using PLS is that high computational
requirement applications can be properly addressed. A further argument is that
PLS can merge and split contours, being suitable to deal with segmentation prob-
lems where object number and location are not known a priori. In this sense,
the noisy regions appeared during the previous stage can be easily removed.
The PLS contour evolution is guided by forces derived from the potential fields
P (x, y) defined in the image space

F = −∇P (x, y) = −∂P

∂x
i − ∂P

∂y
j = Fxi + Fyj (4)

The PLS potential field is defined as follows

P (x, y) = kintPint(x, y) + kextPext(x, y) + kinfPinf (x, y) (5)

where Pint and Pext are the internal and external potential, respectively; Pinf is
the balloon potential and kint, kext and kinf are scale factors, where kint, kext ∈
[−1, 0] and kinf ∈ [0, 1].According to the formulation of Eq. 5 the contour evolu-
tion is controlled by the forces derived by the global potential field. The external
potential guides the PLS towards the boundaries of interest. The internal po-
tential controls the smoothing effect of the snake giving more robustness to the
model against noise. The external potential should have higher influence since
it contains the main information of the image. The balloon forces control the
inflation or deflation tendency respect to the external forces and they are usually
required to guide the contour evolution when the external potential is too weak.
There is not an exact rule to determine the influence of each kind of potential
fields (Pint, Pext, Pinf ) which clearly depends on the definition of the external
potential image and the previous knowledge of the structures to be segmented
(shape, location, ...). The influence of each potential is weighted by the kint,
kext and kinf values, respectively and, like in classical active contour techniques
these scale factors must be determined heuristically. For further details about
the PLS performance see [17].

3 Results

The algorithm has been simulated in MATCNN [18] environment, using 128x128
windows obtained from 1024x1024 retinal angiographies (Fig. 3). A number of
20 angiographies has been selected obtaining 64 windows from each angiogra-
phy. The 128x128 windows size has been selected in order to fit the current
implementations on chip of the CNN machine [17].
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Fig. 3. 128x128 windows obtained from an angiography

Fig. 4. Vessel Segmentation Stage 1st row Original Image, 2nd row Histogram Equal-
isation Step, 3rd row Adaptive Segmentation Step and 4th row Opening Step.

The original images (1st row Fig. 4) are processed following the methodology
steps proposed for the vessel segmentation stage. Firstly, the histogram equal-
isation step has improved particularly low-contrast images (2nd row Fig. 4).
Then, vessels have been segmented during the adaptive segmentation step (3rd
row Fig. 4). It has been experimentally checked that α = 0.1 and β = −0.9 of
Eq. 1 optimise the obtained results. During this step, noisy points appeared and
they were removed by the opening step (4th row Fig. 4). Vessels were properly
segmented during this first stage, see 4th row in Fig. 4. A suitable vessel segmen-
tation is needed in order to improve the image results during the following stages.

In the second stage, both the initial contour and the external potential im-
ages are estimated. The image containing the segmented vessels (4th row Fig. 4)
is inverted to obtain the regions which are between the vessels. Then, these
regions are eroded 5 times in order to avoid vessel discontinuities, it has been
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Fig. 5. Initial Contour and External Potential Estimation Stage: 1st row Inversion,
2nd row Erosion, and,3rd row Edge Detection which gets the Initial Contour Image;
and, finally, 4th row External Potential Image.

Fig. 6. Vessel Extraction Stage: PLS shown in black over the vessels in white

experimentally checked that this is the minimum number of erosion operations
in order to obtain a suitable initial contours avoiding discontinuities. Finally,
the edge contour step has obtained a suitable initial contour image (see 1st, 2nd
and 3rd rows Fig. 5). The estimation of the external potential image is com-
puted by means of equation 3, using ρ = δ = 0.5, which have been empirically
estimated. Note that the equalised image (Ieq) contains additional vessel conti-
nuity information which has been lost in the Iop image, compare 2nd row and
4th row Fig. 4 with the external potential image computed (last row in Fig. 5).
In this sense, vessel continuity information is maintained whereas vessel points
have more significance. Note that noise from the first stage has less influence
than points belonging to vessel regions.

Both images previously obtained, the initial contour and the external po-
tential images, were used by the PLS in the vessel extraction stage. The main
parameters of Eq. 5, kext = −0.4, kint = −0.005 and kinf = 0.2, have been
empirically estimated. PLS are guided by Pext, whereas Pint smooths the snake
surface. Due to the type of images used for this evaluation, an inflation poten-
tial is established in order to achieve the vessels. The vessels extracted by PLS
are shown in Fig. 6. PLS deal properly with noisy points and regions, using
their capability of merging and splitting contours (see 4th, 5th and 6th columns
Fig. 6). The external potential image has helped PLS in order to maintain vessel
continuity (1st, 2nd and 3rd columns Fig. 6).
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Accurate results have been obtained regardless of image complexity (Fig. 6).
An accurate result has been obtained in a 95 % of the windows processed by
means of the proposed methodology, since PLS using their pixel-level discreti-
sation feature can achieve the vessel edges with an accuracy of a pixel far from
the real vessel edge.

The simulation made in the MATCNN environment allows us to check the
performance of the methodology for a CNNUM architecture and this feature
give us the possibility of a future implementation of the proposed methodology
in a chip-set architecture achieving real-time requirements. The processing time
required in a hardware chip-set implementation cannot be established from the
simulation made in MATCNN since it depends on the integration capacity of the
processing elements of the specific chip, nevertheless in [19] gives an approxima-
tion of the times handled in different hardware architectures. In this sense, the
simulation made for this methodology takes minutes of software time process-
ing but in a hardware architecture this time can be reduced to milliseconds or
μ-seconds, depending on the specific hardware implementation.

4 Conclusions

The proposed methodology deals properly with the automatic retinal vessel ex-
traction. Accurate results have been obtained from different retinal images re-
gardless of the image complexity. In this sense, due to its simplicity and general
nature, this methodology is expected to be applicable to a variety of other tasks,
like vessel measurement or personal identification systems. The different stages
have been implemented by means of CNN-based techniques in order to take ad-
vantage of the massively parallel processing. Taking into account this feature,
real-time applications can be properly addressed. Furthermore, the PLS capa-
bility of merging and splitting contours allows us to avoid noisy regions and to
fit the vessels accurately.

In conclusion, it can be said that using the methodology characterised in
this paper vessels are extracted suitability and accurately especially regarding
on computational time improvement.
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Abstract. It has been established that information distinguishing one
human face from another is contained to a large extent in the Fourier
domain phase component of the facial image. However, to date, formal
statistical models for this component have not been deployed in face
recognition tasks. In this paper we introduce a model-based approach
using Gaussian mixture models (GMM) for the phase component for
performing human identification. Classification and verification are per-
formed using a MAP estimate and we show that we are able to achieve
identification error rates as low as 2% and verification error rates as
low as 0.3% on a database with 65 individuals with extreme illumina-
tion variations. The proposed method is easily able to deal with other
distortions such as expressions and poses, and hence this establishes its
robustness to intra-personal variations. A potential use of the method in
illumination normalization is also discussed.

1 Introduction

Automated tools for face recognition are in ever increasing demand today, partly
as a result of efforts to improve security in various walks of the society today.
The recently adopted practice of recording photographs and fingerprints of for-
eign passengers at U.S. airports provides evidence of the increased importance of
biometrics today. Facial recognition is generally preferred to classification based
on other biometric traits since it is difficult to falsify and the method of acquiring
face images is non-intrusive and widely acceptable. However, while facial recog-
nition is trivial for humans (an infant can discriminate his or her mother’s face
from a stranger’s at the age of 45 hours ([17])), it is an extremely challenging
task to automate the process. Other applications of face identification include
criminal identification in law enforcement, searching for missing people, national
ID cards, physical access to buildings, ATMs, etc.
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The growing importance of face recognition has led to a substantial amount of
research in computer vision over the past few decades, with applications ranging
from still, controlled mug-shot verification to dynamic and uncontrolled face
identification in a cluttered background. Faces are rich in information about
individual identity, mood and mental state, and position relationships between
face parts, such as eyes, nose, mouth and chin, as well as their shapes and sizes
are widely used as discriminative features for identification. Some well-known
methods for face identification and verification include Support Vector Machines
([6]), Linear Discriminant Analysis ([7]), Independent Component Analysis ([4])
and Neural Networks ([11]).

Most of the face recognition systems that are available today use a spatial do-
main approach based directly on the image intensities. Recently, much research
effort has focused on the frequency domain as well, which possesses useful proper-
ties that have been successfully exploited in many signal processing applications
([10]). The frequency domain representation of an image (the spectrum) con-
sists of two components, the magnitude and phase. In 2D images particularly,
the phase captures more of the image intelligibility than magnitude and hence
is very significant for performing image reconstruction ([5]). [14] showed that
correlation filters built in the frequency domain can be used for efficient face
verification. Recently, the significance of phase has been utilized in identifica-
tion problems also. [12] proposed correlation filters based only on phase, which
performed as well as the original filters, and [13] demonstrated that performing
PCA in the frequency domain using only the phase spectrum not only outper-
forms spatial domain PCA, but also has attractive features like illumination
and occlusion tolerance. All these results suggest that classification methods in
the frequency domain, especially based on phase, may yield potentially good
results.

Model-based approaches include use of Gaussian models ([16]), deformable
models ([18]), and inhomogeneous Gibbs models ([8]), which are good at cap-
turing local details of a face using a minimax entropy principle proposed in [19].
Model-based identification methods are usually more rigorous than feature-based
methods as they are more capable of capturing the inherent variability in the
data and have greater statistical validity. One class of flexible statistical models
is the family of mixture models ([9]). Such models can represent complex distri-
butions through an appropriate choice of its components to represent accurately
the local areas of support of the true distribution. Apart from statistical ap-
plications, Gaussian mixture models (GMM), the most popular of the mixture
models, have also been used in computer vision. [19] used GMM for modeling
the shape and texture of face images. However, no work has been done, as to
the authors’ knowledge, on developing model-based face identification systems
in the frequency domain.

The rest of the paper is organized as follows. Section 2 provides a brief
description of the database used. Section 3 presents our GMM approach, along
with parameter estimation techniques and classification scheme, and Section 4
contains the results. Finally, additional discussion appears in Section 5.
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2 Data

The dataset used for developing our technique for facial identification is a subset
of the publicly available “CMU-PIE Database” ([15]) which contains frontal
images of 65 people under 21 different illumination conditions ranging from
shadows to balanced and overall dark. A small sample of images of 6 people
under 3 different lighting effects is shown in Figure 1.

Fig. 1. Sample images from the CMU-PIE database

3 Gaussian Mixture Models

The usefulness of mixture distributions in the modeling of heterogeneity in a
cluster analysis context is obvious. But as any continuous distribution can be
approximated arbitrarily well by a finite mixture of Gaussian densities with
common variance, mixture models provide a convenient semiparametric frame-
work in which to model unknown distributional shapes. It can handle situations
where a single parametric family is unable to provide a satisfactory model for
local variations in the observed data. The model framework is briefly described
below.

Let (Y1, . . . ,Yn) be a random sample of size n where Yj is a p-dimensional
random vector with probability distribution f(yj) on Rp. Also, let θ denote a
vector of the model parameters to be estimated. A g-component mixture model
can be written in parametric form as:

f(yj;Ψ) =
g∑

i=1

πifi(yj, θi), (1)

where the vector Ψ containing all the unknown parameters in the mixture model
is written as Ψ = (π1, . . . , πg−1, ξ

T )T , and ξ is the vector containing all the
parameters in θ1, . . . , θg known a priori to be distinct. Here, θi represents the
model parameters for the ith mixture component and π = (π1, . . . , πg)T is the
vector of the mixing proportions with

∑g
i=1 πi = 1.

Over the years several methods have been used to estimate mixture distrib-
utions. They include graphical models, method of moments, minimum-distance
methods, maximum likelihood (ML) and Bayesian approaches ([9]). But the most
popular one is by using ML estimation via the EM algorithm. However, with the
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advent of computational power, estimation in a Bayesian framework is now fea-
sible and practical using posterior simulation via Markov Chain Monte Carlo
(MCMC) methods such as the Gibbs sampler. We use the Bayesian estimation
method since it yields a nice framework for performing statistical inference based
on the posterior distributions of the parameters which is not provided by EM.
According to [2], the EM-type approximation is not really an adequate substitute
for the more refined numerical approximation provided by the Gibbs sampler.

The Gibbs sampler yields a Markov chain {Ψ (k), k = 1, 2, . . .} whose distri-
bution converges to the true posterior distribution of the parameters. For our
parameter estimates, we use the posterior mean, which could be estimated by
the average of the first N values of the Markov chain. However, to reduce error
associated with the fact that the chain takes time to converge to the correct
distribution, we discard the first N1 samples as burn-in. Thus our parameter
estimates are

E{Ψ̂|y} =
N∑

k=N1+1

Ψ(k)

(N −N1)
. (2)

The parameter N1 is chosen by inspection of plots of the components of the
Markov chain. In particular, we choose it to be 2000 out of a total of N = 5000
iterations, since after this many iterations, visual inspection indicates that the
chain has “settled down” into its steady-state behaviour.

3.1 The Phase Model

Despite the well-established significance of phase in face identification tasks,
modeling the phase angle poses several difficulties such as, the “wrapping
around” property (it lies between −π and π) and its sensitivity to distortions
such as illuminations and expressions. This prompted us to choose an alternative
representation of phase for modeling purposes.

To this end, we constructed the “phase-only” images by removing the mag-
nitude component from the frequency spectrum of the images. The resultant
spectrum thus represents only the image phase (and is of unit magnitude). Since
magnitude does not play as active a role in face identification, this is expected
not to affect the system. We then use the real and imaginary parts of these
phase-only frequencies for modeling purposes. This is a simple and effective way
of modeling phase, as it provides an adequate representation and at the same
time does not suffer from most of the difficulties associated with direct phase
modeling mentioned above.

Let Rk,j
s,t and Ik,j

s,t respectively denote the real and the imaginary part at the
(s, t)th frequency of the phase spectrum of the jth image from the kth person,
s, t = 1, 2, . . . , 100, k = 1, . . . , 65, j = 1, . . . , 21. We will model (Rk,j

s,t , Ik,j
s,t ),

j = 1, . . . , 21 as a mixture of bivariate normal distributions. Notationally,(
Rk,j

s,t

Ik,j
s,t

)
∼ N

((
μk

s,t

νk
s,t

)
,

(
(σk

s,t)2 ρk
s,tσ

k
s,tη

k
s,t

ρk
s,tσ

k
s,tη

k
s,t (ηk

s,t)2

))
, (3)
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where μ and ν are respectively the frequency-wise means, σ2 and η2 the
frequency-wise variances and ρ is the correlation coefficient between the real
and the imaginary parts. We model only the low frequencies within a 50 × 50
grid around the origin of the spectral plane since only a few frequencies con-
tain all the identifiability of any image ([10]). This succeeds in reducing the
dimensionality of the problem to a considerable extent. We fit a model to every
frequency and for each person.

In the the mixture model notation, for each frequency (s, t) and each person
k, Yj = (Rj , Ij)T . The density f(·) then represents bivariate Gaussian, and
hence each mixture component is given by:

f(yj; θi) = φ(yj; μi,Σi), where

φ(yj; μi,Σi) = (2π)−1|Σi|− 1
2 exp{−1

2
(yj − μi)TΣi

−1(yj − μi)} (4)

where φ denotes the bivariate Gaussian density with mean vector μi and co-
variance matrix Σi, i = 1, . . . , g, their components being specified in eqn. (3).
They form the unknown parameters of Ψ, so that Ψ = (πi, μi, νi,σ

2
i , η2

i , ρi,
i = 1, . . . , g. The mixture model now has the form:

f(yj;Ψ) =
g∑

i=1

πiφ(yj; μi,Σi). (5)

3.2 Classification Scheme

The ultimate goal of our approach is to use our model-based system to classify a
new test image. This can be done with the help of a MAP (maximum a posteriori)
estimate based on the posterior likelihood of the data. For a new observation
Yj = (Rj , Ij) extracted from the phase spectrum of a test image, if f(yj;Ψ)
denotes its mixture density for each pixel (s, t) of each person k, the observed
likelihood of the new image given under the model for person k is obtained
by multiplying the GMM likelihood at each frequency (assuming independence
among frequencies) as:

g(R, I|k) = Πall freq.f(yj;Ψ), k = 1, . . . , 65, (6)

where f(·) is the GMM given by eqn. (5). The convention is to use log-likelihoods
for computational convenience. The posterior likelihood of the observed data
belonging to a specific person is then given by:

f(k|R, I) ∝ f(R, I|k)p(k), (7)

where p(k) denotes the prior probability for each person which can be safely
assumed to be uniform over all the possible people in the database. A particular
image will then be assigned to class C if:

C = arg max
k

f(k|L, P ). (8)
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4 Classification Results

We started with a two-component mixture model (g = 2), the mixtures repre-
senting the illumination variations in the images of a person. A key step in the
Bayesian estimation method consists of the specification of suitable priors for all
the unknown parameters in Ψ. We chose our priors in the same way as was done
in [1], which were conjugate in nature and simplified computations significantly.

Table 1 shows the classification results using different number of training
images and different number of subjects. The latter helps to study the how
performance changes as the database is gradually scaled up to include more
and more people. The training set in each case (except the last) was randomly
selected and the rest used for testing. This selection of training set in all the
cases, is repeated 20 times (in order to remove selection bias) and the final
errors are obtained by averaging over those from the 20 iterations. The results

Table 1. Error rates for GMM using different training and different number of people.
The standard deviations are computed over the 20 repetitions in each case.

# of Training images # of test images # of Subjects Error Rate Standard Deviation
15 6 20 0.00% 0.00%

65 1.25% 0.69%
10 11 20 0.00% 0.00%

65 2.25% 1.12%
6 15 20 1.53% 1.41%

65 9.67% 2.89%
Frontal Shadows & 20 0.00% -

overall dark 65 12.83% -

are indeed impressive even with a large number of people, especially when we
compare this to results obtained using a PCA classifier for phase which yielded
error rates close to those from random guessing (> 90%). This shows that the
GMM was able to capture the phase variation suitably. This is imperative since
even the slightest loss of phase information can lead to drastic results as was in
the case of the PCA models. Even when training only on images with frontal
illumination, results are satisfactory which aptly established the robustness of
our approach. However, we notice that an adequate number of training images
are required to be able to estimate all the parameters of the mixture models
in a reliable manner; in our case 10 is an optimal number of training images
required for this method. The associated standard errors in each case also show
that performance is not very sensitive to training set selection.

Often model fitting (and hence classification results) can be improved upon
by increasing the number of mixture components in a GMM. The classification
results with g = 3 and g = 4 were respectively 2.19 and 2.08 when using 10
training images and all the 65 people. Clearly, these results are not significantly
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better than those from using g=2 (hypothesis tests yielded p-values of nearly 1).
Moreover, using more components increases the complexity of the model consid-
erably in terms of computing time and power, by introducing many additional
parameters. We thus conclude that a GMM with 2 components represents the
best parsimonious model. This is further corroborated by rigorous statistical
model selection methods like Bayesian Information Criterion or BIC ([3]) which
suggested that g = 2 provides the best fit from the standpoint of accuracy and
model complexity.

4.1 Verification

The problem of verification involves confirming whether a person’s claimed iden-
tity is correct or incorrect. Verification of a test image requires only one matching
operation as opposed to the N operations required to perform identification (for
a database with N people). In our case, this amounts to computing the poste-
rior likelihood of a test image only for the particular person which is the claimed
identity. Then based on a certain chosen threshold, a decision is made as to
whether the test image indeed belongs to that person or not.

Figure 2(a) shows the ROC curve obtained by plotting the false alarm rates
(False Acceptance Rate (FAR) and False Rejection Rates (FRR)) with varying
threshold on the posterior likelihood. We use the optimal GMM with g = 2 and
10 training images for all 65 people and an uniform threshold for all the people.
Very impressive authentication results are achieved, in particular, the FAR never
exceeds 3% for all the thresholds and the Equal Error Rate (EER) is approx-
imately 0.3% at a threshold log-likelihood value of −1700. This is significantly
better than the authentication EER value of 0.9% yielded by the MACE filter
system ([14]) on the PIE database. As expected, verification is an easier task
than identification involving fewer comparisons.
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Fig. 2. ROC curve for authentication based on GMM (left) and MACE (right). The
lower curve is the FAR in each case. The point of intersection of the FAR and the FRR
curves gives the EER.
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5 Discussion

This paper introduced a novel face identification and verification scheme based
on phase and GMM. Although the importance of phase is well-known, this fact
had not been utilized in building model-based classification techniques. This is
partially because modeling phase requires an appropriate representation of its
variability across different images of a person which is indeed a challenging task
and our experiments show convincingly that our proposed models are able to
handle it perfectly. Not only this, we have demonstrated that our approach is
tolerant to illuminations; in fact, we believe that owing to its general framework,
it should be easily be used to model any kind of distortion, such as, expression,
noise, pose, by assigning different types of images to different components of mix-
ture distributions. This proves the tremendous practical utility of this method for
handling real life databases that are often subject to extraneous variations. Very
good classification rates are obtained and the results scale up well with increas-
ing number of individuals, an attractive property for any pattern recognition
system. Moreover, the model also yields a very efficient verification tool which
extends its domain of application to authentication at places like the airport,
casinos, banks and other security-enabled places. In conclusion, both GMM and
phase have enormous potential in computer vision, and harnessing this combined
strength has indeed proved to be a grand success.

Our immediate future direction of work consists of assessing the performance
of our GMM model on databases with expression and pose variations. One nat-
ural extension of this model for our present database will be toward classifying
the illumination level in an image. Knowing this, one can easily remove this illu-
mination effect using a normalization procedure and the resultant reconstructed
images with no or reduced illumination will pose less of a threat to the ability
of many existing face identification systems.
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Abstract. A novel and efficient approach to facial expression classification 
based on the belief theory and data fusion is presented and discussed. The 
considered expressions correspond to three  (joy, surprise, disgust) of the six 
universal emotions as well as the neutral expression. A robust contour 
segmentation technique is used to generate an expression skeleton with facial 
permanent features (mouth, eyes and eyebrows). This skeleton is used to 
determine the facial features deformations occurring when an expression is 
present on the face defining a set of characteristic distances. In order to be able 
to recognize “pure” as well as “mixtures” of facial expressions, a belief-theory 
based fusion process is proposed. The performances and the limits of the 
proposed recognition method are highlighted thanks to the analysis of a great 
number of results on three different test databases: the Hammal-Caplier 
database, the Cohn-Kanade database and the Cottrel database. Preliminary 
results demonstrate the interest of the proposed approach, as well as its ability 
to recognize non separable facial expressions. 

1   Introduction 

In recent years, the user interfaces for computer systems have been producing a growing 
interest. The key idea for those systems is to make the communication/ interaction with 
machines more intuitive using the human behavior, especially facial expressions, like in 
a face-to-face human interaction.  

Facial expression classification methods can be divided into three categories: 
statistical methods [1] that use characteristic points or characteristic blocks in the face; 
template based methods [2] using models of facial features or models of facial motion 
and rule-based methods [3]. 

In this paper, we propose a new method for facial expressions classification. Firstly, 
this method allows the classification of different expressive states like “pure” expression 
or mixture of expressions. Considering that "binary" or “pure” facial expressions are 
rarely produced (people show a mixture of facial expressions), the classification of any 
facial expression into a single emotion category is not realistic. Secondly the proposed 
method can deal with different expressions intensities and allows to determine the 
“unknown” expressions corresponding to all facial deformations that can not be 
categorized into one of the predefined facial expressions. Here, due to the difficulty for 
non actor to simulate all the six universal emotions, we only consider the following 
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expressions: joy, disgust, surprise, neutral and, additionally, the unknown expression. 
The originality of our work consists in supposing that all information necessary to the 
recognition of a given facial expression is included in the deformations of some facial 
permanent features (eyes, mouth and eyebrows) and to propose a fusion architecture 
based on the belief theory. This approach is proved to be very well suited to the problem 
of facial expression classification because it is possible to deal with possible imprecise 
data (which could be the case with data coming from a video based segmentation 
algorithm), and it is possible take into account intrinsic doubt of emotion in the 
recognition process.   

2   Facial Expressions Characterisation 

Eyes, lips and brows contours are automatically extracted by using the algorithms 
described in [4, 5]. The considered approaches use parametric models, which allows 
to obtain very realistic contours of eyes, eyebrows and mouth (Fig. 1.a). The 
segmentation leads to the skeleton of an expression (Fig. 1.b).     

Five distances are defined on these skeletons: D1: eye opening, D2: distance 
between the interior corner of the eye and the interior corner of the eyebrow, D3: 
mouth opening in width, D4: mouth opening in height, D5: distance between each 
corner of the mouth and the external corner of the corresponding eye (Fig. 1.b).  

In order to cope with doubt between several expressions, a post processing stage 
based on the analysis of transient wrinkles in the nasal root and based on the analysis 
of the mouth shape is added. Since these two features are not present in all the 
expressions and in order to use the same information for the classification system 
whatever the considered expression, they are not directly used for the transferable 
belief model but to solve the doubt between two expressions. 

The presence or absence of wrinkles in the nasal root (Fig. 1.c) is detected by using 
a Canny edge detector. We compare the number of detected edge points in a frame 
with a neutral expression (i.e. without any wrinkles in the nasal root) with the number 
of edge points in the current frame. If there is almost twice more edge points in the 
nasal root of the current frame than in the nasal root of the frame with the neutral 
expression, the presence of transient wrinkles is validated. 

In addition to wrinkles information, mouth shape can be used  (Fig. 1.d, 1.e). 
According to the expression, the ratio between length and width of the mouth is larger 
or smaller than its corresponding value for the neutral expression.    

 
             
 
 
 
 
 
 
 

Fig. 1.  (a) facial features segmentation; (b) facial skeleton and distances Di, (c) wrinkles in the 
nasal root,  examples of  mouth shapes in case of : (d) joy, (e) disgust. 

nasal root 

     
     

           
          (c)                     (d)            (e) (b) (a) 
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We suppose that facial features deformations characterized by the five distances 
defined on Fig. 1.b, mouth shape information and transient wrinkles information are 
sufficient to recognize each of the four considered expressions. This particular 
assumption has been validated by a rate of 60% of good recognition obtained by a 
psycho-experimental test, where 60 judge subjects (30 males and 30 females) had to 
recognize an expression by only viewing the facial skeletons. 

3   Belief Theory  

Initially introduced by Dempster, the belief theory was taken again by Shafer [6]. 
Based on this work, Smets has enriched this theory and called it TBM (Transferable 
Belief Model) [7]. This theory can be seen as a generalization of the theory of 
probabilities. It requires the definition of a set Ω  made up of  N exclusive and 
exhaustive assumptions Ei.    

Considering this theory, the reasoning relates to the framework of understanding 
2Ω  which is the whole set of 2N subsets A of Ω . For each element A of 2Ω , we 
associate an elementary piece of evidence m(A) which indicates all confidence that one 
can have in this proposal without favouring any class. The function m is defined by: 

                          [ ]: 2 0,1m Ω                      →                                                           (1) 

                                                               ( )A m Aa  

With:                                                       )(
Ω⊆A

Am                            

In our application, the assumptions Ei correspond to the four facial expressions : joy 
(E1), surprise (E2), disgust (E3), neutral (E4); 2Ω corresponds to the subsets of 
expressions or combination of expressions {E1, E2, E3 ,…,E1 E2, E2 E3 ,…} and A is 
one of its element. 

3.1   Definition of the Symbolic States Associated to the Measures 

The analysis of the numerical values of all the distances Di for the four expressions 
contained in the expertise database [8] shows that, for each of the four facial 
expressions, each Di can be either higher, either lower or equal to its corresponding 
distance for the neutral expression. We associate to each distance Di one of the three 
possible symbolic states: 

- The neutral state S:  if its current value is close to its value for the neutral 
expression;  

- The C+ state: if its current value is significantly higher than its value for the neutral 
expression;  

- The C- state: if its current value is significantly lower than its value for the neutral 
expression. 

This yields to three symbolic states {C+, C-, S} to be identified for each distance Di 
for all the expressions. 

The analysis of the evolution of the Di curves on the frames of an expertise 
database shows that a similar evolution can be associated to each distance Di for a 
given emotion whatever the subject.  
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3.2   Modeling 

We are concerned with the computation of the state to be associated to each distance 
Di and to its piece of evidence. We define a basic belief assignment (BBA) by: 

:Dim               ]1,0[2
'→Ω

 (2) 

With Ω’ = {C+, C- ,S}, 2Ω’= {C+, C- )(BmB Di→ , S, SC+, SC-} (the remaining 

states C+SC- and C+C- are considered impossible), where S∪C+  (noted SC+) states the 
doubt between S and C+,  S∪C- (noted SC-) states the doubt between S and C- and 

)(Bm Di
  is the piece of evidence (PE) of each state B. A numerical/symbolic 

conversion is carried out, which associates one of the symbols of '2 Ω to each value of 
Di. To carry out this conversion, we define a model for each distance using the states 
of  '2 Ω  (Fig. 2). 

 

Fig. 2. Model 

m is the PE associated to each possible state in '2 Ω  and the thresholds (a... h) are the 
limit values of Di corresponding to each state or subset of states.  

3.3   Thresholds for the States (C+, C-, S, SC+, SC-) 

For each distance Di, the threshold h (resp. a) of the state C+ (resp. C-) corresponds to 
the average of the maximum (resp. minimal) values of Di for all the subjects and all 
the expressions of the expertise database.  The thresholds d and e of the state S  are 
defined in the same way. 

The states SC+ and SC- are associated to the states of doubt  when the value of Di is 
higher than the value corresponding to the neutral state S but is not high enough to be 
in the state C+ nor small enough to be in the state C-. 

The median of the maximum values of each distance for all the subjects and all the 
expressions of the expertise database is computed. The thresholds f, b (resp. c, g) of 
the intermediate states are defined by mean+median  (resp. mean-median) of each 
state (C+, C-, S).  

4   Recognition of Expressions 

4.1   Analysis 

The analysis of the states for the five distances associated to each of the four 
expressions (joy, surprise, disgust and neutral) allows us to exhibit a specific 
combination of these states for each expression. Table 1 left shows the resulting 
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combinations of states. For example, in case of joy (E1), the mouth is opening (C+ 
state for D3 and D4), the corners of the mouth are going back toward the tears (C- state 
for D5) and the eyebrows are slackened (S state for D2). The distance between the 
interior corner of the eye and the interior corner of the eyebrow decreases (C- state for 
D2) and the eyes become slightly closed (C- state for D1). 

In some cases, two different states are possible for a given distance (see D2 for joy 
for example). This could produce a total doubt between two expressions as a result of 
the classification process. For example, the classifier is not always able to distinguish 
disgust and joy because both expressions could be described by the same combination 
of states in some cases. 

The proposed combinations of symbolic states associated to each Di for the four 
expressions (joy, surprise, disgust and neutral) are compared to the MPEG-4 
description of the deformations of facial features for such expressions [9]. As a result, 
the proposed combinations are compliant with MPEG-4 description and give even 
some extensions.  

The expression E5 is added as the unknown expression or class of reject. It 
represents all the expressions which do not correspond to any of the descriptions of 
Table1 left. 

Table 1. left: Theoretical table of Di states for each expression; right: example of combination 
of PEs of two distances. ∅ is the empty set. 

 
 
 
 
 
 

4.2   Combination and Decision  

We have several sources of information (Di) to which we associate PEs. Our goal is to 
obtain a PE which takes into account all the available information. The BBA is 
obtained using the rule of conjunctive combination or orthogonal sum. In the case of 
two distances D1 and D2, the orthogonal sum is defined in the following way:         

1 2D Dm m m                          = ⊕  (3) 

)()()(
21

CBAm mm D
ACB

D
=∩

=   

where A, B and C are expressions or subsets of expressions. This leads to have 
propositions whose number of elements are lower than the initial ones and to 
associate them a piece of evidence. The final PE is thus more accurate.  In a more 
explicit way, if one takes two basic belief assignments:   

mD1(E1 ∪ E3)   mD1(E1)    mD1(E2) , 
mD2(E1)            mD2(E2)    mD2(E1 ∪ E2), 
their combination gives the results of Table 1 right. 

 
D1 / D2 E1 E2 E1∪ E3 
E2∪ E3 ∅ E2 E3 
E1 E1 ∅ E1 
E2 ∅ E2 ∅ 

 D1 D2 D3 D4 D5 

Joy E1 C- S / C- C+ C+ C- 
Surprise E2 C+ C+ C- C+ C+ 
Disgust E3 C- C- S / C+ C+ S / C- 
Neutral E4 S S S S S 
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The piece of evidence of each expression by the combination of results of the two 
distances is calculated by: 

mD12(E1)= mD1(E1 ). mD2(E1 )+ mD1(E1 ) mD2(E1 ∪ E3). 
mD12(E2)= mD1(E2 ∪ E3). mD2(E2 )+ mD1(E2 ).mD2(E2). 
mD12(E3)= mD1(E2 ∪ E3).mD2(E1 ∪ E3). 
mD12(∅)=mD1(E2∪E3).mD2(E1)+mD1(E1).mD2(E2)+mD1(E2).mD2(E1)+mD1(E2).mD2 

(E1∪ E3). 

However, conflicts can appear in the case of incoherence sources noted 
∅.  Considering the theoretical context of the presented application, the conflict 
corresponds to a configuration of distance states which does not appear in Table 1 
left. This is due to the fact that Ω is not exhaustive. The added expression unknown or 
class of reject E5  includes all these conflict states (Table 1 right). 

The decision is the ultimate step of the classification process. We have to choose 
between various assumptions Ei and their possible combinations. Making a choice 
means taking a risk, except if the result of the combination is perfectly reliable: 
m(Ei)=1.  Here the accepted proposal is the one with maximum value of PE. 

5   Experimental Results 

The performances of the classification system are evaluated for the four expressions 
(joy, surprise, disgust, neutral). For the expertise step, 1170 frames from the 
Hammal-Caplier database (13 subjects and 4 expressions) have been considered  
(Fig. 3). All the frames of our expertise database are segmented and the five distances 
defined on Fig. 1.b are computed and used in order to define the thresholds of §3.3 
and to establish Table 1 left. 

In order to evaluate the robustness to different variations (gender, ethnicity, 
difference of expressions…), the system is tested on three test databases: the last part 
of our database (630 frames for 7 subjects and 4 expressions), the Cohn-Kanade 
database (122 frames, 4 expressions) [10] and the Cottrel database (24 frames, 4 
expressions) [11]. In the two last databases we only have two images for each 
expression: the neutral state and the caricatured expression itself. 

                    joy                                           surprise                     disgust  

Fig. 3. Examples of the Hammal-Caplier database. Each record starts and finishes by a neutral 
state. The sequences have been acquired during 5 seconds at 25 images/second. 

Table 2 presents the classification rates for the frames of our test database. The 
right expressions are given in column and the expressions recognized by the system 
correspond to the lines. Expressions E1 (joy) and E4 (neutral) yield good classification 
rates. On the contrary, the classification rate E3 (disgust) is lower. This is due to 
individual variability (Fig. 4.a) and to the difficulty for a non actor to simulate this 
expression (Fig. 4.b).  For E1, there is a high rate of total doubt between E1 and E3 : 
the system is sure that it is one of the two expressions but is not able to know which 
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one. This has to be related to the definition of Table 1 left with two possible different 
states for a given distance. In our database, the unknown state often appears for 
intermediate frames where the person is neither in a neutral state, nor in a particular 
expression (Fig. 4.c).  

In order to be able to choose between joy and disgust in case of doubt, we add a 
post-processing step which takes into account information about transient features and 
mouth shape (§2). Nasal root wrinkles (Fig. 1.c) are characteristic for disgust. This is 
used to solve the problem of doubt between joy and disgust. In the case of absence of 
transient features, we use the ratio between length and width of the mouth (Fig. 1.d, 
1.e). Our analysis shows that this ratio is larger than its value for the neutral 
expression in the case of joy and lower in the case of disgust. With the proposed post-
processing step to make a distinction between joy and disgust in case of doubt, the 
recognition rate for E1 (joy) increases by 15% and E1∪E3 (joy-disgust) decreases by 
17% (2% of false detection of disgust). We increase by 19% for E3 (disgust) and 
E1∪E3 (joy-disgust) decreases by 11% (5% of false detection of joy). 

 
 
 
 
 
 

Fig. 4. Examples of disgust expressions. (a): individual variability; (b): poor simulations; (c): 
example of unknown state: 3 consecutive frames from neutral to joy during a sequence of a 
simulated joy. 

Given the fact that the state of doubt joy-disgust is related to the rules defined in 
the Table1 left, it is not due to classification errors of the proposed system. It is thus 
possible to consider them as a good classification and to associate them to the 
corresponding expression which allows us to add their respecting rates leading to the 
results of the last row of  Table 2 and Table 3.  

Table 3 (on the left of E4 column) presents the results obtained on the Cohn-Kanade 
database. 30 frames have been chosen for joy, 25 for surprise and 17 for disgust. The 
classification rates for this database are comparable with those of Table 2.  In Table 3 
right (on the right of E4 column) are presented the classification rates obtained on the 
Cottrel database. In the same way, associating the expression and the corresponding 
mixture of expressions, the system gives good classification rates. 

Table 2. Classification rates on the Hammal-Caplier database 

 
 
 
 
 
 
 

                 Neutral                              Unknown                                              Joy 

Syst\Exp E1 E2 E3 E4 

E1  joy 76.36% 0 9.48 3%
E2 surprise 0 84.44% 0 0
E3 disgust 0 0 43.10% 2%
E1 ∪E3 10.90% 0 8.62% 0
E4 neutral 6.66% 0.78% 15.51% 88%
E5unknown 6.06% 11.8% 12.06% 7%
Total 87.26% 84.44% 51.72% 88%

(a) (b)

 

(c)
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Table 3. Classification rates: on the left of E4, classification rates for the Cohn-Kanade 
database, on the right of E4, classification rates for the Cottrel database. The column E4 is the 
same for both databases. 

 
 

 
 
 
 
 
 
 
 
 

 

 

Fig. 5. Examples of expressions classification: first and second columns, images of  Hammal-
Caplier database, third column, images from Cohn-Kanade database. The bar graph presents the 
recognized expression and its associated piece of evidence. 

Fig. 5 shows some examples of classification of the four facial expressions. We 
observe very good results for the neutral and the apex states of each facial expression 
(Fig. 5 a.3, b.3, c). The proposed method is able to recognize different intensities of 
one expression (Fig. 5 a.1, a.2), to recognize the intermediate state between two 
expressions as unknown (neutral-disgust) expression (Fig. 5 b.1) and to recognize the 
mixed expressions (Fig. 5 b.2). 

Syst\Exp E1 E2 E3 E4 E1 E2 E3 

 E1joy 64.51% 0 0 0 62.50 0 0 
 E2surprise 0 100% 0 0 0 100% 0 
 E3disgust 0 0 52.94 0 0 0 75% 
 E1∪E3 32.25% 0 47.05 0 37.50 0 0 
 E4neutral 0 0 0 100% 0 0 0 
 E5unknonw 3.22% 0 0 0 0 0 25% 
 Total 96.76% 100% 99.99 100% 100% 100% 75% 

1 

2 

3 

(a) (b) (c) 
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6   Conclusion 

We presented a novel method for classification of facial expressions based on the 
analysis of characteristic distances computed on facial skeletons of expression. The 
belief theory formalism used in the presented rule-based method is proved to be well 
suited to the problem of facial expression classification. It can deal with the mixtures 
of expressions and allows to recognize the unknown expressions. To improve these 
results, we can increase the number and the quality of measurements, by taking into 
account the explicit shape of the facial features contours and by taking into account 
the temporal evolution of the measurements. 
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Abstract. In this paper, we propose an uncorrelated, weighted LDA
(UWLDA) technique for face recognition. The UWLDA extends the un-
correlated LDA (ULDA) technique by integrating the weighted pairwise
Fisher criterion and nullspace LDA (NLDA), while retaining all merits
of ULDA. Experiments compare the proposed algorithm to other face
recognition methods that employ linear dimensionality reduction such
as Eigenfaces, Fisherfaces, DLDA and NLDA on the AR face database.
The results demonstrate the efficiency and superiority of our method.

1 Introduction

Face recognition has a wide range of applications, such as face-based video index-
ing and browsing engines, biometric identity authentication, human-computer
interaction, and multimedia monitorring/surveillance. Within the last decades,
numerous novel FR algorithms have been proposed [1]. A central issue to this
approaches is the feature exaction. The most well-known technique for linear
feature extraction is the linear discriminant analysis (LDA). Its basic idea is to
seek an optimal set of discriminant vectors W = [w1, . . . ,wl] by maximizing the
Fisher criterion

JF (W) = tr[(WT SwW)−1(WT SbW)] , (1)

where, Sb =
∑c

i=1 pi(mi −m)(mi − m)T and Sw =
∑c

i=1 piSi are the between-
and within-class scatter matrices, respectively; m is the mean of all samples and
mi is the mean of class i with prior probability pi; Si is the covariance matri-
ces of class i. Uncorrelated features are usually desirable in pattern recognition
because an uncorrelated feature set is likely to contain more discriminatory infor-
mation than a correlated one. Recently, Jin et al. [2] proposed the uncorrelated
LDA technique (ULDA), which tries to find the optimal discriminant vectors
by maximizing the Fisher criterion under the conjugated orthogonal constrains:
wT

j Stwi = 0, (i 	= j), where St =
∑n

i=1(xi − m)(xi − m)T denotes total scatter
matrix. Therefore, ULDA can extract a set of statistically uncorrelated discrimi-
nant features with better discriminant power as shown experimentally in Ref. [2].

However, the ULDA technique still has some deficiencies as follows: first,
it still suffers from the so-called small sample size problem (SSSP) which is
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often encountered in face recognition; second, the Fisher criterion that ULDA
maximized isn’t optimal for a c-class (c > 2) classification problem in that it
overemphasizes the larger distance between classes and causes large overlaps of
neighboring classes. In this paper, we propose an uncorrelated, weighted linear
LDA (UWLDA) technique to solve the above problems. The reminder of this
paper is organized as follows. The related work on LDA is described in sec-
tion 2. Then our UWLDA is presented in section 3. Experiments are reported
in section 4 and finally section 5 concludes this paper.

2 Related Work

2.1 ULDA

Suppose that Sb is a positive semi-definite matrix and Sw is a positive def-
inite matrix. The first ULDA discriminant vector, denoted by w1, is calcu-
lated as the first eigenvector corresponding to the maximal eigenvalue of the
generalized eigenequation Sbw = λSww. Suppose that r ULDA discriminant
vectors Wr = [w1, . . . ,wr] have been obtained. Then the (r + 1)th discrimi-
nant vector wr+1 can be taken as the eigenvector corresponding to maximum
eigenvalues of the generalized eigenequation: MSbw = λSww, where M =
I − StWr(WT

r StS−1
w StWr)−1WT

r StS−1
w .

2.2 NLDA

In many practical face recognition tasks, there are not enough samples to make
Sw nonsingular and then both LDA and ULDA suffer from the well-known SSSP
which arises whenever the number of available samples is smaller than the di-
mensionality of the samples [3]. The traditional solutions to this problem is to
project all samples onto a subspace, as it was done for example in Fisherfaces [4],
where the resulting within-class scatter matrix is no longer singular. However,
Chen et al. [3] proved that the nullspace of Sw, denoted by N (Sw), contains
the most discriminant information when a SSSP takes place. Based this find-
ing, they proposed an enhanced LDA that we refer to as NLDA, to extract the
most discriminant information for recognition. Intrinsically, NLDA tries to find
a transform W who satisfies

WTSwW = 0,WTSbW = Λ . (2)

2.3 WLDA

In Fisher criterion, as discussed in [5] and [6], all class pairs have the same weights
irrespective of their separability in the original space and the resulting transfor-
mation will preserve the distances of already well-separated classes, causing a
large overlap of neighboring classes. Two similarly motivated solutions to this
problem have been proposed: weighted pairwise Fisher criteria [5] and fractional-
step LDA [6]. Although quite effective [6], the fractional-step LDA is iterative
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and very time-consuming. The other solution, weighted pairwise Fisher criteria,
is more easily to implement and we refer the resulting algorithm as weighted LDA
or WLDA. In WLDA, the between-class scatter matrix Sb in Fisher criterion is
replaced by the following weighted between-class scatter matrix

Ŝb =
c−1∑
i=1

c∑
j=i+1

pipjw(dij)(mi − mj)(mi − mj)T , (3)

where w(dij) = 1
2d2

ij
erf( dij

2
√

2
) is the weighting function that depends on the

Mahanalobis distance dij between the classes i and j.

3 UWLDA

From the discussion in the previous section, it would certainly be desirable to
exploit the benefits of ULDA, NLDA and WLDA. There are, however, a poten-
tial contradiction: the primary motivation for NLDA is the preservation of the
N (Sw), while in N (Sw) both ULDA and WLDA will break down. In the remain-
der of this paper, we intend to solve this problem and propose a new combining
algorithm. To begin, as suggested in Ref. [7], we project all samples onto the
subspace Ω adopted in NLDA where the resulting between-class scatter matrix
S̄b is full rank while the resulting within-class scatter matrix S̄w is zero. This
subspace can be easily determined by removing the nullspace of St first and then
extracting the nullspace of the intermediate within-scatter matrix. Notice that
in Ω the Mahanalobis distance dij between the classes i and j is undefined and
then the calculation of weighted between-class scatter matrix Ŝb is intractable.
As our solutions to this question, we first alter dij so that it is equal to Euclidean
distance because in Ω the distribution of each class is exactly a point and the
similarity between classes can be easily measured by Euclidean distance. Then
we simply set the weighting function

w(dij) = (dij)−k, k > 0 , (4)

where k is the parameter. The rationale behind this is that classes which are
closer together are more likely to have more confusion and should therefore be
more heavily weighted.

Now we turn our attention to combine the WLDA and ULDA in the subspace
Ω. Notice that in Ω the Fisher criterion or weighted pairwise Fisher criterion is
not longer in effect for giving an arbitrary vector w ∈ Ω, the Fisher criterion
will definitely reach infinite. Motivated by NLDA and WLDA, we introduce a
new criterion

J(w) = wT Ŝbw, w ∈ Ω . (5)

Moreover, as the total scatter matrix in Ω is definitely equal to S̄b, then the
conjugated orthogonal constraint is equal to

wT
j S̄bwi = 0 (i 	= j) . (6)
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By maximizing (5) under the constrain (6), we derive a novel UWLDA technique.
Likewise, in UWLDA the first optimal discriminant vector w1 is the eigenvector
corresponding to the largest eigenvalues of Ŝb. In order to obtain the other
directions, we introduce the following theorem.

Theorem 1. The (r + 1)th desired optimal discriminant vector wr+1 is the
eigenvector corresponding to maximum eigenvalues of the following eigenequa-
tion:

MŜbw = λw , (7)

where
M = I − S̄bWr(WT

r S̄bS̄bWr)−1WT
r S̄b , (8)

Wr = [w1, · · · ,wr] . (9)

Proof. It is noted that besides the constraints (6), wr+1 should be normalized,
i.e.

wT
r+1wr+1 = 1 . (10)

Therefore, the Lagrange function can be expressed as

L(wr+1) = wT
r+1Ŝbwr+1 − λ(wT

r+1wr+1 − 1) − wT
r+1S̄bWrU , (11)

where U = [u1, · · · ,ur]T . Set the derivative of L(wr+1) with respect to wr+1
equal to zero, namely

2Ŝbwr+1 − 2λwr+1 − S̄bWrU = 0 . (12)

Multiplying the left-hand side of the above equation by WT
r S̄b , we obtain

2WT
r S̄bŜbwr+1 − WT

r S̄bS̄bWT
r U = 0 , (13)

Thus we have
U = 2(WT

r S̄bS̄bWr)−1WT
r S̄bŜbwr+1 . (14)

Substituting Eq. (14) into Eq. (12), we will obtain

(I − S̄bWr(WT
r S̄bS̄bWr)−1WT

r S̄b)Ŝbwr+1 = λwr+1 . (15)

Therefore, Eq. (7) is obtained.
It is worth noting that in our UWLDA, if we substitute Ŝb with the un-

weighted one, the resulting method is the generalization of ULDA to the SSSP
cases. Moreover, one can easily prove that the resulting method is definitely
equal to the original NLDA because the optimal discriminant vectors derived
from NLDA can satisfied the conjugated orthogonal constraint (6). However, in
our UWLDA, due to integrating the weighted pairwise Fisher criterion to replace
the original Fisher criterion, i.e. we change S̄b into another matrix Ŝb. Therefore,
the traditional NLDA solution based on the weighted pairwise Fisher criterion
cannot guarantee the derived discriminant features are statistically uncorrelated,
whereas the proposed UWLDA technique that combines the ULDA, NLDA and
the weighted pairwise Fisher criterion can obtain the statistically uncorrelated
features.
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4 Experimental Results

In this section, we present experimental results on a subset of AR face database
[8] using our method and comparing with the performance of several popular
subspaces projection-based schemes such as Eigenfaces [9], Fisherfaces [4], DLDA
[10] and NLDA [3]. This subset contains 1652 non-occluded images corresponding
to 118 persons with changes in facial expression and illumination conditions, and
images taken in two sessions two weeks apart. For illustration, some available
images for one subject are shown in Fig.1.

To begin, we convert the RGB images to gray scale ones by adding all three-
color channels. Later, each image is scaled, translated, rotated and cropped to
a size of 53 × 56 to obtain a ”face” which includes only the middle portion of
the face images. We also apply the histogram matching technology to images as
photometric normalization. Subsequently we smooth them with a Gaussian filter
(3 by 3 with sigma 1) for noise reduction and globally normalize them to have
zero mean and unit standard deviation. As the regions on the two sides of the
chin are usually not important but the magnitude of the summation vectors there
may be large, we removed these regions by an elliptical mask. The preprocessed
images of one person are shown in Fig.2. In our experiments, the simple nearest
center classifier (NCC) is adopted to recognize the unknown face images by using
L2 norm as the distance measurement.

In our UWLDA technique, the optimal parameter kopt can be found by
searching highest accuracy over the variation of k. We randomly select 5 im-
ages per subject for training and the remains for testing. The results of different
k within the range from 1 to 10 are shown in Table 1, from which kopt = 4 is
obtained for the following comparative experiments.

Fig. 1. Some face samples of one subject from the AR database

Fig. 2. The preprocessed images
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Table 1. Recognition accuracy corresponding to different k in UWLDA (%)

k 1 2 3 4 5 6 7 8 9 10

Accuracy 93.34 93.83 94.03 94.88 93.29 92.31 91.42 89.09 85.41 81.14
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Fig. 3. Comparative recognition performance. (a) Under the condition of variations in
illuminance. (b) Under the condition of variations in facial expression.

In the next experiment, our aim is to compare Eigenfaces, Fisherfaces, DLDA,
NLDA and the proposed UWLDA under varying illumination conditions. For
each subject, we select two images with normal lighting condition correspond-
ing to the first column in Fig.2 for training and 6 images with varying light
conditions corresponding to the rightmost 3 columns in Fig.2 for testing. In to-
tal,we have 236 training samples and 708 testing samples. Fig. 3(a) shows the
recognition accuracy under a varying number of selected features. This figure in-
dicates that the performance of those LDA-based methods (Fisherfaces, DLDA,
NLDA and UWLDA)is much better than PCA-based Eigenfaces under condi-
tions where lighting is varied. In general, UWLDA performs better than the
other methods. The last experiment is performed to evaluate the performance
of different methods under the condition of variations in expression. As in the
previous experiment, we still select two neutral images per subject for training.
The probe set comprises 4 images for each person which involve variations in fa-
cial expressions (smile and angry). Thus, the total number of training samples is
236 and the number of testing samples is 472. The experiment results are shown
in Fig.3(b), with the recognition accuracy against number of selected features.
Again, the proposed UWLDA obtains the best performance when more than 28
features are used.

5 Conclusions

In this short paper, we present a novel LDA-based subspace projection method
for face recognition that unifies nullspace LDA (NLDA), uncorrelated LDA



198 Y. Liang et al.

(ULDA) and weighted pairwise Fisher criteria (WLDA) in a single algorithm we
refer to as uncorrelated, weighted LDA (UWLDA). This approach can extract
the most discriminatory features which are statistically uncorrelated. Experi-
mental results indicate that under the conditions of varying in illuminance and
facial expressions, UWLDA performs better than other state-of-the-art meth-
ods such as Eigenfaces, Fisherfaces, NLDA and DLDA in terms of classification
accuracy.
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Abstract. In this paper, we propose a novel heteroscedastic weighted
kernel discriminant analysis (HW-KDA) method that extends the linear
discriminant analysis (LDA) to deal explicitly with heteroscedasticity
and nonlinearity of the face pattern’s distribution by integrating the
weighted pairwise Chernoff criterion and Kernel trick. The proposed al-
gorithm has been tested, in terms of classification rate performance, on
the multiview UMIST face database. Results indicate that the HW-KDA
methodology is able to achieve excellent performance with only a very
small set of features and outperforms other two popular kernel face recog-
nition methods, the kernel PCA (KPCA) and generalized discriminant
analysis (GDA).

1 Introduction

Within the last decades, face recognition has received extensive attention due to
its wide range of application from identity authentication, access control and sur-
veillance to human-computer interaction. As a result, numerous novel FR algo-
rithms have been proposed [1]. A successful face recognition scheme should con-
sider how to find low-dimensional feature representation from high-dimensional
facial images with enhanced discriminatory power. Principle component analysis
(PCA) and linear discriminant analysis (LDA) are two classic techniques widely
used in face recognition for dimensionality reduction and feature extraction. It
is generally believed that when it comes to solving problems of face recognition,
LDA-based algorithms always outperform PCA-based ones because, as intuition
would suggest, the former deals directly with discrimination between classes,
whereas the latter deals with the data in its entirety for the PCA without paying
any particular attention to the underlying class structure. However, LDA does
not guarantee to find the optimal directions when the so-called outlier class
is dominant in estimating the scatter matrices [2]. Moreover, it is incapable of
dealing with heteroscedastic data in a proper way due to the implicit assumption
that the covariance matrices for all classes are equal [3]. The traditional solu-
tion to these problems is to employ iterative optimization procedures. Recently,
more effective non-iterative solution, we refer to as heteroscedastic weighted
LDA (HW-LDA), has been proposed [4]. Although successful in many cases, lin-
ear method fails to deliver good performance when face patterns are subject to
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large variations in viewpoints, which results in a highly non-convex and complex
distribution. Intuitively, it’s reasonable to assume that a better solution to this
inherent nonlinear problem could be achieved using nonlinear techniques, such
as the kernel trick.

In this paper, prompted by the success of support vector machines (SVMs)[5],
kernel PCA (KPCA) [6] and generalized discriminant analysis (GDA) [7], we pro-
pose a novel kernel discriminant analysis technique we refer to as heteroscedas-
tic weighted kernel discriminant analysis or HW-KDA for face recognition. The
proposed HW-KDA can simultaneously provide the advantages of HW-LDA and
GDA while overcoming many of their shortcomings.

2 Heteroscedastic Weighted KDA Technique

2.1 LDA

LDA is concerned with the search for a linear transformation W = [w1, . . . ,wl]
from a h-dimensional data space to a l-dimensional feature space (l < h) that
maximizes the so-called Fisher criterion JF

JF (W) = tr[(WT SwW)−1(WT SbW)] . (1)

Here Sb =
∑c

i=1 pi(mi−m)(mi−m)T and Sw =
∑c

i=1 piSi are the the between-
class scatter (BCS) matrix and within-class scatter (WCS) matrix, respectively;
c represents the total number of pattern classes; mi denotes the centroid of class
i with prior probability pi and m is the global centroid; Si is the covariance
matrix of class i. Optimizing (1) comes down to determining an eigenvalue de-
composition of S−1

w Sb and taking the columns of W to equal the eigenvectors
corresponding the l largest eigenvalues.

2.2 HW-LDA

In Fisher criterion (1), as discussed in [2], all class pairs have the same weights
irrespective of their separability in the original space and the resulting transfor-
mation will preserve the distances of already well-separated classes while causing
unnecessarily overlap of neighboring classes. Moreover, the Fisher criterion (1)
does not take the heteroscedasticity of data into account and consequently fail to
extract the discriminatory information present in the differences between the per
class covariance matrices [3]. Recently, a set of modified versions of the Fisher
criterion were proposed to avoid these shortcomings. To restrain the negative
influence of the outlier class, Loog et al. [2] proposed an extended criterion
named approximate pairwise accuracy criterion (aPAC) by rewriting the BCS
matrix Sb as

Sb =
c−1∑
i=1

c∑
j=i+1

pipjω(dij)(mi − mj)(mi − mj)T , (2)
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here ω(dij) = 1
2d2

ij
erf( dij

2
√

2
) is the weighting function and dij ’s are the Mahanalo-

bis distance between the classes i and j in the original space. Considering the
heteroscedasticity of the data, Loog et al. [3] proposed a heteroscedastic exten-
sion of Fisher criterion, called Chernoff Criterion, by replacing Sb used in Fisher
criterion with the following multi-class direct distance matrix Sc

Sc =
c−1∑
i=1

c∑
j=i+1

pipjSij
c (3)

=
c−1∑
i=1

c∑
j=i+1

pipjS1/2
w ((S−1/2

w SijS−1/2
w )−1/2S−1/2

w (mi − mj)(mi − mj)T

×S−1/2
w (S−1/2

w SijS−1/2
w )−1/2 +

1
πiπj

log(S−1/2
w SijS−1/2

w )

−πi log(S−1/2
w SiS−1/2

w ) − πj log(S−1/2
w SjS−1/2

w ))S1/2
w ,

where πi = pi/(pi +pj) and πj = pj/(pi +pj) are the relative a priori taking into
two classes that define the particular pairwise term; Sij

c and Sij are the pair-
wise directed distance matrix between classes i and j and the average pairwise
within-class scatter matrix defined as πiSi +πjSj . Based on aPAC and Chernoff
criterion, Qin et al. [4] proposed a named weighted Chernoff criterion by substi-
tuting Sc with the following the weighted multi-class direct distance matrix

Ŝc =
c−1∑
i=1

c∑
j=i+1

pipjω(dc
ij)S

ij
c , (4)

where dc
ij ’s are the pairwise Chernoff distance measure. The resulting LDA is

referred to as HW-LDA.

2.3 HW-KDA

Although the efficiency of HW-LDA has been experimentally demonstrated, it is
still a linear technique in nature and so it is inadequate to describe the complex-
ity of real face images because of pose variations. Here, we introduce the kernel
trick into the weighted Chernoff criterion, which is demonstrated to be able to
efficiently represent complicated nonlinear relation of input data [5], [6], [7]. The
critical idea behind kernel trick is to map the input data into an implicit feature
space F , φ : x ∈ Rh → φ(x) ∈ F , with a nonlinear dot product kernel function
k(x,y) = (φ(x) · φ(y)), where the distribution of face patterns is supposed to
be linearized and simplified. Thus, the incorporation of the weighted Chernoff
criterion and kernel trick can not only deal with the nonlinear cases but also
extract the discriminatory information in both class means differences and the
class covariance matrices’ differences.

However, in practice, it is very difficult or even impossible to formalize
the weighted Chernoff criterion-based KDA directly. Fortunately, it is recently
proved that the GDA is equivalent to KPCA plus LDA [8]. Prompted by that,
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we adopt the two-stage strategy, as it was done for example in Fisherfaces [9],
to implement the combining method: first projecting original samples onto the
KPCA-transformed space and then performing HW-LDA in this subspace for
further feature extraction. Considering the training set X = (x1, . . . ,xn), the
centered kernel matrix K is given by

K = K̂ − 1nK̂ − K̂1n + 1nK̂1n , (5)

where K̂ is a n × n matrix whose elements are determined by K̂ij = k(xi,xj);
1n = (1/n)n×n. Then the KPCA transform matrix U = [u1, . . . ,up] can be
achieved by performing eigen-decomposition on K/n and selecting eigenvectors
corresponding to p largest eigenvalues Λ = [λ1, . . . ,λp]. By virtue of U, K and
Λ, the projection of X can be calculated by Y = (KUΛ−1/2)T . Using the pro-
jection Y instead of X to calculate the scatter matrices and following the same
steps as HW-LDA to generate discriminant vectors, we derived a novel HW-KDA
technique. Being linear in the feature space F , but nonlinear in the input space,
HW-KDA thus is capable of deriving low-dimensional features that incorporate
nonlinear discriminant information. Moreover, the computational cost is reduced
greatly because in the high-dimensional input space Rh, the size of scatter matri-
ces is h×h while p×p in the KPCA-transformed space (p � h). For example, the
size of Ŝc in HW-LDA amounts to 10304×10304 for face images of size 112×92
such as those used in our experiments while 100 × 100 in HW-KDA if p = 100.

Although the proposed HW-KDA has demonstrated promising characteris-
tics, it still suffers from the instability problem in the implementation. In face
recognition tasks, the classwise covariance matrix Si’s are always singular and
then Ŝc is undefined. Similar to Qin’s solution [4], here we still employ the
named maximum entropy covariance selection (MECS) method [10] to estimate
Si. However, MECS requires the WCS matrix Sw be full rank, which is seldom
satisfied in face recognition. In HW-KDA, the singularity of Sw can be avoided
by selecting p ≤ rank(Sw).

3 Experimental Results

In order to establish the performance of HW-KDA, we carried out a set of
experiments on the multiview UMIST face database [11] which consists of 575
gray-scale images of 20 subjects, each covering a wide range of poses from profile
to frontal views as well as race, gender and appearance. Each image is cropped
to 112 × 92 and then the resulting input vectors are of dimensionality h =
10304. For illustration, some sample images of a typical subject in the UMIST
database are shown in Fig.1. In our experiments, all images are normalized to
have zero mean and unit standard deviation. We select two state-of-the-art kernel
methods for comparison: KPCA as a benchmark and GDA. For each subject, six
images are randomly selected as training samples and the remaining are used for
testing. Thus, we have 120 samples for training while 455 samples for testing. The
nearest center classifier is adopted due to the simplicity. Recognition accuracies
are estimated by using a ten-run average. During the recognition stage, we first
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Fig. 1. Some face samples of one subject from the UMIST face database
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(a) RBF: Accuracy rates vs. σ
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(b) RBF: Accuracy rates vs. N
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(c) polynomial: Accuracy rates vs. d
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(d) polynomial: Accuracy rates vs. N

Fig. 2. Comparative recognition performance

project the testing sample vector x(t) onto the KPCA-transformed space and
then perform the HW-LDA method to extract its feature. The projection y(t)

can be determined by y(t) = (K(t)UΛ−1/2)T , here

K(t) = K̂(t) − 1
′
nK̂ − K̂(t)1n + 1

′
nK̂1n , (6)

where K̂(t) is a 1×n matrix whose elements K̂(t)
1j =k(x(t),xj) and 1

′
n =(1/n)1×n.
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To evaluate the overall performance of the three methods, two typical kernel
functions, RBF kernel k(x,y) = exp(−‖x − y‖2/2σ2) and polynomial kernel
k(x,y) = (x·y+1)d, and a wide range of parameter values are tested. Sensitivity
analysis is performed with respect to the kernel parameters and the number of
used features N . Fig.2 shows the average accuracy rates of the three methods
compared when RBF and polynomial kernels are used. Fig.2(a) and Fig.2(c)
depict the accuracy rates as functions of kernel parameter σ and d respectively
with a predefined N = Np. For KPCA, Np = 100 while for GDA and HW-
KDA, Np = 19. From Fig.2(a) and Fig.2(c), we obtain σopt = 11, dopt = 2.9 for
KPCA, σopt = 76, dopt = 1.1 for GDA and σopt = 31, dopt = 1.2 for HW-KDA.
Then we fix the optimal kernel parameters and vary the number of features N
from 1 to 19. The experimental results are shown in Fig.2(b) and Fig.2(d). It is
easy to conclude that in our experiments, those methods based on discriminant
analysis (GDA and HW-KDA) also perform better than the KPCA method.
Moreover, compared with KPCA and GDA, the proposed HW-KDA can extract
more powerful discriminatory information present in the differences between per
class means and the differences between per class covariance matrices, thereby
achieves the best performance only using a small set of features. It should be also
noted that Fig.2(c) reveals the numerical stability problems existing in practical
implementation of GDA. Comparing the GDA performance to that of HW-KDA
we can easily see that the latter is more stable and predictable.

4 Conclusion

We have developed a novel HW-KDA method for face recognition that combines
kernel-based methodologies with a heteroscedastic LDA technique. The KPCA
technique is first utilized to map the original face patterns to an implicit feature
space, where the highly non-convex and complex distribution of face patterns
is linearized and simplified. Then the heteroscedastic LDA is performed in this
space to extract the nonlinear discriminant features with respect to original
input space. Experimental results indicate that the performance of the HW-
KDA method is overall superior to KPCA and GDA approaches.

Acknowledgements

This work is supported by the Scientific Technology Key Project of Ministry of
Education and Key Project of Chongqing Natural Science Foundation, China.

References

1. Zhao, W., Chellappa, R.,Rosenfeld A., Phillips P. J.: Face Recognition: A Litera-
ture Survey. ACM Computing Survey. 35 (2003) 399–458

2. Loog, M., Duin, R. P. W., Haeb-Umbach, R.: Multiclass Linear Simension Reduc-
tion by Weighted Pairwise Fisher Criteria. IEEE Trans. Pattern Anal. Mach. Intell.
23 (2001) 762–766



Face Recognition Using HW-KDA 205

3. Loog, M., Duin, R. P. W.: Linear Dimensionality Reduction via a Heteroscedastic
Extension of LDA: The Chernoff Criterion. IEEE Trans. Pattern Anal. Mach. Intell.
26 (2004) 732–739

4. Qin, A. K., Suganthan, P. N., Loog, M.: Uncorrelated Heterosecdastic LDA Based
on the Weighted Pairwise Chernoff Criterion. Pattern Recogniton. 38 (2005) 613–
616

5. Vapnik, V.N.: Statistical Learning Theory. John Wiley and Sons, New York (1998)
6. Scholkopf, B., Smola, A., Muller, K.R.: Nonlinear Component Analysis as a Kernel

Eigenvalue Problem. Neural Computation. 10 (1998) 1299–1319
7. Baudatg, G., Anouar, F.: Generalized Discriminant Analysis Using a Kernel Ap-

proach. Neural Computation. 12 (2000) 2385–2404
8. Yang, J., Jin, Z., Yang, J. Y., Zhang, D., Frangi, A. F.: Essence of Kernel Fisher

Discriminant: KPCA Plus LDA. Pattern Recognition. 37 (2004) 2097–2100
9. Belhumeur, P. N., Hespanha, J. P., Kriegman, D. J.: Eigenfaces vs. Fisherfaces:

Recognitin Using Class Specific Linear Projection. IEEE Trans. Pattern Anal. Ma-
chine Intell. 9 (1997) 711–720

10. Thomaz, C. E., Gillies, D. F., Feitosa, R. Q.: A New Covariance Estimate for
Bayesian Classifier in Biometric Recognition. IEEE Trans. Circuit Syst. Video
Technol. 14 (2004) 214–223

11. Graham, D. B., Allinson, N. M.: Characterizing Virtual Eigensignatures for General
Purpose Face Recognition. In: Wechsler, H., Phillips, P. J., Bruce, V., Soulie, F.
F., Huang, T. S. (eds.): Face Recognition: From Theory to Applications. NATO
ASI Series F, Computer and Systems Sciences, Vol. 163. Springer-Verlag, Berlin
Heidelberg New York (1998) 446–456



Class-Specific Discriminant Non-negative Matrix
Factorization for Frontal Face Verification

Stefanos Zafeiriou, Anastasios Tefas, Ioan Buciu, and Ioannis Pitas

Aristotle University of Thessaloniki, Department of Informatics 54124,
Thessaloniki, Greece

{dralbert, tefas, nelu, Pitas}@aiia.csd.auth.gr

Abstract. In this paper, a supervised feature extraction method having both non-
negative bases and weights is proposed. The idea is to extend the Non-negative
Matrix Factorization (NMF) algorithm in order to extract features that enforce not
only the spatial locality, but also the separability between classes in a discriminant
manner. The proposed method incorporates discriminant constraints inside the
NMF decomposition in a class specific manner. Thus, a decomposition of a face
to its discriminant parts is obtained and new update rules for both the weights
and the basis images are derived. The introduced methods have been applied to
the problem of frontal face verification using the well known XM2VTS database.
The proposed algorithm greatly enhance the performance of NMF for frontal face
verification.

1 Introduction

Face recognition/verification has attracted the attention of researchers for more than two
decades and is among the most popular research areas in the field of computer vision
and pattern recognition. The most popular among the techniques used for frontal face
recognition/verification are the subspace methods. The subspace algorithms consider
the entire image as a feature vector and their aim is to find projections (bases) that opti-
mize some criterion defined over the feature vectors that correspond to different classes.
Then the original high dimensional image space is projected into a low dimensional one.
The classification is usually performed according to a simple distance measure in the
final multidimensional space.

Various criteria have been employed in order to find the bases of the low dimen-
sional spaces. Some of them have been defined in order to find projections that best
express the population (e.g. Principal Component Analysis (PCA) [1], NMF [2], Lo-
cal Non-negative Matrix Factorization (LNMF) [3]) without using the information of
how the data are separated to different classes. Another class of criteria is the one that
deals directly with discrimination between classes (e.g. Linear Discriminant Analysis
(LDA) [4]).

A subspace method that aims at finding a face representation by using basis images
without using class information is NMF [2]. The NMF algorithm, like PCA, represents
a face as a linear combination of bases. The difference with PCA is that it does not allow
negative elements in both the basis vectors and the weights of the linear combination.
This constraint results to radically different bases than PCA. On one hand the bases of

S. Singh et al. (Eds.): ICAPR 2005, LNCS 3687, pp. 206–215, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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PCA are eigenfaces, some of which resemble distorted versions of the entire face. On
the other hand the bases of NMF are localized features that correspond better to the
intuitive notions of face parts [2]. An extension of NMF that gives even more localized
bases by imposing additional locality constraints is the so-called LNMF [3].

NMF variants for object recognition have been proposed in [5,6]. Various distance
metrics suitable to NMF representation space have been proposed in [7]. Methods for
initializing the weights and the bases of the NMF decomposition have been proposed in
[8]. Theoretical aspects regarding why NMF gives a unique decomposition of an object
into its parts are provided in [9].

In the proposed technique we incorporate discriminant constraints inside the NMF
decomposition and that way a part based decomposition with enhanced discriminant
power is taken. The introduced method results to a class specific decomposition that is
unique for each facial (person) class. The intuitive motivation behind the class-specific
methods is to find for every face a unique decomposition into its own discriminant parts.
Class- specific discriminant transforms have been also used for discriminant dimension-
ality reduction in the feature vectors of the elastic grids and for discriminant weighting
of their nodes [10,11,12,13]. The introduced algorithm is applied to the frontal face
verification problem using the XM2VTS database.

2 Frontal Face Verification and Subspace Techniques

Let U be a facial image database. Each facial image x ∈ U is supposed to belong to
one of the K facial (person) classes {U1,U2, . . . ,UK} with U =

⋃K
i=1 Ui. For a face

verification system that uses the database U , a genuine (or client) claim is performed
when a person t provides its facial image x, claiming that x ∈ Ur and t = r. When a
person t provides its facial image x and claims that x ∈ Ur, with t 	= r, an impostor
claim occurs. The scope of a face verification system is to handle properly these claims
by accepting the genuine claims and rejecting the impostor ones.

Let the facial image database U be comprised by L facial images xj ∈ F
+, where

+ = [0, +∞) and let the cardinality of each facial class Ur to beNr. A linear subspace
transformation of the original F -dimensional space onto a M -dimensional subspace
(usually M � F ) is a matrix W ∈ M×F estimated using the database U . The new
feature vector x́ ∈ M is given by:

x́ = Wx. (1)

The rows of the matrix W contain the bases of the lower dimension feature space.
The bases matrix W could be the same for all facial classes of the database or could
be unique for each facial class. In case of class-specific image bases, for the reference
person r, the set Ir = U − Ur, that corresponds to impostor images is used in order to
construct the two-class problem (genuine versus impostor class) [11].

After the projection given by (1), a distance metric is chosen in order to measure the
similarity of a test facial image to a certain class. This similarity measure can be the L1
norm, the L2 norm, the normalized correlation or the Mahalanobis distance. In case of
face verification, the algorithm should also learn a threshold on the similarity measure
in order to accept or reject a client/impostor claim.
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3 The NMF Algorithm

In order to apply NMF, the matrix X ∈ F×L
+ = [xi,j ] should be constructed, where

xi,j is the i-th element of the j-th image. In other words the j-th column of X is the uj

facial image. NMF aims to find two matrices Z ∈ F×M
+ = [zi,k] and H ∈ M×L

+ =
[hk,j ] such that,

X ≈ ZH. (2)

The facial image xj after the NMF decomposition can be written as xj ≈ Zhj , where
hj is the j-th column of H. Thus, the lines of the matrix Z can be considered as bases
images and the hj as the weight vector. The hj vectors can also be considered as the
projected vectors of a lower dimensional feature space.

The NMF imposes non-negative constraints in both the elements of zi,k and of hk,j .
Thus, only non-subtractive combinations are allowed. This is believed to correspond
better to the intuitive notion of combining parts of face in order to create a whole one.

One of the algorithms initially proposed for finding the matrices Z and H used the
Kullback-Leibler divergence [14]:

DN(X||ZH) =
∑
i,j

(xi,j ln(
xi,j∑

k zi,khk,j
) +

∑
k

zi,khk,j − xi,j) (3)

as the measure of the cost for factoring X into ZH [14]. The NMF factorization is the
outcome of the optimization:

min
Z,H

DN (X||ZH) subject to (4)

zi,k ≥ 0, hk,j ≥ 0,
∑

i

zi,j = 1, ∀j.

By using an auxiliary function and the Expectation Maximization (EM) algorithm
[14], the following update rules for hk,j and zi,k guarantee a non increasing behavior
of (3). The update rule for the t-th iteration for hk,j is given by:

h
(t)
k,j = h

(t−1)
k,j

∑
i z

(t−1)
i,k

xi,j

l z
(t−1)
i,l h

(t−1)
l,j∑

i z
(t−1)
i,k

(5)

whereas, for the zi,k, the update rule is given by:

z
(t)
i,k = z

(t−1)
i,k

∑
j h

(t)
k,j

xi,j

l z
(t−1)
i,l h

(t)
l,j∑

j h
(t)
k,j

. (6)

Since xj ≈ Zhj , a natural way to compute the projection of xj to a lower dimen-
sional feature space using NMF is x́j = Z†xj . The pseudo-inverse Z† can be calculated
using singular value decomposition methods [15]. In any case, we can not use the coeffi-
cient matrix H computed directly from the update rules (which gives us its values in the
training phase), since we do not have any expression for calculating this representation
for the test images.
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4 The LNMF Algorithm

The idea of NMF decomposition was further extended to the LNMF [3] where ad-
ditional constraints concerning the spatial locality of the bases were employed in the
optimization problem defined in (4).

Let U = [ui,j ] = ZTZ, V = [vi,j ] = HHT , both being M ×M , LNMF aims at
learning local features by imposing the following three additional locality constraints on
the NMF. The first constraint is to create bases that cannot be further decomposed into
more components [3]. This is accomplished by making the bases as sparse as possible
by imposing

∑
i ui,i to be minimal [3].

Another constraint is to make the bases to be as orthogonal as possible, so as to
minimize the redundancy between different bases. This can be imposed by requiring∑

i�=j ui,j to be minimal. Another employed constraint, requires that
∑

i vi,i is maxi-
mized [3].

When the above constraints are incorporated in (3), a new cost function is created
as:

DL(X||ZH) = DN(X||ZH) + α
∑
i,j

ui,j − β
∑

i

vi,i (7)

where α,β > 0 are constants. A solution for the minimization of the cost given in (7)
subject to non-negative constraints, can be found in [3]. In order to ensure that the cost
function (7) is nonincreasing, the following update rules for zi,k and hk,j are employed:

h
(t)
k,j =

√
h

(t−1)
k,j

∑
i

z
(t−1)
i,k

xi,j∑
l z

(t−1)
i,l h

(t−1)
l,j

(8)

ź
(t)
i,k = z

(t−1)
i,k

∑
j h

(t)
k,j

xi,j

l z
(t−1)
i,l h

(t)
l,j∑

j h
(t)
k,j

(9)

z
(t)
i,k =

ź
(t)
i,k∑
l ź

(t)
l,k

. (10)

5 The CSDNMF Algorithm

In this Section discriminant constraints are integrated inside the cost function (3). The
minimization procedure of the new cost function yields a Class-Specific Discriminant
Non-negative Matrix Factorization (CSDNMF) method. In order to formulate the CS-
DNMF decomposition, the facial image vectors of the genuine claims to the reference
person r are in the first Nr = NG columns of the matrix X. Then, the columns from
Nr + 1 to L correspond to impostor claims. The total number of impostor claims is
NI = L − Nr. The coefficient vector hj of the image xj that corresponds to the ρ-th

image of the genuine class will be denoted as η
(G)
ρ . If the facial vector xj is the ρ-th im-

age of the impostor class then the corresponding coefficient vector hj will be denoted

as η
(I)
ρ .
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Let a distance metric (e.g. the L2 norm) be used in order to quantify the similarity
of a test facial image vector xj to a given facial class. It sounds reasonable to require
that the feature vectors corresponding to the genuine class, should have great similarity
(small distance metric value), while the feature vectors of the impostor class should
have small similarity (large distance metric value).

In order to define the similarity of the projection hj of the facial image xj to a given
class r in the feature space of the coefficients, the L2 norm can be used as:

dr(hj) = ||hj − μ(G)||2 (11)

where μ(G) is the mean vector of the vectors η
(G)
ρ . In the reduced feature space of the

vectors hj we demand that the similarity measures dr(η
(I)
ρ ) (impostor similarity mea-

sures) to be maximized while minimizing the similarity measures dr(η
(G)
ρ ) (genuine

similarity measures). Then the optimization problem for the class r is the maximiza-
tion of:

1
NI

∑
xj∈Ir

dr(hj) =
1
NI

NI∑
ρ=1

||η(I)
ρ − μ(G)||2 = tr[Wr], (12)

where Wr = 1
NI

∑NI

ρ=1(η
(I)
ρ −μ(G))(η(I)

ρ −μ(G))T . The second optimization problem
is the minimization of:

1
NG

∑
xj∈Ur

dr(hj) =
1
NG

NG∑
ρ=1

||η(G)
ρ − μ(G)||2 = tr[Br], (13)

where Br = 1
NG

∑NG

ρ=1(η
(G)
ρ −μ(G))(η(G)

ρ −μ(G))T . We impose these two additional
constraints in the cost function given in (4) as:

Dc(X||ZrHr) = DN (X||ZrHr) + ζtr[Br] − θtr[Wr] (14)

where ζ, θ > 0 are constants. The minimization of (14) gives a person specific decom-
position (different bases Zr for each reference face class r).

In order to derive the coefficients of CSDNMF we have used an auxiliary function
similar to those used in the EM algorithm in [14]. Let G be an auxiliary function for
Y (F) if G(F,F(t−1)) ≥ Y (F) and G(F,F) = F. If G is an auxiliary function of
Y , then Y is nonincreasing under the update Ft = arg minFG(F,F(t−1)). Let r be
the reference facial class, we can prove that Gc(H,H(t−1)) is an auxiliary function of
Yc(H) = Dc(X||ZrHr), where Gc(H,H(t−1)) is given by:

Gc(H,H(t−1)) =
∑

i

∑
j(xi,j lnxi,j − xi,j)+

+
∑

i

∑
j

∑
k

zi,kh
(t−1)
k,j

l zi,lh
(t−1)
l,j

(ln(zi,khk,j) − ln
zi,kh

(t−1)
k,j

l zi,lh
(t−1)
l,j

)+

+
∑

i

∑
j

∑
k zi,khk,j + ζtr[Br] − θtr[Wr].

(15)
It is straightforward to show that Gc(H,H) = Yc(H). In order to prove that

Gc(H,H(t−1)) ≥ Yc(H) since, ln(
∑

k zi,khk,j) is convex, the following inequality
holds:

− ln(
∑

k

zi,khk,j) ≤ −
∑

k

ak ln
zi,khk,j

ak
(16)



Class-Specific Discriminant NMF for Frontal Face Verification 211

for all non-negative ak that satisfy
∑

k ak = 1. By letting ak =
zi,kh

(t−1)
k,j

l zi,lh
(t−1)
l,j

we obtain:

− ln(
∑

k

zi,khk,j) ≤
∑

k

zi,kh
(t−1)
k,j∑

l zi,lh
(t−1)
l,j

(ln(zi,khk,j) − ln
zi,kh

(t−1)
k,j∑

l zi,lh
(t−1)
l,j

). (17)

From (17) it is straightforward to show that Gc(H,H(t−1)) ≥ Yc(H). Thus,
Gc(H,H(t−1)) is an auxiliary function of Yc(H).

In this decomposition we have two different update rules. One for the genuine class
and one for the impostor class. For l = 1, . . . ,NG (genuine class) the update rules for

the coefficients hk,l for the reference person r are given by letting ∂Gc(H,H(t−1))
∂hk,l

= 0.
Then,

∂Gc(H,H(t−1))
∂hk,l

= −∑
i xi,l

zi,kh
(t−1)
k,l

n zi,nh
(t−1)
n,l

1
hk,l

+
∑

i zi,k+

+2ζ(hk,l − μ
(G)
k ) 1

NG
− 2θ(μ(G)

k − μ
(I)
k ) 1

NG
= 0.

(18)

The quadratic equation (18) is expanded as:

−∑
i xi,l

zi,kh
(t−1)
k,l

n zi,nh
(t−1)
n,l

+ (1 − (2ζ + 2θ) 1
NG

( 1
NG

∑
λ,λ�=l hk,λ) + 2θ 1

NG
μ

(I)
k )hk,l+

+ 1
NG

(2ζ − (2ζ + 2θ) 1
NG

)h2
k,l = 0.

(19)
By solving the quadratic equation (19) the update rules for the hk,l of the genuine class
are:

hk,l =
T +

√
T 2 + 4 1

NG
(2ζ − (2ζ + 2θ) 1

NG
)h(t−1)

k,l

∑
i z

(t−1)
i,k

xi,j

n z
(t−1)
i,n h

(t−1)
n,l

2 1
NG

(2ζ − (2ζ + 2θ) 1
NG

)
(20)

where T is given by:

T = (2ζ + 2θ)
1
NG

(
1
NG

∑
λ,λ�=l

hk,λ) − 2θ
1
NG

μ
(I)
k − 1. (21)

The update rules for the coefficients hk,l for the impostor class of the reference

person r are given by letting ∂Gc(H,H(t−1))
∂hk,l

= 0:

∂Gc(H,H(t−1))
∂hk,l

= −
∑

i

xi,l

zi,kh
(t−1)
k,l∑

n zi,nh
(t−1)
n,l

1
hk,l

+
∑

i

zi,k−2
1
N I

θ(hk,l−μ
(G)
k ) = 0

(22)
where j = NG + 1, . . . ,L. By solving the quadratic equation (22) the update rules for
the hk,l are given by:

hk,l =
2θμ(G)

k +NI +
√

(2θμ(G)
k +NI)2 − 8NIθh

(t−1)
k,l

∑
i z

(t−1)
i,k

xi,j

n z
(t−1)
i,n h

(t−1)
n,l

4θ
.

(23)
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It can be easily proven that the update rules for the bases matrix Zr = [zi,k] for the
reference person r are given by:

z
(t)
i,k = z

(t−1)
i,k

∑
j h

(t)
k,j

xi,j

l z
(t−1)
i,l

h
(t)
l,j∑

j h
(t)
k,j

(24)

and

z
(t)
i,k =

z
(t)
i,k∑
l z

(t)
l,k

. (25)

When someone claims that a test image x corresponds to a reference facial class r, then
x is projected using the Z†

r matrix as x́ = Z†
rx.

6 Experimental Results

The experiments were conducted in the XM2VTS database using the protocol described
in [16]. The images were aligned semi-automatically according to the eyes position
of each facial image using the eye coordinates. The facial images were down-scaled
to 64 × 64 resolution. Histogram equalization was used for normalizing the facial
images. The XM2VTS database provides two experiment setups namely, Configura-
tion I and Configuration II [16]. Each Configuration is divided in three different sets
the training set, the evaluation set and the test set. The training set is used to create
client and impostor models for each person. The evaluation set is used to learn the
thresholds.

The training set of the Configuration I contains 200 persons with 3 images per
person. The evaluation set contains 3 images per client for genuine claims and 25
evaluation impostors with 8 images per impostor. Thus, evaluation set gives a total
of 3 × 200 = 600 client claims and 25 × 8 × 200 = 40.000 impostor claims. The
test set has 2 images per client and 70 impostors with 8 images per impostor and
gives 2 × 200 = 400 client claims and 70 × 8 × 200 = 112.000 impostor claims.
In the training set the matrices of the basis images for NMF and LNMF decomposi-
tions are learned. These matrices are common for all persons. In case of CSNMF the
training set is used for calculating for each reference person r a different set of bases
for feature selection. For visual comparison a number of 25 images for the NMF, the
LNMF and the proposed CSDNMF (for the first person in the training set) are given in
Figure 1.

The facial images have been projected using these bases into a low dimensional
feature space and the normalized correlation was used in order to define the similarity
measure between two faces as:

D(xr,xt) =
x́T

r x́t

||x́r|||x́t|| (26)

where xr and xt are the reference and the test facial image respectively, while x́r and
x́t are their projections to one of the subspace.
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(a) (b) (c)

Fig. 1. A set of 25 bases images for (a) NMF, (b) LNMF and (c) CSDNMF
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Fig. 2. EER as a function of feature dimension

The similarity measures for each person, calculated in both evaluation and training
set form the distance vector d(r). The elements of the vector d(r) are sorted in de-
scending order and are used for the person specific thresholds on the distance measure.
Let TQ(r) denote theQ-th order statistic of the vector of distances, d(r). The threshold
of the person r is chosen to be equal to TQ(r). Let x1

r, x2
r and x3

r be the 3 instances
of the person r in the training set. A claim of a person (with a facial image xt) to the
identity r is considered valid if maxj{D(xj

r,xt)} < TQ(r). Obviously when varying
Q, different pairs of False Acceptance Rate and False Rejection Rate can be created and
that way a Receiver Operating Characteristic (ROC) curve is produced and the Equal
Error Rate (EER) can be measured [11,16].

The performance of the NMF, LNMF and CSDNMF algorithms for various feature
dimensions in the test set of Configuration I is illustrated in Figure 2. The best EER
achieved for CSDNMF is 3.4% when more than 110 dimensions are kept. The best
EER for NMF and LNMF is more than 8%. That is, a decrease of more than 4% in
terms of EER has been achieved.
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7 Conclusions

We incorporated discriminant constraints in the cost of NMF decomposition in order
to extract class-specific discriminant non-negative decomposition. We solved the new
optimization problem by developing update rules for both the weighting coefficients
and the bases. We applied the new decomposition to frontal face verification where
better performance than NMF and LNMF has been achieved.
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Abstract. For databases of facial images, where each subject has only
a few images, the query precision of interactive retrieval suffers from
the problem of extremely small class sizes. A novel method is proposed
to relieve this problem by applying partial relevance to the interactive
retrieval. This work extends an existing content-based image retrieval
system, PicSOM, by relaxing the relevance criterion in the early rounds
of the retrieval. Moreover, we apply linear discriminant analysis as a
preprocessing step before training the Self-Organizing Maps (SOMs) so
that the resulting SOMs have stronger discriminative power. The results
of simulated retrieval experiments suggest that for semantic classes such
as “black persons” or “bearded persons” the first image which depicts the
target subject can be obtained three to six times faster than by retrieval
without the partial relevance.

1 Introduction

Most existing face recognition systems (e.g. [6]) require the user to provide a
starting image, which is however not practical e.g. when searching for a criminal
based on a witness’ powers of recall. To address this problem, some interactive
facial image retrieval systems such as [1,7] have been proposed, which are mainly
based on learning the relevance feedback from the user. A query is performed
in multiple rounds and usually aims at retrieving all subject hits, i.e. the images
that depict a specific subject.

The early appearance of the first subject hit is critical for the success of
the retrieval. Unlike content-based image retrieval (CBIR) systems based on
general images, the query precision on facial images suffers from the problem of
extremely small sizes of the subject classes [7]. If only images that depict the
correct person are regarded as relevant, many pages of only non-relevant images
would be displayed. Because the negative responses from the user in the early
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rounds provide little semantic information, the iteration progresses in a nearly
random manner.

In practice, a human user seldom uses the subject classes as the sole relevant
criterion in facial image retrieval. Instead, she may exploit some partial knowl-
edge of the target subject, e.g. gender or race, to track down the first subject
hit. The partial knowledge of an aspect probably divides the whole collection
into several semantic classes, and the search target can be characterized by only
one or an intersection of some such semantic classes. This provides a secondary
level of relevance, which is helpful for reducing the number of displayed images
in the retrieval.

In this paper we propose a novel method which adaptively learns partial
relevance during the interactive retrieval. First, we extend our existing PicSOM
CBIR system [7] by replacing the membership of a subject class with that of a
semantic class as the new relevance criterion until the first subject hit appears.
Second, we apply supervised learning as a preprocessing step before training
the Self-Organizing Maps (SOMs) so that the resulting SOMs have stronger
discriminative power. The empirical results show that the number of displayed
images can be significantly reduced by employing these two strategies.

2 SOMs in Image Indexing and Retrieval

The PicSOM system [7] employs the Self-Organizing Map to learn the relevance
feedback from the user. After training a SOM with low-level visual features
extracted from the images, its map units are associated with the images of the
database by locating the best-matching map unit (BMU) for each image. The
SOM training preserves the topology in the original feature space, which in image
retrieval means that mutually similar images are connected to topologically near
map units.

In each round of the image query, the PicSOM system presents the user a
set of facial images. The user marks images that she considers relevant, and
the remaining ones are implicitly regarded as non-relevant. The SOM units are
awarded a positive score for every relevant image mapped in them. These scores
appear as attached positive impulses on the SOM surface. Likewise, associated
non-relevant images result in negative scores and impulses. Let us denote the
cumulative sets of relevant and non-relevant images up to query round r on mth
SOM as D+(r, m) and D−(r, m), respectively. For the kth map unit, we obtain
the following response:

x[k]rm =
1

|D+(r, m)|
∑

i∈D+(r,m)

δ(cm(i), k) − 1
|D−(r, m)|

∑
i∈D−(r,m)

δ(cm(i), k), (1)

where cm(i) denotes the BMU of the image i on the mth SOM. This way, we
obtain a zero-sum sparse value field on every SOM in use. Afterwards, the Pic-
SOM system spreads the responses to the neighboring units and their associated
images by applying a low-pass convolution over the SOM surface. Figure 1 illus-
trates how the positive and negative responses are first mapped on a 16×16-sized
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⇒

Fig. 1. An example of how a SOM surface is convolved with a window function. Left:
the selected and rejected images are shown with white and black marks, respectively.
Right: the convolution result, where relevance information is spread around the centers.

SOM to produce the sparse value field and how the responses are expanded in
the convolution.

More than one feature can be involved simultaneously and the PicSOM sys-
tem has a separate trained SOM for each. The convolutions provide implicit
feature weighting because SOMs which match the user’s expectations and im-
pression of image similarity – and thus produce areas or clusters of high positive
response – will produce larger score values than the others. The total scores
for the candidate images are then obtained by simply summing up the mapwise
values in their BMUs. Finally, a number of unseen images with the highest total
scores are displayed to the user in the next round.

3 Partial Relevance for First Subject Hit

Most interactive facial image retrieval tasks aim at finding all images of a given
subject. This procedure can be seen to consist of two stages. The goal of the first
is retrieve the first subject image, and the remaining hits are obtained in the sec-
ond stage. In this section we discuss two strategies for improving the query per-
formance in the first stage, i.e. speeding up the appearance of the first subject hit.

3.1 Relevance Criterion in Two Stages

We identify two relevance criteria in interactive facial image retrieval: subject
relevance for the membership in the precise target subject class and partial rele-
vance for the membership in a wider semantic class. The first criterion represents
the ultimate query goal while the second corresponds to a certain property of
the target subject. The following query procedure illustrates how a user might
look for an image of a specific Asian person:

1. The system displays a random set of images;
2. If one of the subject hits appears, the first stage terminates; otherwise goto

step 3;
3. The user marks the images that depict Asian people as relevant, while leaving

the others unmarked;
4. The system applies the retrieval algorithm described in Section 2, and dis-

plays the images with the highest scores; goto step 2.
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(a)

(b)

(c)

Fig. 2. A query example of looking for a specific Asian man: (a) the target subject;
(b) the screen shot of the query in the first round, where the images are randomly
selected from the database, and the user marks the images which are partially relevant
as depicting Asian persons; (c) the third round, where more images of Asian people
are shown and the first subject hit appears (1st row, 4rd column).
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Figure 2 visualizes the above procedure for a specific subject. Notice that
the example image of the target subject is not input to the system because
that information only exists in the mind of the user. PicSOM learns the partial
relevance of the displayed images and steers the query towards the target.

In the simulation experiments of the previous study [7], we used the subject
relevance throughout the interactive retrieval, which led to only mediocre preci-
sion. We now replace the subject relevance with the partial relevance in the first
stage. This simulates the user’s ability of exploiting partial knowledge, which in-
creases the probability of the occurrence of a relevant image and provides more
information for the feedback learning.

3.2 Discriminative Self-organizing Maps

Some small semantic classes, such as the existence of beard, play a significant
role in recognizing a person. The improvement, however, is only limited for these
classes if the underlying SOMs are not specially devised for the partial relevance
feedback. In this subsection we present a novel strategy that further speeds up
the appearance of the first subject hit for small semantic classes by replacing
the original SOMs with a Discriminative Self-Organizing Map (DSOM).

A DSOM is a Self-Organizing Map for a specific aspect in which the semantic
classes are densely spread in nearly separate areas on the SOM. Figure 3 visual-
izes an example DSOM of two semantic classes, mustache yes and mustache no.

Different ways for obtaining a DSOM exist. In this paper, we apply Fisher’s
linear discriminant analysis (LDA) [2] as a preprocessing step before training
the SOMs. Let B denote the between-class covariance matrix and W the within-
class covariance matrix. The projection matrix U can be obtained by using the
singular value decomposition algorithm

[U,S,V] = svds(W−1B,K − 1), (2)

where K is the number of classes. Afterwards, the LDA-preprocessed feature
vectors are projected to the (K−1)-dimensional subspace by multiplying with U.
The normal SOM training is then performed in the subspace to generate the

Fig. 3. A 64 × 64 DSOM example shown on the left. The white points represent the
class members of mustache yes and black points for mustache no. The normal SOM
without discriminative preprocessing is shown on the right for comparison.
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DSOM. If more than one feature contributes to identifying the semantic class, the
training samples are obtained by concatenating the LDA vectors from different
features before input to the SOM training procedure.

Through the LDA preprocessing, the images of a semantic class are very likely
connected to map units that situate nearby. If some images in the semantic class
are displayed and marked as relevant, the relevance feedback learning algorithm
on the DSOM will probably award higher scores to the other images of the same
class, and then show these images to the user in the imminent rounds.

In the interactive retrieval, the user first needs to choose one of the offered
aspects such as gender, race, etc, and the system loads the respective DSOM.
The query procedure is the same as the one described in the previous section
except that the relevance feedback learning algorithm operates on the DSOM
instead of the original SOMs.

4 Experiments

4.1 Data

We have used the FERET database of facial images collected under the FERET
program [4]. After face segmentation, 2409 frontal facial images (poses “fa” and
“fb”) of 867 subjects were stored in the database for the experiments. The num-
ber of images belonging to a subject varies from one to twenty, the statistics
of which are shown in Table 1. We used the ground truth data of five aspects
from the FERET collection for computing the LDA projection matrices. The
statistics of the respective semantic classes are shown in Table 2.

In our experiments the coordinates of the facial parts (eyes, nose and mouth)
were obtained from the ground truth data of the FERET collection, with which
we calibrated the head rotation so that all faces are upright. Afterwards, all
face boxes were normalized to the same size, with fixed locations for the left eye
(31,24) and the right eye (16,24) in accordance to the MPEG-7 standard. The
box sizes of the face and facial parts are shown in the second column of Table 3.

After extracting the raw features within the boxes mentioned above, we ap-
plied singular value decomposition to obtain the eigenfeatures of the face and
facial parts [5]. The numbers of principle components preserved are shown in the
third column of Table 3.

Table 1. Histogram of cardinality of subject classes

cardinality of subject class number of subjects
1 2
2 632
3∼4 164
5∼6 42
7∼20 27

average: 2.78 total: 867
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Table 2. Statistics of the aspects and respective semantic classes

aspect semantic classes(images/subjects)
race white(1541/558) Asian(388/131) black(199/72) misc(371/106)
gender male(1495/501) female(914/366)
glasses yes(262/126) no(2147/741)
mustache yes(256/81) no(2153/786)
beard yes(144/51) no(2265/816)

whole database 2409/867

Table 3. Specification of the used facial features

feature name normalized size eigenfeature dimensions
face 46×56 48

left eye 24×16 10
right eye 24×16 10

nose 21×21 10
mouth 36×18 13

4.2 Discriminative Power Measurement of DSOM

First we analyzed the discriminative power of the Self-Organizing Maps without
performing actual queries. We adopted the ρ measurement [3], which is based
on the normalized spatial entropy of the class distribution on a SOM surface
because it takes the map topology into account.

Let XC
s denote the number of images of a given class C connected to the sth

map unit of a SOM, and suppose the cardinality of C is NC . The probability
histogram is then written as P (s) = XC

s /NC . The entropy of {P (s)}s=0,...,M−1
can be given by

H = −
M−1∑
s=0

P (s) log P (s) , (3)

where M is the size of the SOMs, 64 × 64 = 4096 in our experiments.
However, the topology of the map becomes more significant as the size of the

SOM is increased. With larger SOMs, the measure is thus less informative as
the number of images sharing a BMU becomes overly small. To overcome this
drawback, spatial entropy takes the spatial properties of the distribution over a
large SOM into account. Suppose G is the maximum value of XC

s over s. The
spatial entropy is then given by

Hsp = −
∑
m

G∑
i=0

P (i, Is=m) logP (i|Is=m) , (4)

where Is =
∑

t∈Ns
XC

t is the number of images that have been mapped to a
predefined neighborhood of s, denoted by Ns. In our experiments Ns was the
9 × 9 rectangular region surrounding s. A normalized performance measure is
then obtained by
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Table 4. Resulting ρ values for different aspects using the DSOMs constructed by the
various features

semantic classes face left eye right eye nose mouth concatenated
white 0.07 (0.02) 0.06 (0.02) 0.09 (0.05) 0.02 (0.03) 0.06 (0.04) 0.11
Asian 0.17 (0.06) 0.18 (0.12) 0.11 (0.14) 0.11 (0.09) 0.08 (0.08) 0.26
black 0.27 (0.17) 0.13 (0.12) 0.13 (0.11) 0.13 (0.09) 0.31 (0.23) 0.44
male 0.17 (0.12) 0.08 (0.04) 0.09 (0.05) 0.06 (0.03) 0.08 (0.03) 0.21

female 0.16 (0.12) 0.10 (0.08) 0.08 (0.09) 0.05 (0.04) 0.09 (0.07) 0.23
glasses yes 0.20 (0.03) 0.19 (0.16) 0.20 (0.24) 0.22 (0.23) — 0.32
glasses no 0.06 (0.02) 0.10 (0.04) 0.06 (0.05) 0.09 (0.09) — 0.10

mustache yes 0.30 (0.08) — — 0.14 (0.14) 0.37 (0.31) 0.39
mustache no 0.03 (0.02) — — 0.04 (0.04) 0.04 (0.04) 0.03
beard yes 0.52 (0.08) — — — — 0.52
beard no 0.04 (0.02) — — — — 0.04

ρ = 1 − Hsp

H
. (5)

The ρ measure is zero for a completely random distribution since the neigh-
borhood does not provide any information about the number of data points
mapped to a map unit. Conversely, ρ is near one for a highly localized distrib-
ution. Table 4 shows the resulting ρ values of the DSOMs. For comparison, we
also show in parentheses the ρ values for the SOMs trained without the LDA
preprocessing.

As expected, the LDA projection enhances the discriminative power for
nearly all the resulting SOMs. This is especially significant for the face feature,
probably because the classes in the high-dimensional representation are not well
separated with the Euclidean metric. A further enhancement is obtained by
concatenating the projected components of the individual features.

4.3 Retrieval Experiments

Suppose N and S are the number of all images and the cardinality of the target
subject class, respectively. Let j denote the random variable for the position of
the first subject hit when using random retrieval. It is not difficult to prove that
the mean of j is E{j} = (N −S)/(S+1). Thus the improvement compared with
the random retrieval can be quantified by the following first subject hit advantage
(FSHA) measurement:

FSHA(i;N,S) =
E{j}

i
=

N − S

i · (S + 1)
, (6)

where i ∈ {0, 1, . . . ,N − S} is the position of the first subject hit using the
improved retrieval. FSHA equals one when the retrieval is done in a random
manner and increases when the retrieval is able to return the first relevant image
earlier. For example, it equals two when the first subject hit occurs in the position
whose index is half of the expected index in the random retrieval.



224 Z. Yang and J. Laaksonen

beard_yes black mustache_yes glasses_yes Asian female male white glasses_no mustache_no beard_no
0

1

2

3

4

5

6
F

S
H

A

original
original+relax
DSOM+relax

Fig. 4. The FSHAs of the retrieval experiments, where the semantic classes are ordered
by their sizes. The results using the original retrieval algorithm are shown as the left
bar (black) for comparison.

First, we conducted a set of experiments to test the query performance by
only relaxing the relevance criterion. Each experiment iterates over every image
I in a particular semantic class C. In each loop the retrieval goal for the first
stage is to search an image I ′ which depicts the same subject as I does, by using
C as the relevance criterion. The position of the first subject hit was recorded and
used to compute the FSHA. The median FSHAs for different semantic classes
are shown as the middle bars (gray) of each group in Figure 4.

Second, we examined the improvement by using both DSOM and relaxing
the relevance criterion. The FSHAs were estimated by a 20-fold cross-validation
of the subjects. The median FSHA values are shown as the right bar (white) of
each group in Figure 4.

It can be seen that all the FSHAs of the original query procedure without
partial relevance are very close to unity. By only relaxing the relevance criterion,
the FSHAs for the seven smallest semantic classes soars up, ranging from 2.1
to 5.6. Further improvement can be obtained by learning the partial relevance
with the DSOM, especially for the classes beard yes and mustache yes. The
highest FSHA, 5.8, is achieved for the semantic class black. In addition, the
improvement for the smallest classes by using DSOM confirms the static results
by the ρ measurement in Table 4. Significant increase of FSHAs can be achieved
by using those DSOMs which have ρ > 0.2.

5 Conclusions and Future Work

We proposed an approach to speed up the appearance of the first subject hit in
interactive facial image retrieval by exploiting partial relevance. The semantic
information about the target subject is gradually learned during the user inter-
action procedure. Although SOM is not as good as some dedicated classification
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techniques, the proposed technique, DSOM, has the distinguished advantage
that it softly uses the labeled data and can be readily integrated into the frame-
work of interactive retrieval. The technique in this paper can easily be extended
to the interactive CBIR on other types of image collections.

We employed LDA in this paper because it is simple and stable. LDA mod-
els each class with a single Gaussian distribution and all semantic classes of
one aspect share a same within-class covariance matrix. In recent years many
research findings have extended LDA to more complicated distributions. Some
more advanced methods will be incorporated for further improvement. Moreover,
we constructed a DSOM by applying supervised learning as a preprocessing step
before the normal SOM training. An alternative approach would be to replace
the Euclidean distance in SOM training with the Riemannian metric learned
from the discriminative information. In addition, the current binary relevance
feedback interface of PicSOM only supports the use of a single aspect, and in the
future we shall extend the design to accommodate the parallel use of multiple
aspects and DSOMs.
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Abstract. This paper presents a new approach to efficient and effective per-
sonal identification for the security of network access by combining techniques
in biometrics and mobile computing. To overcome the limitations of the existing
password-based authentication services on the Internet, we propose a dynamic
feature selection scheme to extract multiple personal features and integrate them
in a hierarchical structure for fast and reliable identity authentication. To increase
the speed and flexibility of the process, we use mobile agents as a navigational
tool for parallel implementation in a distributed environment, which includes hi-
erarchical biometric feature extraction, multiple feature integration, dynamic bio-
metric data indexing and guided search.

Keywords: Biometrics computing, feature extraction and indexing, guided
search, identity authentication and verification, mobile computing.

1 Introduction

It is very important to authenticate individuals in the various domains of today’s auto-
mated, geographically mobile and increasingly electronically wired information society
[1]. However, the traditional security measures such as passwords, PIN (Personal Identi-
fication Number) and ID cards can barely satisfy the strict security requirements because
the use of passwords, PINs and ID cards is very insecure (i.e., they can be lost, stolen,
forged or forgotten). Biometric technology provides a totally new and yet an effective
solution to authentication, which changes the conventional security and access control
systems by recognising individuals based on their unique, reliable and stable biological
or behavioral characteristics [2] [3]. To meet the challenge and immediate need for a high
performance Internet authentication service, we apply biometrics computing technology
to achieve fast and reliable personal identification. Considering the reliability and the
convenience of biometric data collection from users, four biometric features (i.e., finger-
prints, palmprints, hand geometry and face) are used in our proposed system. We adopt
a dynamic feature selection scheme for the application-oriented authentication tasks.

It is very important to access and retrieve an individual’s biometrics information
from large data collections that are distributed over large networks. However, it is diffi-
cult to have a uniform search engine that suits various needs.In this paper, we use mobile
agents as a navigational tool for a flexible approach to index and search distributed bio-
metrics databases, which can 1) simultaneously extract useful biometrics information
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from different data collection sources on the network, 2) categorize images by using an
index-on-demand scheme that allows users to set up different index structures for fast
search, and 3) support a flexible search scheme that allows users to choose effective
methods to retrieve image samples.

Although biometrics databases are distributed, most of the current research on bio-
metrics computing has been focused on a single-machine-based system. In order to
effectively index and search for images with specific features among distributed im-
age collections, it is essential to have a sort of “agent” that can be launched to create
an index based on specific image feature or to search for specific images with a given
content. In this paper, we use mobile agents as a tool to achieve network-transparent
biometrics indexing and searching.

In addition, we introduce a new system structure for dynamic allocation of mo-
bile agents using on-line task scheduling to address the limitations of the current ap-
proaches and to achieve greater flexibility. The proposed multi-agent system structure
is enhanced by push-based technology [4].

2 Fundamentals of Biometrics Computing

2.1 Wavelet Based Multiple Feature Extraction

In contrast to the existing approaches which extract each biometric feature individu-
ally, we introduce a hierarchical approach for multiple biometrics feature representa-
tion and integration. We categorize the biometric features into three classes based on
their nature ( ı.e., texture feature, shape feature and frequency feature). We then apply
a wavelet-based scheme to combine the different feature classes based on their wavelet
coefficients. The following highlights the extraction of texture and shape features.

Texture features can be represented by the related wavelet coefficients. If an image
is decomposed into three wavelet layers, there will be ten sub-images. For each sub-
image, the standard deviation of the wavelet coefficients is calculated to represent its
texture feature component. Consequently, ten standard deviations, corresponding to ten
sub-images, are used as the texture representation for the image.

Shape features can be represented in a hierarchical fashion by extending the con-
ventional spline snake model and moments measurement. The original image is de-
composed into a series of sub-band images via the wavelet transform. At each level,
a B-spline curve, the so-called spline snake, is determined to link the image boundary
feature points. In addition, we also apply a wavelet transform to decompose the original
image into a collection of sub-bands ranging from low to high resolutions. The related
first-, second- and third-normalized central moments for each sub-image are computed
and the average values (within the same moment category) for all sub-bands are used
as the individual shape feature components.

2.2 Dynamic Biometrics Feature Indexing

We propose a wavelet-based biometrics image hierarchy and a multiple feature inte-
gration scheme to facilitate the dynamic biometrics indexing. Our approach is char-
acterized as follows. 1) To apply wavelet transforms to decompose a given biometric
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image into three layers of 10 sub-images. 2) To use the mean of the wavelet coefficients
in three layers as the global feature measurements with respect to texture and shape,
and then index them as tabular data in a global feature summary table. 3) To calculate
the mean of the wavelet coefficients of the sub-band images (horizontal, vertical and
diagonal) in different layers as local biometrics information, and then index them as
tabular data in a local biometrics summary table. 4) To detect the interesting points of
the objects in the original image and then store them in a table for fine match.

To achieve dynamic indexing and flexible similarity measurement, a statistically-
based feature-selection scheme is adopted for multiple feature integration. Our algo-
rithm extends the use of the Symmetrical Tau criterion [5] to guide the process of
combining multiple biometrics features for retrieval. The combination process involves
the normalization of feature components in each feature vector and the adjustment
of weights for each component. Instead of using individual features to calculate the
corresponding Tau as initially defined, we use the combined feature vector to obtain
the relevant Tau. Such a process is iteratively repeated by dynamically adjusting the
weights associated with each feature component: 1) Identify all of the individual fea-
tures to be used for retrieval and obtain their feature vectors. For n features fi (i =
0, 1, ..., n − 1), there will be n individual feature vectors Vi (i = 0, 1, ..., n − 1).
2) Apply Gaussian normalization to the above feature vectors. 3) Initialize a set of
weights αi (i = 0, 1, ..., n − 1) and obtain its corresponding combined feature vector
Vc =

∑n−1
i=0 αiVi. 4) Calculate the corresponding Tau using the following formula:

Tau =

∑J
j=1

∑I
i=1

P (ij)2

P (+j) +
∑I

i=1
∑J

j=1
P (ij)2

P (i+) − SUM

2 − SUM
(1)

where the contingency table has I rows and J columns; P (ij) is the probability that a
variable belongs both to row category and to column category j; P(i+) and P(+j) are
the marginal probabilities in row category i and column category j, respectively, and
SUM = I

i=1 P (i+)2 + J
j=1 P (+j)2. 5) Adjust the set of weights, and obtain a new

combined feature vector V’c and calculate the corresponding Tau. 6) Repeat Step 5 for
all of the given adjustment weight sets. 7) Find the maximum value of Tau from the
sequences of Tau obtained in the previous stage. 8) Choose the combined feature with
the maximum Tau value.

2.3 Guided Search

A key issue in biometrics-based verification and identification is feature matching,
which is concerned with verifying and identifying the biometrics features that best
match a query sample provided by a user. The conventional approaches often use fixed
matching criteria to select the candidate images. By contrast, we propose using selec-
tive matching criteria that are associated with a user’s query for more flexible search.
Our system supports two types of queries: a) to pose a query by using a sample image,
and b) to use a simple sketch as a query.

In the case of query by using a sample image, the search follows the process of
multiple feature extraction and image similarity measurement that was described in the
previous sections. Based on the nature of the query image, the user can add additional
component weights during the process of combining image features for image similarity
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Fig. 1. Structure of hierarchical image matching

measurement. In the case of query by using a simple sketch provided a user, we apply
a B-spline based curve matching scheme to identify the most suitable candidates from
the image database. The goal here is to match and recognize the shape curves that were
selected in the previous stage. These candidate curves are then modeled as B-splines
and the matching is based on comparing their control points (such as the ordered corner
points obtained from boundary tracing at the initial stage ). Such a process involves
the following steps: 1) projective-invariant curve models: uniform cubic B-splines, 2)
iterative B-spline parameter estimation, and 3) invariant matching of the curves. In the
case of a query by using a sample image, we use an image component code in terms
of texture and shape to guide the search for the most appropriate candidates from a
database at a coarse level, and then apply image matching at a fine level for the final
output. Fig. 1 shows the structure of the proposed hierarchical matching.

3 Parallel Biometrics Computing Using Mobile Agents

Our wavelet-based hierarchical image matching scheme implemented using parallel vir-
tual machine (PVM) is an original contribution[6]. That algorithm is extended



230 J. You et al.

using mobile agents in this work. In contrast to the conventional parallel implemen-
tation where either dedicated hardware or software are required, the parallel imple-
mentation of our biometrics-based personal identification algorithms is carried out by
using mobile agents in a distributed computing environment. A mobile agent is an au-
tonomous software entity which is capable of migrating autonomously from one host
to another, making its requests to a server directly and performing tasks on behalf of
its master. Some of the advantages of this model are better network bandwidth usage,
more reliable network connection and reduced work in software application design [7].
To achieve flexibility and efficiency, we propose a multi-agent system with a hybrid
agent computing paradigm. There are two classes of agents: global agents and local
agents. The global agents handle inter-image coordination, query processing and rea-
soning. Each global agent may consist of a few sub-agents. The following list describes
the five global agents and their associated sub-agents that are proposed in our system: 1)
Coordinator Agent which coordinates other global agents and image agents, 2) Query
Agent which processes users’ complex queries using three sub-agents including query
understanding, query reasoning and query feature formation. 3) Wavelet Agent which
generates wavelet coefficients for multiple feature representation and integration using
three sub-agents such as wavelet transform, feature representation and feature integra-
tion. 4) Verification/Identification Agent which performs hierarchical feature matching
for identity verification and identification using two sub-agents responsible for match-
ing criterion selection feature matching. 5) User Interface Agent which manages all

Fig. 2. Mobile Agent architecture model
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user interactions. In addition, the local agents are referred to as Image Agents, which
are responsible for performing relevant biometrics computing tasks on each individual
image. This proposed agent architecture model is illustrated in Fig. 2. Together with
Fig. 1, one can see that a parallel computing is naturally implemented.

4 Experimental Results

The biometrics image samples that were used for testing are of size 232 × 232 with
a resolution of 125 dpi and 256 grayscales. Four types of biometrics features, namely
hand geometries, fingers, palmprints and faces are considered. A total of 2,500 images
from 500 individuals are stored in our database. These biometrics samples were col-
lected from both female and male adults within the age range from 18 to 50. A series of
experiments were carried out to verify the high performance of the proposed algorithms.

4.1 Dynamic Feature Selection and Multi-level Similarity Measures

The dynamic selection of image features is demonstrated by multi-level palmprint fea-
ture extraction for personal identification and verification. The experiment is carried out
in two stages. In stage one, the global palmprint features are extracted at coarse level
and candidate samples are selected for further processing. In stage two, the regional
palmprint features are detected and a hierarchical image matching is performed for the
final retrieval. Fig. 3 illustrates the multi-level extraction of palmprint features.

In our system, we consider multiple palmprint features and adopt different simi-
larity measures in a hierarchical manner to facilitate a coarse-to-fine palmprint match-
ing scheme for personal identification. Four palmprint features are extracted – Level-1

(a) palm (b) palm-boundary

(c) palm-line (d) palm-region

Fig. 3. Multi-level feature extraction
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Table 1. The system performance of accuracy

False Reject Rate Correct Reject Rate
Ta 1.69% 92.47%
Tb 1.10% 86.62%
Tc 0.73% 79.27%

global geometry feature, Level-2 global texture energy, Level-3 local “interest lines,
and Level-4 local texture feature vector. More specifically, the palm boundary segments
are used as Level-1 global geometry feature. The ‘tuned’ mask based texture energy
measurement is used for Level-2 global texture feature representation [8]. The domi-
nant feature lines in palmprint are extracted as Level-3 local ‘interest feature lines [9].
A 2D Gabor phase coding is used to form Level-4 local texture feature vector. We be-
gin initial searching for the best similar palmprint matching group with Level-1 global
geometry feature. The candidates with small distance differences will be considered for
further coarse-level selection by global texture measurement. The selected candidates
will be subjected to fine matching based on texture feature vector. The false rejection
and correct rejection rates of the first three levels are given in Table 1.

4.2 Hierarchical Feature Matching Test

The performance of the proposed coarse-to-fine curve-matching approach is further
demonstrated in the second test, which is face recognition for personal identification.
At a coarse level, a fractional discrimination function is used to identify the region of
interest in an individual’s face. At a fine curve-matching level, the active contour tracing
algorithm is applied to detect the boundaries of interest in the facial regions for the final
matching. Fig. 4 illustrates the tracing of facial curves for face recognition.

(a) original image (b) boundary detection (c) face curves

Fig. 4. Face curve extraction

To verify the effectiveness of our approach, a series of tests were carried out us-
ing a database of 200 facial images collected from different individuals under various
conditions, such as uneven lighting, moderate facial tilting and partial occlusion.

Table 2 lists the correct recognition rate of the coarse-level detection.
To show the robustness of the proposed algorithm for face detection that is invariant

to the perspective view, partial distortion and occlusion, the fine-level curve matching
is applied to facial images with different orientations and expressions. Fig. 5 illustrates
sample images of the same person from various perspective views and under different
conditions. Table 3 and Table 4 summarizes the test results for 100 cases.



An Integration of Biometrics and Mobile Computing 233

Table 2. Performance of face detection at coarse-level

Face Condition Correct Detection Rate
unevenness of lighting 98%
multiple faces 95%
moderate tilt of faces 97%
partial sheltering 85%

(a) The face samples at different orientations( ) p

The face samples of different conditions

Fig. 5. The face samples

Table 3. Performance of face recognition at different orientions

Viewing Perspective Correct Classification Rate
−200 (vertical) 84%
−100 (vertical) 86%
+100 (vertical) 86%
+200 (vertical) 83%
−200 (horizontal) 85%
−100 (horizontal) 87%
+100 (horizontal) 87%
+200 (horizontal) 84%

Table 4. Performance of face classification with different conditions

Face Condition Correct Classification Rate
partial occlusion 77%
various expressions 81%
wearing glasses 82%

4.3 Evaluation of System Efficiency

To test the increased efficiency of the proposed agent-based approach, a group of ex-
ternal assistant agents were employed. The central agent controller is responsible for
dissectting the task and assembling the final result. The increased speed ratio of differ-
ent patterns is illustrated in Fig. 6.
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Fig. 6. The increased efficiency ratio of different patterns

Table 5. The evaluation of system efficiency – average RTT for 100 trials

Execution Time (ms) Execution Time (ms)
Server Location Server 1 Server 2

A. Client Machine
user requirement
query processing 210 285

B. Server Machine
feature extraction 1020 1315
feature integration 360 430
C. Client Machine

coarse-level matching 1320 1830
fine-level matching 2510 3280

TOTAL RTT 5420 7140

The system efficiency is further judged using the round trip time (RTT) test. Instead
of calculating the difference between the arrival and departure time at the server, the
RTT test uses the total round trip time for the agents involved. RTT is determined from
all of the fragments of time that are spent on each of the various operations, starting
with the collection of user requirements, continuing with biometrics feature extraction,
similarity measurement, and searching for the best matching. Two servers are used in
this test. Server 1 is located on the same local area network (LAN) as the client machine,
whereas Server 2 is situated at a remote site within the campus. Table 5 shows the
average execution time at different stage for 100 trials. It is noted that most of the
execution time is spent on the fine-level matching. In practice, the network traffic should
be considered for real applications.

5 Conclusion

This paper explores the integration of pattern recognition techniques, distributed com-
puting methodology, and agent technology to provide an effective and efficient
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approach to identity authentication using personal features (biometrics). To overcome
the limitations of the current security systems, which use fixed pre-selected features and
have bottlenecks of slow performance and platform dependence, we develop a parallel
biometrics based personal identification and verification system using mobile agents.
To tackle the key issues such as biometrics feature extraction, indexing and search, we
propose a hierarchical approach to fast content-based biometric image retrieval by dy-
namic indexing and guided search. The experimental results confirm that our approach
is feasible for on-line identity authentication and verification and will be useful for
many other security applications.
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Abstract. An efficient algorithm to iris segmentation and its application to auto-
matic and non-intrusive gaze tracking and vigilance estimation is presented and
discussed. A luminance gradient technique is used to fit the irises from face im-
ages. A robust preprocessing which mimics the human retina is used in such a
way that a robust system to luminance variations is obtained and contrast en-
hancement is achieved. The validation of the proposed algorithm is experimen-
tally demonstrated by using three well-known test databases: the FERET data-
base, the Yale database and the Cohn-Kanade database. Experimental results con-
firm the effectiveness and the robustness of the proposed approach to be applied
successfully in gaze direction and vigilance estimation.

1 Introduction

During the past two decades a considerable scientific effort has been devoted to un-
derstand the human vision. Since early works on the visual process study ([1]), many
promising applications have considered the eyes movements as well as the vigilance
characteristics as behavioral information (see [2],[3], [4],[5]) , in order to develop so-
phisticated human-machine interfaces. In recent years, the evolution of the user inter-
faces for computer systems have been producing a significant impact since they are ori-
ented to the development of intelligent multi-modal interfaces. The key idea for those
systems is to make the communication/interaction with machines more intuitive.

We can define the human-machine interaction improvement from two perspectives:
at the communication level with the analysis of gaze direction, and at the interpretation
level of the user state with the analysis of vigilance. In this paper, an efficient algorithm
is proposed to achieve the automatic irises boundaries segmentation which is used for
gaze direction and vigilance estimation. In order to evaluate the performances of the
proposed system, the gaze direction estimator has been compared to other existing sys-
tems ([13]).

In spite of the fact that iris boundaries automatic segmentation is a well-known
problem, we propose a new and efficient solution as an alternative to the usual meth-
ods. Provided that many approaches fail when luminance conditions are variable, a
robust preprocessing filter which mimic the human retina is used, in such a way that a
system tolerant to variable illumination conditions is obtained. A luminance gradient-
based technique is used for iris segmentation, obtaining a robust fitting of the irises
from face images. Additionally, the developed system requires only one single digital
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camera, contrary to most existing systems, which have to use more sophisticated and
expensive equipments, such as infrared cameras, multiple digital cameras or optical
zooming ([3],[4],[5]). Finally, our approach does not need any manual initialization nor
any learning step, so that a fully automatic system is presented. The developed eyes
segmentation algorithm has been intensively tested using three different test databases:
the FERET database [9] (static images of faces), the YALE database [10] (static images
of expressive faces) and the Cohn-Kanade database [11] (facial expressions sequences).

The paper is organized as follows: Section 2 introduces the robust filter preprocess-
ing and the proposed segmentation approach. Some results are described and discussed.
In Section 3, the use of the developed algorithm to gaze direction and vigilance estima-
tion is presented. The interest of our approach to be used in real applications is also
demonstrated.

2 Iris Segmentation

Many real-world applications require accurate and real time iris segmentation, and a
lot of scientific effort has been dedicated to this field. In this work we are interested
in iris segmentation in a frame acquired with a single digital camera. We start with the
localization of the face in the first frame of a given sequence. Face extraction is under
the scope of this paper and we use the MPISearch algorithm [6] based on the work of
Viola and Jones [7]. This algorithm extracts a square bounding box around the face
(Figure 2 left). Then it is automatically tracked by block matching for the rest of the
sequence.

2.1 Retinal Prefiltering

The video sequences are acquired in non-constraint illumination conditions. In order to
avoid problems with luminance variations, a pre-filtering stage is applied to each frame
using a model of the retinal processing [8]. The variations of illumination are smoothed
by a filter that uses a non-linear adaptation stage and a multi-stage combination of low
and high spatial frequencies. This yields to an enhancement of the contour and at the
same time to a local correction of luminance variations (Figure 1).

G
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compression
Luminance

Contrast
compression

+
−

−

+

+

−

frame
Filtered

mean
Local

Fig. 1. Retinal preprocessing. A luminance compression is first applied on the frame. Then a
Gaussian filter (size = 15 pixels, σ = 2 pixels)realizes a local averaging which is combined and
compressed leading to a contrast enhancement. A final combination gives the pre-filtered frame.
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a) b) c)

Fig. 2. a) image with a dissymetrical illumination (the lite comes from the right of the face) and
example of face extraction; b) image filtered by the retinal filter; c) evolution of the NFLG during
the scanning of the search area of the iris corresponding to the upper left square of the rectangle
surrounding the face.

2.2 Iris Segmentation Algorithm

Iris contour is the frontier between the dark area of iris and the eye white. This contour
is supposed to be a circle made of points of maximum of luminance gradient. Since the
eyes could be slightly closed, the upper part of the iris could be occluded. Then, for
each iris, we look for the lower part of the iris circle. Each iris semi-circle maximizes
the normalized flow of luminance gradient (NFLGt) defined at time t as:

NFLGt =
1

length(Csc)

∑
p∈Csc

−→∇It(p).−→n (p) (1)

where It(p) is the luminance at point p and at time t, n(p) is the normal to the boundary
at point p and Csc is the boundary of the lower semi-circle. TheNFLGt is normalized
by the length of Csc.

In order to select the semi-circle which maximizes the NFLGt, several candidates
scanning the search area of each iris are tested. The size of the iris is taken proportionnal
to the head size given by the face detection algorithm ([6]). The search area for each
iris is limited to the upper right or upper left part of the face bounding box (Figure 2
right). This division of the face has been determined after a study of 400 images of face

Fig. 3. Results of segmentation of the iris on the Yale database, the Cohn-Kanade database and
from sequences acquired at our laboratory
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(ORL database [12]). Even in the case of a rotated face, if the irises are both visible, the
validity of the proportions is still true.

Figure 3 shows different iris segmentation results by using different test databases:
the first row shows the robustness of our algorithm to different facial expressions, while
the second row shows respectively the detection in case of spectacles, of bad illumina-
tion conditions, inclination of the face and vertical rotation.

3 Automatic System for Gaze Direction and Vigilance Estimation

3.1 Gaze Direction Estimation

We present an automatic approach to estimate the gaze direction estimation of the user
in front of a computer screen. The proposed method shows an accurate detection of the
position of the iris in the face. It emerges as one promising alternative to the existing
systems ([13]), which usually require a device and/or impose acquisition and calibration
constraints that are awkward to use. Some of the additional advantages of our method
are that it uses a commercially available video acquisition system made of a single
camera (e.g., a webcam) placed above or below the screen (Figure 4). Our system makes
the assumption that the head is kept fixed, but this assumption can be removed using a
head pose tracking system.

Geometrical Model and Approximation of the Projection Function. We have to
define the projection function, which establishes the relationship between the position
of the iris center in an image and its projection on the screen.

We define the following geometrical model (Figure 4 left). O is the center of the
screen; (A,B) represents the height of the screen (a similar model can be done for the
width); C is the center of the iris; H is the orthogonal projection of C and is the center
of the reference screen plane; α is the angle between CH and CO and represents the
position of the user relatively to the screen; x is the coordinate onAB of the point fixed
by the user; the angles between CO and Cx is noted θx, between CO and CB is noted
θ1 and between CO and CA is noted θ2. In order to find the analytical formulation of
the projection function, we express the angles α and θx obtaining the following set of
equations:

Fig. 4. Left: overview of the system and geometrical model; middle: calibration configuration;
right: scale configuration.
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AO = OB = AH + HO = 1(convention)
cos(α) = CH/CO

cos(α+ θx) = CX/CH (2)

1 = CO2 + CA2 − 2cos(θ2)CO ∗ CA

1 = CO2 + CB2 − 2cos(θ1)CO ∗ CB

4 = CA2 + CB2 − 2cos(θ1 + θ2)CA ∗ CB

The resolution of the set of equations (2) leads to:

HX = CH ∗ tan(α+ θx) (3)

Equation 3 shows that the estimation of gaze direction depends on the distance to the
screen CH and on the angle α. Figure 5 left presents the variation of the distance
Hx with a fixed α and different values of CH . The analysis of these curves points
out the fact that for CH >= CHmin the projection function tends to be linear. Fig-
ure 5 right presents the comparison between the projection function and its equivalent
linear approximation. We estimate that taking CHmin = 3.OA, i.e., ≈ 30cm and
α <= αmax = 10o, the projection function is linear. These values correspond to usual
work conditions justifying the use of a linear approximation for the projection function
(Figure 5 right).

Fig. 5. Evolution of the projection function in relation to CH (left) and linear approximation
(right)

Implementation. The screen is divided into four parts around the screen centerO (Fig-
ure 4 middle). According to the position C of the user in front of the screen (CO is
not necessary perpendicular to the screen , Figure 4 right), a better precision can be ob-
tained, if we ensure differences on the scales of each part at each coordinate. A specific
scale is thus associated to each part. The step scale corresponds to the distance covered
on the screen for one unit of movement of the iris (e.g.1unit = 1pixel). For example,
scale 1 of Figure 4 right has to be greater than scale 2. It is because a displacement of
one pixel of the iris center in the image plane will be greater in the top right part of the
screen than in the top left part.

Gaze Direction Estimation. We calculate the gaze direction using the projection of
the iris centre position on the screen. The system just takes into account the spatial
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displacement of the iris in the face and not any velocity information. The process is
divided into two steps : the calibration which automatically initializes the system and
the detection itself.

a) Calibration. The calibration consists in automatically defining the x and y scales
for each part of the screen. For this, five points are necessary : the center and the
four corners of the screen (Figure 4 middle). In the calibration stage, the user has to
be in front of the screen at a normal distance (50cm to 80cm), while a camera is lo-
cated above or under the screen. When the calibration procedure begins, five points
appear dynamically on the screen one by one beginning by the center and finishing
at each corner. The user has only to follow them with his eyes. The major difficulty
is that human cannot precisely fix a given position without any dispersion. In order
to overcome this problem, each point of calibration appear on the screen during 1
second. The histogram of the positions is analyzed and four extreme positions (two
according to the x coordinate and two, to the y coordinate) that have been fixed the
most often are used for the calibration.

b) Detection of Gaze Direction. For each image, the right and the left iris center
positions are extracted. Each center is related to one point of the screen by the pro-
jection process. To eliminate transitory positions (occurring during the movement
of the eye towards its new position), we introduce the notion of fixation which is
a region fixed during several frames (6 frames at 25 frames/second). At the end of
the sequence we obtain what we call a ”fixation map”, which represents the whole
set of fixations. The fixations can overlap, so we associate at each position a value
corresponding to the number of times that this position has been fixed.

The gaze position of the user on the screen corresponds to the barycenter of the set of
points that belong to the same fixation region obtained in the fixation map. In addition
to the spatial position, the system automatically computes the chronological order of
the fixations. The final result consists in recovering the whole set of barycenters of the
regions of fixation and the order in which they appeared during the sequence (number
associated) (Figure 6 right, Figure 7).

Precision Measures to Determine the System Performance. In order to evaluate the
precision of our gaze direction estimation, an experimental setup, consisting in a grid
of 18 black points plotted on the screen (Figure 6 left) is used to estimate the user
gaze position during the fixation of these points. The camera is placed under the screen
(1024x768), considering that the usual work conditions in front of a computer screen,
vary in a range between 50cm to 80cm. The subject was asked to sequencially fix the
black points and this experiment is carried out 10 times. We obtain a mean precision of
0.8o which means that the fixations are accurately detected. Figure 6 left presents the
result of the estimation of the user gaze direction on the grid defined before. The white
circles represent the estimated user mean fixation position for each fixed black point.
These results are very satisfactory in the context of human-computer interaction.

One of the potential application is the study of the strategy of a document explo-
ration, like in figure 6 right which presents the analysis of a geographical map. The
system is able to detect the user attention during the exploration. Each point represents
the position of the gaze position on the map and its temporal apparition.
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Fig. 6. Left: grid made of black points corresponding to the different positions used to estimate
the precision (the size is 1024x768 pixels and corresponds to the whole screen); white circles
represent the results of the user gaze detection on the grid; right: analysis of the exploration
strategy of a geographical map; the points are situated on the really observed countries with their
chronological order.

Comparison with a Commercial System. We present two kinds of comparison re-
sults: a fixation map and a trajectory map. In the fixation map, the user has to fix each
icon presented in the image in a free order. On Figure 7 left, each point represents one
fixation (barycenter of a region of fixation). The associated number indicates the order
in which the different icons have been looked at by the user. The video sequences are
acquired by a camera with a frame rate of 25 frames per second. They are acquired in
usual work conditions in front of a computer screen with the head kept fixed.

Fig. 7. Left: fixation map with our system; right: fixation map with Eye-Link.

In order to evaluate the performances of our detection system, we have made the
same experiments as the infra-red detector Eye-Link system (a commercial eye tracker
[13]) (Figure 7 right). The comparison of the detection obtained by both systems points
out a similar quality of our results.

In Figure 8 we aim at rebuilding the ocular trajectory of a user. He has to follow
the edges of a drawn house. Our results (Figure 8 left) have been compared with those
obtained with the Eye-Link (Figure 8 right). Our trajectory is composed of the whole
set of points corresponding to the gaze locations, contrary to the Eye-Link one which
only connects some fixations points. This explains that the Eye-Link trajectory is more
rectilinear.
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Fig. 8. Left: trajectory map with our system; right trajectory map with Eye-Link.

3.2 Vigilance Estimation

To analyze the vigilance, different sequences have been acquired in our laboratory. The
video sequences are acquired by a standard camera at 25 frames per seconds and during
10 minutes. The subjects were asked to simulate three states: normal blinking, fast
blinking and drowsiness respectively.

Blink Detection. A blink corresponds to the transition of the state of each eye from
open eye to closed eye. The open or closed state of each eye is related to the presence or
the absence of an iris. The automatic detection of the eye state is based on the analysis
of the NFLGt and the study of the normalized quantity of luminance (NQLt) which
is defined by the relation:

NQLt =

∑
p∈Ssc

It(p)/nbr

supp∈SscIt(p)
(4)

where It(p) is the luminance at pixel p at time t, Ssc is the surface of the candidate
semi-circle and nbr the number of its points . Let NFLGm and NQLm be the mean
values of theNFLGt and theNQLt for the open eyes. These values are computed on a
temporal window with a widthΔt and situated between t−Δt and t.Δt corresponds to
the time needed for one blink at normal blinking frequency. The evaluation ofNFLGm

andNQLm at different time t allows the system to re-adapt itself to varying conditions
of acquisition (like change in conditions of illumination). At time t, the maximum of
NFLGm and the minimum of NQLm overall the already estimated values are com-
puted. Indeed NFLGt depends on the degree of opening of the eye (Figure 9 right)
and taking the maximum value ensures to consider the NFLGt of the highest opening
of the eye. On the contrary, as the iris is a dark area NQLt decreases with the opening
of the eye (Figure 9 left) and taking the minimum value ensures to consider the NQLt

of the highest opening of the eye. At frame t, eyes are detected as open if the following
relations are satisfied:

(NFLGt ≥ max(NFLGm) ∗ cNFLG (5)

and(NQLt ≤ min(NQLm) ∗ cNQL))

When the eyes start closing, the iris semi-circle is less and less visible so that
NFLGt is decreasing. Once the eyes are closed, the value ofNFLGt is inferior to the
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maximum of NFLGm multiplied by a coefficient cNFLG (first condition for closed
eyes). Sometimes the value NFLGt along the selected semi-circle when the eyes are
closed does not check the first condition because of the lashes: the semi-circle coincides
with the lashes which are made of points of maximum gradient of luminance (frontier
between the skin and the lashes). As a result, theNFLGt along the selected semi-circle
is superior or equal to the defined threshold. For this reason, we add the normalized
mean value of luminance of the surface of the semi-circle. If the eyes are closed,NQLt

is higher or equal to the minimum of NQLm multiplied by a coefficient cNQL (second
condition for closed eyes) because the surface of the selected semi-circle corresponds
to a clear area (area of eyelids) in the case of closed eye, instead of a dark area (area
of iris) in the case of open eye. The coefficients cNFLG and cNQL are taken, so that an
eye is considered open if more than 1

3 of the semi circle is visible (Figure 10 first row
second column) and is considered closed otherwise. These coefficients are computed as
the mean on ten subjects of the ratio between their maximum and minimum value of
NFLGt and of NQLt .

Figure 9 shows the temporal evolution of NFLGt and NQLt and the results after
thresholding. On these curves, there are two blinkings: the first one is very quick and
the second one occurs during several frames (it might correspond to a short sleeping).

Fig. 9. Top left : temporal evolution of NQLt and threshold (dashed line); top right, temporal
evolution of NFLGt and threshold (dashed line); bottom left, eye state after NQLt threshold-
ing; bottom right, eye state after NFLGt thresholding (0 stands for closed eye and 1 stands for
open eye).

Estimation of the Vigilance. We estimate the vigilance or interest level of a user by the
evaluation of the frequency of blinking. In case of ”normal” vigilance level, the blinking
frequency evaluated on our sequences is in average 18 blinks per minute. These values
are coherent with the values found in the medical literature (12 to 20 per minute). To
estimate the level of vigilance, the blink frequency is computed at each time t inside
a temporal window Δt analyzing the last 6 seconds (period of one blink at a normal
blinking frequency). The detection of one or two blinks corresponds to a normal blink-
ing frequency. If the frequency is higher, the ratio between the duration of the open eye
states and the closed eye states indicates whether it is a case of fast blinking (eyes are
found open two times longer) or a case of drowsiness (eyes are found closed two times
longer). If the frequency is lower, then the same ratio indicates wether it is a case of
normal blinking (the eyes are kept open during all the temporal window) or a case of
drowsiness (the eyes are kept closed).
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Fig. 10. Estimation of the vigilance. For each figure: left: current image; middle, top: past evo-
lution of the eyes states, bottom: past evolution of the blinking frequency; right, top: current
detected eye state, bottom: current vigilance level.

Figure 10 shows four frames taken from one of the sequences described below and
examples of detection of the eyes state and of the vigilance level.

4 Conclusion

In this paper, we have presented an efficient algorithm for iris segmentation. The results
are accurate and robust to luminance variations. We have presented two associated ap-
plications in human-machine interaction domain: an accurate and low constrained gaze
direction estimation system working with a single commercially available video acqui-
sition system. Secondly, we presented an analysis of the frequency of the blink, which
can be used in the detection of the vigilance level of the user. Preliminary results and
comparative experiments with existing systems show the interest and the robustness of
the proposed approach.
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Abstract. In this paper, we present a new statistical projection-based
face recognition method, called Bilinear Discriminant Analysis (BDA).
The proposed technique effectively combines two complementary versions
of Two-Dimensional-Oriented Linear Discriminant Analysis (2DoLDA),
namely Column-Oriented Linear Discriminant Analysis (CoLDA) and
Row-Oriented Linear Discriminant Analysis (RoLDA). BDA relies on
the maximization of a generalized bilinear projection-based Fisher cri-
terion. A series of experiments was performed on various international
face image databases in order to evaluate and compare the effectiveness
of BDA to RoLDA and CoLDA. The experimental results indicate that
BDA outperforms RoLDA, CoLDA and 2DPCA for face recognition,
while leading to a significant dimensionality reduction.

1 Introduction

In the eigenfaces [1] (resp. fisherfaces [2]) method, the 2D face images of size
h×w are first transformed into 1D image vectors of size h ·w, and then a Princi-
pal Component Analysis (PCA) (resp. Linear Discriminant Analysis (LDA)) is
applied to this high-dimensional vector space, where statistical analysis is costly
and may be unstable. To overcome these drawbacks, Yang et al. [3] proposed
the Two Dimensional PCA (2DPCA) method, that aims at performing PCA
directly using the face image matrices. It has been shown that 2D PCA is more
effective [3] and robust [4] than the eigenfaces method when dealing with face
segmentation inaccuracies, low-quality images and partial occlusions.

In [5], we proposed the Two-Dimensional-Oriented Linear Discriminant
Analysis (2DoLDA) approach, that consists in applying LDA to image matrices.
We have shown on various face databases that 2DoLDA provides better face
recognition results than both 2DPCA and the Fisherfaces method, and that it
is more robust to variations in lighting conditions, facial expressions and head
pose.

In this paper, we propose a novel supervised projection method called Bilin-
ear Discriminant Analysis (BDA) that outperforms 2DoLDA while substantially
reducing the computational cost of the recognition step.

S. Singh et al. (Eds.): ICAPR 2005, LNCS 3687, pp. 247–256, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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The remainder of the paper is organized as follows. In section 2, we remind
the theory and algorithm of 2DoLDA. In section 3, we describe the principle
and algorithm of the proposed BDA method, pointing out its advantages over
previous methods. In section 4, a series of three experiments, on different inter-
national data sets, is presented to demonstrate the effectiveness and robustness
of BDA and compare its performances with respect to RoLDA, CoLDA and
2DPCA. Finally, conclusions are drawn in section 5.

2 Two-Dimensional Oriented Linear Discriminant
Analysis (2Do LDA)

In [5], we introduced a version of 2DoLDA that will further be called Row-
Oriented Linear Discriminant Analysis (RoLDA). However, 2DoLDA may be im-
plemented in two different ways: RoLDA and Column-oriented LDA (CoLDA).
Let us first present RoLDA.

The model is constructed from a training set Ω containing n face images of
C people, with multiple views per person. The set of images corresponding to
one person is called a class. Let us denote Ωc the set of nc images belonging to
class c. Each face image is stored as a h×w matrix Xi, labelled by its belonging
class. Let us consider a w× k projection matrix P , and the following projection:

XP
i = Xi · P (1)

The matrix XP
i , of size h×k, is the signature of Xi using RoLDA. Our aim is to

determine, for a fixed size h × k, the optimal matrix P ∗ jointly maximizing sep-
aration between different classes and minimizing separation between signatures
from the same class. Under the assumptions of multinormality and homoscedas-
ticity of the image matrices rows, P ∗ maximizes the following generalized Fisher
criterion [5]:

J(P ) =
|PTSbP |
|PTSwP | (2)

Sw and Sb being respectively the generalized within-class and between-class co-
variance matrices of the training set:

Sw =
C∑

c=1

∑
Xi∈Ωc

(Xi − X̄c)T (Xi − X̄c) and Sb =
C∑

c=1

nc(X̄c − X̄)T (X̄c − X̄)(3)

with X̄c and X̄ being mean images, computed respectively from Ωc and Ω. If
Sw is non-singular (which is generally verified as w << n), the k columns of P ∗

are the eigenvectors of S−1
w Sb with largest eigenvalues. A numerically stable way

to compute them is given in [6].
Analogeously, CoLDA relies on the following projection: XQ

i = QT · Xi (4)
where Q is a h× k projection matrix, and the k ×w matrix XQ

i is the signature
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of Xi using CoLDA. Under the assumptions of multinormality and homoscedas-
ticity of the image matrices columns, we can consider the following generalized
Fisher criterion:

J(Q) =
|QTΣbQ|
|QTΣwQ| (5)

where Σw and Σb are respectively the within-class and between-class covariance
matrices of the set (XT

i )i∈{1...n}:

Σw =
C∑

c=1

∑
Xi∈Ωc

(Xi − X̄c)(Xi − X̄c)T and Σb =
C∑

c=1

nc(X̄c − X̄)(X̄c − X̄)T(6)

Let us denoteQ∗ the optimal projection matrix of size h×k, maximizing criterion
(5). If Σw is non-singular, the columns of Q∗ are the k eigenvectors of Σ−1

w Σb

with largest eigenvalues.
For RoLDA and CoLDA, there are at most C −1 eigenvectors corresponding

to non-zero eigenvalues; their number k can be selected using the Wilks Lambda
criteria, which is also known as stepwise discriminant analysis [7]. This analysis
shows that the number k of eigenvectors required by both methods is comparable
and generally inferior to 15, even if the number of classes is large, as shown in
Fig. 2.(a), reporting on an experiment performed on 107 classes.

Recognition is performed by using the Euclidean distance between the sig-
natures of the face images, and the nearest neighbour rule.

3 Bilinear Discriminant Analysis (BDA)

3.1 Why Combine CoLDA and RoLDA?

We conducted four experiments highlighting the complementarity of RoLDA and
CoLDA. In the following, all the face images are centered and cropped to a size
of h × w = 75 × 65 pixels.

The first two experiments are performed on subsets of the Asian Face Data-
base PF01 [8] containing 107 people. They illustrate the fact that, depending on
the training and test data, RoLDA and CoLDA outperform each other. In the
first experiment, the training and test sets, illustrated in Fig. 1.(a-b), contain
respectively 5 near-frontal views per person (535 images) and 4 non-frontal views
per person (428 images). These two sets differ in the head pose. Fig. 2. (a) shows

(a) (b) (c) (d)

Fig. 1. Extracts of (a) the training set and (b) the test set used for the first experiment;
Extracts of (c) the training set and (d) the test set used for the second experiment.
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Fig. 2. Compared recognition rates of RoLDA, CoLDA and 2DPCA on a subset of the
PF01 database showing (a) head pose changes and (b) facial expression changes, when
varying the number k of projection vectors.

that both CoLDA and RoLDA are highly effective (recognition rates superior to
92 %), and outperform 2DPCA. However, RoLDA outperforms CoLDA, with a
4,5% improvement of the recognition rate between their respective maxima.

The second experiment is performed on a subset of the PF01 database con-
taining 107 people, with five different facial expressions. This subset is randomly
partitioned into a training set and a test set, illustrated in Fig. 1.(c-d). From
Fig. 2.(b) we can see that, even if RoLDA and CoLDA are not highly performing
(the recognition rates are inferior to 60%), both of them outperform 2DPCA.
However, CoLDA is more effective than RoLDA, with a 5,6% improvement of
the recognition rate between their respective maxima.

The third and fourth experiments provide further comparison of the perfor-
mances of CoLDA and RoLDA. They are performed on the Yale Face Data-
base [2], that contains 15 people and 11 views per person, with occlusions and
variations in lighting conditions and facial expressions. In the third experiment,
the Yale database is randomly partitioned into a training set containing four
views per person, and a test set containing six views per person. To ensure ho-
moscedasticity, the views of each set are consistent among the classes, e.g. all the
”wink” views are included in the test set, and all the ”neutral” in the training
set. This operation is repeated five times. From each partition, we compute a
confusion matrix with k = C−1 = 14 (see Table 1.) In each confusion matrix,
the top left cell contains the number of faces correctly classified by both RoLDA
and CoLDA. The top right entry is the number of faces correctly classified by

Table 1. Confusion matrices of RoLDA and CoLDA, computed from five random
partitions of the Yale Face Database
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Fig. 3. Extracts (a) of the training set and (b) of the seven test sets, taken from Yale
and used for the fourth experiment. Any subject not wearing eyeglasses in the training
set wears eyeglasses in the ”occlusion” set, and vice-versa. (c) Compared recognition
rates of CoLDA and RoLDA, computed from the seven test sets illustrated in (b).

RoLDA, but misclassified by CoLDA. The bottom left cell contains the number
of faces correctly classified by CoLDA, but misclassified by RoLDA. The bot-
tom right entry is the number of faces misclassified by both methods. Table 1.(a)
shows that, on the first random partition of the Yale database, the performances
of RoLDA and CoLDA are comparable (the recognition rates are respectively

53+10
53+10+11+16 = 70% and 71,1%). However, classification results are very different:
21 samples (23,3% of the test set) are correctly classified by only one method.
Moreover, 82, 2% � max(70%, 71, 1%) of the query faces are recognized by at
least one of the two methods. Table 1.(b-c) illustrate the fact that RoLDA gener-
ally outperforms CoLDA. Table 1.(d-e) show that, in some configurations where
the rate of misclassification by both methods is high -respectively 16

90 = 17, 8%
and 20% for partitions (d) and (e)-, CoLDA outperforms RoLDA.

The fourth experiment provides further qualitative analysis. The training
set, illustrated in Fig. 3.(a), contains four views for each of the 15 subjects, with
variations in lighting conditions and facial expressions. Then, seven test sets,
illustrated in Fig. 3.(b) and corresponding to the remaining views, are built.
Fig. 3.(c) illustrates the fact that, even if RoLDA is generally more effective
than CoLDA, in some cases CoLDA drastically outperforms RoLDA, especially
when the test set contains dissimetries of the image following the vertical axis
(”leftlight” and ”rightlight”). CoLDA can also slightly outperform RoLDA when
the test set shows strong facial expression changes, e.g. ”surprised”. Choosing
between CoLDA and RoLDA therefore requires a preliminary qualitative analy-
sis of the training and test sets, which is a difficult task. As both RoLDA and
CoLDA have high performances but give different recognition results, appropri-
ately combining them can lead to a highly effective method.

In 2DoLDA, considering image matrices instead of vectors (as in the Fish-
erfaces method) when performing LDA leads to a reduced computational cost
when building the model, and to a reduced storage cost [5]. But the size of the
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signatures is h × k for RoLDA and k × w for CoLDA, and may be large. As
exposed in the following section, using BDA leads to a drastic reduction in the
signatures size, and therefore reduces the computational cost during the recog-
nition step, which is often online.

3.2 Description of Bilinear Discriminant Analysis

Let us consider two projection matrices Q ∈ R
h×k and P ∈ R

w×k, and the
following bilinear projection:

XQ,P
i = QT XiP (7)

where the k × k matrix XQ,P
i is the signature of Xi using BDA. For any fixed k,

let us search for the optimal pair of matrices (Q∗, P ∗), maximizing the following
generalized Fisher criterion:

(Q∗, P ∗) = Argmax
(Q,P )∈Rh×k×Rw×k

|SQ,P
b |

|SQ,P
w | (8)

= Argmax
(Q,P )∈Rh×k×Rw×k

|∑C
c=1 nc(X

Q,P
c − XQ,P )T (XQ,P

c − XQ,P )|
|∑C

c=1
∑

i∈Ωc
(XQ,P

i − XQ,P
c )T (XQ,P

i − XQ,P
c )|

(9)

SQ,P
w and SQ,P

b being the within-class and between-class covariance matrices of
the signatures set (XQ,P

i )i∈{1,...,n}.
This objective function is biquadratic and has no analytical solution. We

therefore propose an iterative procedure that we call Bilinear Discriminant
Analysis. Let us expand the expression (9):

(Q∗, P ∗) = Argmax
(Q,P )∈Rh×k×Rw×k

[
|ΣC

c=1nc(P T (Xc−X)T QQT (Xc−X)P )|
|ΣC

c=1Σi∈Ωc (P T (Xi−Xc)T QQT (Xi−Xc)P )|

]
(10)

For any fixed Q ∈ R
h×k, using equation (10), the objective function (9) can be

rewritten:

P ∗=Argmax
P∈Rw×k

[
|P T ΣC

c=1nc(XQ
c −XQ)T (XQ

c −XQ) P |
|P T ΣC

c=1Σi∈Ωc (XQ
i −XQ

c )T (XQ
i −XQ

c ) P |

]
= Argmax

P∈Rw×k

|P T SQ
b P |

|P T SQ
w P | (11)

SQ
w and SQ

b being respectively the generalized within-class covariance matrix and
the generalized between-class covariance matrix of the set (XQ

i )i∈{1...n}, each XQ
i

being computed using (4). Therefore the columns of the matrix P ∗ are the k

eigenvectors of SQ
w

−1
SQ

b with largest eigenvalues, obtained by applying RoLDA
on the set of the projected samples XQ

i . Let us denote A = PT (Xc − X)TQ,
matrix of size k × k. Given that, for every square matrix A, |ATA| = |AAT |, the
objective function (9) can be rewritten:

(Q∗, P ∗) = Argmax
(Q,P )∈Rh×k×Rw×k

[
|ΣC

c=1nc(QT (Xc−X)PP T (Xc−X)T Q)|
[ΣC

c=1Σi∈Ωc (QT (Xi−Xc)PP T (Xi−Xc)T Q)|

]
(12)
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For any fixed P ∈ R
w×k, using equation (12) the objective function (9) can be

rewritten Q∗=Argmax
Q∈Rh×k

|QT ΣP
b Q|

|QT ΣP
wQ| ,where ΣP

w and ΣP
b are respectively the general-

ized within-class and between-class covariance matrices of the set((XP
i )T)i∈{1...n},

each XP
i being computed using (1). Therefore, the columns ofQ∗ are the k eigen-

vectors of (ΣP
w )−1

ΣP
b with largest eigenvalues, obtained by applying CoLDA on

the set of the projected samples XP
i .

3.3 Algorithm of the BDA Approach

Let us initialize P0 = Iw, the identity matrix of R
w×w, and k0=C−1. The proposed

algorithm for BDA is:

1. For i ∈ {1, . . . , n}, compute XPt

i = XiPt;
2. Apply CoLDA to (XPt

i )i∈{1,...,n}: compute ΣPt
w , ΣPt

b and, from (ΣPt
w )−1 ·ΣPt

b ,
compute Qt, of size h × kt;

3. For i ∈ {1, . . . , n}, compute XQt

i = (Qt)T Xi;
4. Apply RoLDA to (XQt

i )i∈{1,...,n}: compute SQt
w , SQt

b and, from (SQt
w )−1 ·SQt

b ,
compute Pt, of size w × kt;

5. Compute α = −(n − w+C
2 − 1) ln

[∏C−1
j=kt+1

1
1+λj

]
;

6. if α<p-value
[
χ2 ((w−kt)(C−kt−1))

]
, then t ← t+1, kt ← kt−1-1, and return to

step 1;
7. else kt ← kt−1, Q ← Qt−1 and P ← Pt−1.

The stopping criterion (steps 5.-7.) derives from the Wilks Lambda criterion,
testing the discriminatory power of the C-kt-1 eigenvectors of (SQt

w )−1·SQt

b re-
moved at step 4., by keeping in Pt only the kt eigenvectors with highest eigenval-
ues (λj)j∈{1...kt}. We consider the following test: H0: at least one of the eigenvec-
tors kt+1,. . . ,C-1 is discriminative, and H1: non H0. Under H0, it can be easily
shown that −(n − w+C

2 − 1) ln(
∏C−1

j=kt+1
1

1+λj
) corresponds to a χ2 distribution,

with (w-kt)(C-kt-1) degrees of freedom. The p-value can be chosen at a con-
fidence level of 5%. If α<p-value, the C-kt-1 last eigenvectors can be removed
and the stepwise analysis goes on. If α>p-value, the eigenvector kt+1=kt−1 is
discriminative and should be kept.

Recognition is performed in the BDA projection space, by using the Euclid-
ean distance between face image signatures, and the nearest neighbour rule.

We can note that the computational cost of one comparison is o(k2) for BDA,
versus o(h · k) for RoLDA and 2DPCA, and o(w · k) for CoLDA; therefore BDA
drastically reduces the computational cost of the recognition step.

4 Experimental Results

Three experiments are performed on the Asian Face Database PF01 [8], the
FERET [9] 1 face database, and the ORL Database [10], to assess the effective-
ness of BDA and compare it with RoLDA, CoLDA and 2D-PCA.
1 Portions of the research in this paper use the FERET database of facial images

collected under the FERET program.
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Fig. 5. Extracts (a) of the training set and (b-c) of the two test sets to be matched.
(d) Compared recognition rates of BDA, RoLDA, CoLDA and 2DPCA, when matching
the test sets (b) and (c).

The training and test sets used for the first experiment, differing in the
facial expressions, were used for the second experiment reported in section 3.1
and are illustrated in Fig. 1.(c-d). From Fig. 4., we can see that BDA strongly
outperforms RoLDA, CoLDA and 2DPCA.

The second experiment, performed on FERET, aims at evaluating the gen-
eralization power of BDA. Indeed, LDA-based methods are known to be more
effective when comparing faces of known people, but provide worse generaliza-
tion results than unsupervised methods. The training set, illustrated in Fig. 5.(a),
contains 818 images of 152 people with at least four views per person, taken on
different days and under different lighting conditions. Two test sets, each one
containing 200 people with one view per person and illustrated in Fig. 5.(b-c),
are compared. The test sets are taken from FERET, but none of the 200 people
is registered in the training set. From one test set to the other, the facial expres-
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Fig. 6. Compared recognition rates of BDA, Table 2. Contingency table summed
RoLDA and CoLDA on 7 random partitions up over 7 random partitions of ORL
of the ORL database

sions vary. From Fig. 5.(d) we can conclude that, when the training set contains
many classes with important variations inside the classes, BDA provides better
generalization than the other methods.

For the third experiment, the ORL database is randomly partitioned into a
training set containing five views, and a test set containing the five remaining
views, for each of the 40 persons. This operation is repeated seven times and
BDA, RoLDA and CoLDA are applied. Fig. 6. shows that BDA provides bet-
ter recognition rates than RoLDA and CoLDA on all the random partitions,
whenever RoLDA outperforms CoLDA (partitions (a-b) and (d-g)) or CoLDA
outperforms RoLDA (partition (c)). The results are computed from the optimal
number of projection vectors, which is k = 14 for the three methods. For fur-
ther analysis, the contingency table summed up over partitions (a-g) is given in
Table 2. The total number of query faces is 7 · 200 = 1400. The logical symbol
”�” stands for ”not”, i.e. the entry in the second row and first column of the
table is the number of faces recognized by RoLDA, but misclassified by CoLDA.
The logical symbol ”∩” stands for ”and”: the entry in the second row and second
column is the number of samples correctly classified by RoLDA and BDA, but
misclassified by CoLDA. From Table 2. we can see that BDA correctly classifies
1292
1297 = 99, 6% of the samples that were recognized by both RoLDA and CoLDA.
Moreover, it recognizes the major part of the samples that were recognized by
only one of the two methods (72,7% for RoLDA and 63,6% for CoLDA). It also
correctly classifies 35,4% of the samples that were misclassified by both methods,
which shows the effectiveness of the BDA iterative algorithm. It should be noted
that, as the face images have been cropped to a size of 75 × 65 pixels, the size
of one sample signature is 75 · 14 = 1050 for RoLDA, 65 · 14 = 910 for CoLDA,
and only 142 = 196 for BDA.

5 Conclusion

In this paper, we have proposed a new supervised statistical projection based
technique, named Bilinear Discriminant Analysis, that can be successfully
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applied to face recognition. This method effectively combines two complementary
versions of 2DoLDA, through an iterative algorithm maximizing a generalized
Fisher criterion relying on bilinear projections.

A series of experiments, performed on various international databases, have
shown the complementarity of the two versions of 2DoLDA and highlighted
that the proposed iterative algorithm outperforms 2DoLDA and 2DPCA; as a
consequence it also outperforms the fisherfaces and eigenfaces methods. More-
over, BDA provides image signatures of reduced size compared to 2DoLDA and
2DPCA, which results in an important computational gain during the recogni-
tion step.
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Abstract. Adaptation to dynamically changing environment is very important 
since advanced applications become pervasive and ubiquitous. This paper 
addresses a novel method of adaptive object recognition using environmental 
context-awareness and genetic algorithm and t-test. The proposed method tries 
to distinguish the category of input environment and decides an optimal 
classifier combination structure accordingly by GA and t-test. It stores its 
experiences in terms of the data context categories and the evolved artificial 
chromosomes so that the evolutionary knowledge can be used later. The 
proposed method has been evaluated in the area of face recognition. Most 
previous face recognition schemes define their system structures at the design 
phases, and the structures are not adaptive during operation. Such approaches 
usually show vulnerability under varying illumination environment. The context-
awareness, modeling and identification of input data as context categories, is 
carried out by Fuzzy ART. The face data context is described based on the image 
attributes of light direction and brightness. The superiority of the proposed system 
is shown using four data sets: Inha, FERET and Yale database.  

1   Introduction  

Genetic algorithm is an efficient search and adaptation method by simulating the 
natural evolution mechanism. Recently, adaptation under dynamically changing 
environment is very important since advanced applications become pervasive and 
ubiquitous, and need to adaptive to their changing contexts. Ubiquitous sensing and 
recognition of human activity under dynamic environment enforce visual sensor 
based information processing more adaptive to application environment. In this paper, 
we present a robust and adaptive object scheme suitable for ubiquitous and pervasive 
applications using the genetic algorithm with the capability of context-awareness, 
called context-aware genetic algorithm. 

Recognizing objects under dynamic environments is one of the final goals in the 
area of computer vision. Robust and intelligent computer vision needs highly 
invariance with regard to those variations. Much research has been devoted on this 
problem. However, most object recognition methods today can only operate success- 
fully only under strongly constrained images captured in controlled environments.  
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In this paper, we discuss about adaptive object recognition based on context-aware 
genetic algorithm that can behave in a robust manner under variations of application 
environments. The context-aware genetic algorithm is a genetic algorithm with the 
capability of context-awareness. The context knowledge of an individual context 
category and its associated chromosome is stored in the context knowledge base in 
order to preventing repetitive search.  It determines a most effective structure of 
classifier combination for a current environment by employing the context-aware 
genetic algorithm. The context-awareness consists of context modeling and 
identification. Context modeling can is be performed by an unsupervised learning 
method such as FuzzyArt, etc.  

The context-aware genetic algorithm explores a most effective classifier 
combination structure for each identified context category. Both online and offline 
adaptation are required for applying GA to real-time application [1]. 

The proposed method has been tested using four data sets and their virtual data 
sets: Inha, FERET and Yale database where face images are exposed to different 
lighting conditon. We achieve encouraging experimental results showing that the 
performance of the proposed method is superior to those of most popular methods. 

The major contributions of this paper are: This paper is organized as follows. In the 
section 2, we present the overview of the proposed object recognition schema 
including illuminant identification using FART and in the section 3, we present the 
proposed architecture for context-aware evolutionary computation and the overview 
of the proposed face recognition scheme. Finally, we give the experimental results 
and the concluding remarks in the section 4 and 5, respectively.  

2   Context-Aware Genetic Algorithm for Object Recognition 

The outline of object recognition scheme using the context-aware genetic algorithm 
will be presented. The scheme operates in the evolutionary mode or the action mode. 
In the evolutionary mode, the scheme accumulates its knowledge during adapting its 
application environments. In the action mode, it performs its task of recognition using 
the adapted scheme structure. The evolutionary mode of the scheme is either online 
adaptation or offline adaptation. The online adaptation approach directly interacts and 
commits application environments by trial-and-error if an environment context can 
hardly be identified. If environment context can be analyzed and identified, the offline 
adaptation approach is effective. In the offline adaptation, application environment 
context is modeled (clustered) into several categories, and the most effective classifier 
combination structure is searched by the genetic algorithm. We adopt the context 
knowledge base to avoid a blind search whenever an application environment 
changes, the scheme accumulates and stores environmental context knowledge in 
terms of context category and its corresponding action. Environment context-
awareness will be discussed first, and the object recognition scheme using context-
aware genetic algorithm will be followed. 

2.1   Environmental Context-Awareness 

We adopt the FuzzyART which is a variant of the ART system derived from the first 
generation of the ART, namely the ART1. It is a synthesis of the ART algorithm and 
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Fuzzy operators. The ART1 can only accept binary input patterns, but the FuzzyART 
allows both binary and continuous input patterns [2, 3]. The image space of object 
instance with varying illuminations must be clustered properly so that the location 
error can be minimized. However, the classification of images under varying 
illumination is very subjective and ambiguous. Thus, we adopt the FuzzyART method 
which shows robustness in subjective and ambiguous applications in order to achieve 
optimal illumination context clustering. The performance of clustering is improved by 
observing previously clustered data repeatedly. The outline of the FuzzyART 
algorithm is described in the followings: 

Step 1. The fuzzy ART algorithm begins with an initialization of the weight matrices. 
Associated with cluster nodej (0. N)  is a vector wj = (wj1 . . . wjm) of adaptive weight.  

Wj1 (0)= Wj2 (0) = ... = Wjm (0) (1) 

Step 2. Present an input pattern and cluster node to the network. Next, compute the 
input to layer2.  The input node is structured as 100 dimension of size 10*10  
Step 3. Winner cluster select method and winner cluster determination.  
Step 4. Vigilance test (Vigilance test between the winner class' node and input 
pattern): If the pattern is matched to within a specified vigilance criterion, then 
resonance occurs.  

ρ≥
∧
I

WI ji
 (2) 

where I is input pattern. The term  is called the vigilance parameter, and must fall in 
the range , 0< <1.  

Step 5.  Replace winner cluster's forward weight (T) by 0 and go to Step 4.  
Step 6. Control input node for winner cluster's node and cluster's backward weight.  
Step 7. If the learning is not completed for all patterns, go to Step 2, otherwise stop.  

One cluster center is updated every time an input vector x is clustered at random 
from the input data set. The cluster nearest to x has its position updated using the 
following equation.  

))(()()( oldmxoldmnewm iii −+= α  (3) 

The cluster centers moved closer to x values this equation minimizes the error 
vector. Each hidden unit calculates the Mahalanobis distance of the input vector from 
the corresponding Gaussian.  In this paper, centers are obtained from unsupervised 
learning (clustering), Fuzzy ART algorithm. Clustering (Fuzzy ART algorithm) and 
LMS are iterative. This is the most commonly used procedure, and typically provides 
good results. After finding a suitable cluster using the clustering algorithm, do laying 
center on this. The winning node j is what Fuzzy ART is its best match for the input 
pattern. An example of training data for the FART is shown Fig.1.  
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Fig. 1. Face data vectorization is 1x42 dimension 

Fig. 2 shows images of three clusters various illuminant face dataset, we define 9 step 
environment.  

 

        

         

         

         

         

         

Fig. 2. Discriminant result for illumination conditions using FART

2.2   Robust Object Recognition Scheme Using Context-Aware Genetic Algorithm  

The proposed object recognition scheme using context-aware genetic algorithm 
consists of the context identification module (CIM), the evolution module (EM), the 
Action module (AM), the evolutionary module (EM), and the context knowledge base 
(CKB) (see Fig. 4).  

The CIM identifies a current context using context input data. Context can be 
various configurations, computing resource availability, dynamic task requirement, 
application condition, environmental condition, etc. Context describes a trigger of the 
scheme action using the previously accumulated knowledge of context-action relation 
in the CKB. The CKB over a period of time and/or the variation of a set of context 
informations of the system over a period of time. Context data is defined as any 
observable and relevant attributes, and its interaction with other entities and/or 
surrounding environment at an instance of time. Context data is denoted by attribute 
tuple as follows.  

>=< asaatCD ,..,2,1,  (4) 

where t is the time stamp and a1, a2, . . ., as are the set of some attributes.  
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Fig. 3. The block diagram of the proposed ECC scheme 

Derived context representation, processed context data, is generated from the 
context tuple, and represented as follows. 

>=< dtddtDC ,...,2,1,  (5) 

where id  is a processed attribute from a subset of context data. Context or context 

expression is denoted by the context elements as follows.  

>=< eueetCE ,....,2,1,  (6) 

where t  is the time when the situation is identified and  ,...,2,1 ee and eu  are the set 

of context elements representing the context. They can be a module configuration, 
parameter values, thresholds, parameter types, threshold types, etc.  

The AM consists of one or more action primitives. The action primitives can 
be heterogeneous, homogeneous, or hybrid operational entities. For example, the 
action primitives of a pattern classifier are divided into preprocessing, feature 
representation, class decision, post processing primitives. The EM searches for a best 
combining structure of action primitives for an identified context. The structures of 
optimal actions are stored in the CKB with the corresponding context expression.  
Initially, the scheme accumulates the knowledge in the CKB that guarantees optimal 

performance for individual identified context. The CKB stores the expressions of 
identifiable contexts and their matched actions that will be performed by the AM. The 
matched action can be decided by either experimental trial-and-error or some 
automating procedures. In the operation time, the context expression is determined 
from the derived context representation, where the derived context is decided from the 
context data. The ECM searches the matched action in the CKB, and the AM 
performs the action.  

Initially, adaptation knowledge is accumulated using offline adaptation method, 
and stored in the CKB in the evolution mode. The detail of the object recognition 
scheme constructing the CKB is given in the following:  
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Step 1. Cluster input images into several environment context categories using the 
Fuzzy ART( CIM ).  

Step 2. Start to search for an optimization of classifier structure for each 
environmental context category until a criterion is met, where the criterion is the 
fitness does not improve anymore or the predefined maximum trial limitation is 
encountered as follows.  
1) Generate initial population of classifier structures.  
2) Evaluate the fitness function of the scheme using the newly derived 
population of the classifier structures. If the criterion is met, Go to Step 3.  
3) Search for the population of the classifier structures that maximize the fitness 
function and keep those as the best chromosomes.  
4) Applying GA's genetic operators to generate new population from the current 
classifier structures. Go to Step 2.2).  

Step 3. Update the CKB (Context Knowledge Base) for the identified illumination 
category and the derived classifier structure.  

The adaptive object recognition task is carried out using the knowledge of the CKB 
evolved in the evolutionary mode as follows:  

Step 1. Identify the illumination situation in the CAM  
Step 2. Search for the chromosome from the CKB representing the optimal 
classifier structure corresponding to the identified illumination category.  
Step 3. Perform the task of recognition using the restructured feature vector.  
Step 4. If the system performance is measured to fall down below the predefined 
criterion, the system activates the evolution mode, and/or evolves the system 
periodically or when it is needed using either online or offline adaptation methods.  

3   The Context-Aware Genetic Algorithm for Face Recognition  

The proposed method has been tested in the area of object recognition. We deal with 
image objects the spacial boundaries of which can be well estimated in prior, called 
spacially well-defined object classes [2]. Face images are in the class of well-defined 
image objects, the spacial boundaries of which can be well estimated in prior. 

3.1   Face Recognition Using the Context-Aware Genetic Algorithm  

In general, it is almost impossible or very difficult to decide an optimal classifier or 
classifier structure at the design step considering all possible factors of run-time 
variations. We employ the strategy that the classifier structure, is allowed to evolve or 
adapt itself dynamically during operation in accordance with changing environment 
contexts. Changes in image capturing environment can include lighting direction, 
brightness, contrast, and spectral composition, etc. The architecture of face 
recognition using the context-aware genetic algorithm is given in Fig. 4.  

We assume that sufficient dataset where face images are exposed to varying 
environments is available or has been captured. Initially, the CIM clusters face data 
images into several environmental context categories, and constructs the context model 
of face images as discussed in session 3. The CIM is implemented by FART[14]. 
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Fittness Function using t-test 
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Fig. 4. The proposed situation-aware classifier fusion system 

FART has the capability of unsupervised learning itself. It can distinguish 
environmental context in terms of brightness, contrast, spectral composition, and light 
direction. The evolutionary module EM is implemented by Genetic algorithm (GA). 
GA explores the structure of the AM adaptive to an operational environment. In the 
action mode, the system searches for a most effective classifier structure based on the 
identified category of the input image. The knowledge of effective classifier structure 
for an environment is described by the pair of context category and corresponding 
artificial chromosome. The detail of the EM is be discussed in the following.  

The GA is employed to search among the different combinations  of classifiers. The 
optimality of the chromosome is defined by classification accuracy and generalization 
capability. Fig. 6 shows a possible encoding of chromosome description.  

As the GA searches the genospace, the GA makes its choices via genetic operators 
as a function of probability distribution driven by fitness function. The genetic 
operators used here are selection, crossover, and mutation [5. 12].  

FR1 FR2 … FRn CLS1 CLS2 … CLSn 

Fig. 5. A possible chromosome description of the proposed schema FR: face representation, 
CLS: Classifier Selection. 

3.2   The Face Recognition Scheme Using the Context-Aware Genetic Algorithm  

The recognition system learns an optimal structure of multi-classifier and Gabor 
representation by restructuring its structure and parameters. Preprocessing is 
performed for providing nice quality images as much as possible using conventional 
image filtering techniques. The image filters employed here is the lighting 
compensation, histogram equalization, opening operation, boost-filtering [6]. We use 
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5 classifiers, Eigenface, Gabor3, Gabor13, Gabor 28, and Gabor30, for the AM. The 
details of classifiers are given in the followings. 

Classifier Gabor3, Gabor13, Gabor 28, Gabor30  
The Gabor wavelet transform guided by an evolutionary approach has been employed 
to adapt the system for variations in illumination. The proposed approach employs 
Gabor feature vector, which is generated from the Gabor wavelet transform. The 
kernels of the Gabor wavelets show biological relevance to 2-D receptive field 
profiles of mammalian cortical cells. Gabor wavelet is biologically motivated 
convolution kernels in the shape of plane waves restricted by gabor kernel. The 
receptive fields of the neurons in the primary visual cortex of mammals are oriented 
and have characteristic frequencies. This could be modeled 2-D gabor wavelet. Gabor 
wavelet is known to be efficient in reducing redundancy and noise in images. The 
gabor wavelet has shown to be particularly fit to image decomposition and 
representation. Gabor wavelet shows desirable characteristics in orientation selectivity 
and special locality. The face image representation transformed by gabor wavelet has 
the properties of scale, locality, and differentiation, which provide robust 
characteristics to image variation from illumination changes, facial expression, etc. 
Face gabor vector is generated as shown Fig. 6. The feature is extracted 11 feature 
points. We adopt 4 Gabor based classifiers: Gabor3, Gabor13, Gabor28, Gabor30. 
They are different only in the number of feature points.

Classifier Eigen Face based face classifier  
The eigenface is constructed registration images of FERET, Yale, our Lab database.  
We made in covariance matrix of registration data. The eigenface is belong to global 
recognition. The registration data computed covariance matrix. 

 

Fig. 6. An example of feature points for face recognition 

4   Experimental Results 

The feasibility of the proposed method has been tested in the area of face recognition 
using our lab, FERET[7], Yale [8]. The data set is our lab, FERRET, AR, and Yale 
where face images are exposed to various illumination conditions. Experiments have 
been carried out to compare the performance of the proposed evolvable classifier 
combination, that the best among individual classifiers. We used 1000 images of 100 
persons from our lab data set, 330 images of 33 persons excluding 99 images of 
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wearing sunglasses from AR face data set, 60 images of 15 persons from Yale Face 
DB, and 2418 images of 1209 persons from FERET data set. The above data sets are 
merged for training and testing the CAM(see session 3). The data context of the 
merged data is analyzed by the FART. Fig. 7 shows the examples of five category 
data context.  

The first experiment is performed using the data set accumulated by our lab. The 
data set has 1000 face images from 100 people. We used 5 image for registration for 
each people. The remaining 500 images are used as the normal images. We used 99 
registration images and 198 test images from the AR face image set excluding images 
wearing sunglasses. For the Yale data set, we used 15 registration face image and 45 
test images, The FERET gallery images of 1196 people is used for registration and 
1196 probe_fafb_expression images are used for test.  

The proposed method has been compared with the t-test based classifier 
combination [9]. In the t-test based classifier combination, the decision whether to 
select the best classifier or fuse several classifiers is carried out by correlation rate 
between highest accuracy classifier and second highest classifier. Correlation table is 
fitness function. 

Table 1. Performance evaluation of single classification for each cluster 

 

Table 2. Face recognition rate using Single Classifier 

 PCA Gabor3 Gabor13 Gabor28 Gabor30 

Ferret DB 60.35% 59.59% 64.96% 82.06% 82.06% 

Yale DB 58.91% 68.99% 77.83% 80.46% 80.46% 

Inha DB 94.2% 93.72% 94.44% 95.79% 95.79% 
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Table 3. Comparison of recognition accuracy between t-test based combination and the 
proposed method 

Table1, 2 and Table 3 show performance evaluation of single classification and 
recognition accuracy comparison between t-test based combination and the proposed 
method.  Table 3 shows a recognition rate of proposed method and comparison with 
other methods. It is 99 % for our Lab DB, 98.5 % for Yale dataset and 95.4% for 
FERET dataset.  

Table 4 shows comparison of rank1 correct acceptance among Eigenface, 
Eigenface by Bayesian, EP and the proposed method. From Table 4, it becomes 
apparent that the proposed method shows good recognition performance. 

Table 4. Comparative Testing Performance: FERET database 

The proposed method performs better than simplicity method of computation and 
back propagation neural network because those methods don't adapt a general filtering 
environment. In own experimental results, the proposed method shows recognition 
rate of over 95.4 % for FERET dataset, which exceeds the performance of the other 
popular methods. 

5   Conclusion  

In this paper, Evolvable Classifier Combination, a novel method of classifier 
combination using data context-awareness is proposed and applied to object 
recognition problem. The proposed method tries to distinguish its input data context 
and evolves the classifier combination structure accordingly by Genetic algorithm 
(GA). It stores its experiences in terms of the data context category and the evolved 
artificial chromosome so that the evolutionary knowledge can be used later. The 
proposed method has been evaluated in the area of face recognition. Data context-
awareness, modeling and identification of input data as data context categories, is 
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carried out using hybrid method of FART. The face data context can be decided based 
on the image attributes such as, light direction, contrast, brightness, spectral 
composition, etc. The proposed scheme can optimize itself to a given data in real-time 
by using the identified data context and previously derived chromosome. 
The proposed method is tested using three datasets: Inha, FERET, Yale database. 
There fore another important topic for classifier fusion. 
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Abstract. In this paper, the framework and implementation of a real time multi-
scale face detection system using appearance-based learning method and multi-
pose hybrid learning approach. Multiple scale and pose based object detection 
is attractive since it could accumulate the face models by autonomous learning 
process. Face image, however, can be approximated even though it is 
represented with many scales. A real time face detection determines the 
location and size of each human face(if any) in an input image. Detecting 
varying human face in video frames is an important task in many computer 
vision applications such as human-computer interface. The face detection 
proposed in this paper employs hybrid learning approach and statistical method. 
We employ FuzzyART and RBF Network and Mahalanobis distance. We 
achieve a very encouraging experimental results. 

1   Intorduction 

We carry a conceptual idea of real world objects in our thought as Socrates explained 
to homogeneous. The difficulties in visual detection are caused by the variations in 
viewpoint, viewing distance, illumination, etc. Detecting face under various view-
points and lighting conditions is the final goal of computer vision. Robust face 
detection needs high invariance with regard to those variations. Much research has 
been done to solve this problem[1]. The face detection systems can be divided into 
three major categories[2]: model-based method, image invariant method, and 
appearance-based learning method. In the model-based method, an face model is 
defined, and this model is matched to the image. The second one, image invariant 
method is based on a matching set of image pattern relationships. The last one learns 
the features of face images of categorized object examples. Appearance-based 
approach has been employed successfully in the computer vision areas [3]. Face 
Detection determines the location and size of each human face(if any) in an input 
image. Detecting varying pose human face in video frames is an important task in 
many applications such as human-computer interface, and biometric security, etc. In 
this paper, FuzzyART(Fuzzy Adaptive Resonance Theory) and RBF are employed to 
simulate the capacity of the high level cell in the attentive process face detection 
system. Detection of multiple view faces should model the faces of multiple 
viewpoints and under various illumination conditions [1]. A simple linear model can 
hardly handle the multiple view problems. In a view-based approach, the viewpoints 
are quantized into a group, view subspace which defines the dominant possible 
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appearance of the face images with the viewpoints. An alternative approach is the 
parametric method where labeled training data is sorted according to the view values, 
and construct a view distribution [3]. Multiple scale and view based face detection is 
attractive since it could accumulate the face models by autonomous learning process. 
One problem in this approach is the face images can only be approximated with many 
scales and views. A tradeoff must be considered between the size of multiple scale 
and view representation of the face and its accuracy. The feature space for face 
detection with multiple scale and viewpoints must be partitioned into subspaces 
properly so that the location error can be minimized. However, the partitioning of 
multiple scales and viewpoints is very subjective and ambiguous. Another problem is 
the accumulation of properly labeled training data. The pose invariant face detection 
system proposed in this paper employs combined supervised and unsupervised 
learning. We employ FuzzyART and RBFN for optimal pose estimation for an 
optimal face detecting architecture. We achieve very encouraging results in real 
timesystem. The outline of this paper is as follows. In section 2, we present the 
architecture of the proposed face detection system. The pose classification process is 
discussed in section 3. In section 3, we present the face recognition process. We give 
real time retrieval experimental results in section 5. Finally, we give concluding 
remarks. 

2   The Proposed System Architecture 

We propose a general scheme of face detector for multiple viewpoints and scales. The 
specific task we are discussing in this paper is a generic face detector which is 
invariant viewing angles and scales. The system consists of  the multi-scale module, 
the object vector representation module, face detector. Initially, seed appearance 
models of an object is manually gathered and classified for training the detector 
module. The detector with prior classes is trained by the initial seed data set. The 
proposed system architecture is shown in Fig.1. 

M u lti -R e s o lu t io n M a h a la n o b is  D is ta n c e P o s e  E s tim a tio nF a c e  D e te c tio n

 

Fig. 1. Face detection architecture 

2.1   Scale-Invariance by Pyramid 

The problem is formulated as a classification problem - Face and NonFace. Initially, a 
training set of faces is gathered. Each training face image is scaled to 20x20 and 
normalized using max-min value normalization. According to vectorize way, affected 
much face detection performance. Searched for vectorization method that is optimized 
by an experiment, as a result, raised good performance. We vectorized facial image to 
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54 dimensions. Therefore, we could improve performance through efficient 
vectorization and dimension decrease. Training image contains 3000 grayscale face 
pictures of size 20 x 20. We have vectorized on each training image for each cell, we 
create a vector of 54 dimension that face image’s multi Resolution and blocked area 
average value. Training data is vectorized that can display performance by maximum 
doing not lose face characteristic information. This vectorization have enhanced face 
detection rate. Face’ feature don’t reduce and face detection result is enhancement. 
Training data and vector of training shows Fig.2. Training Image transfer to grayscale 
image, green value is high weighted green. 

 

Fig. 2. Training face data and vectorization: mean value  per each block 

Squared Mahalanobis distance [4] is a useful method that measures free model 
course free pattern relationship similarity degree. The center of cluster is determined 
by the mean vector, and the shape of the cluster is determined by the covariance 
matrix Mahalanobis distance shows Eq. 1. 

)()'( 12
xx xxr μμ −−= −  (1) 

where xμ is average vector of face’s vector,  is Covariance matrix of independent 

elements. Eigenvalues determine the length of these axes. In order to determine how a 
single boundary relates to the collection of boundaries in the learning set, a distance 
measure needs to be defined. In the active shape model literature, the evaluation of 
boundary feature values is performed in terms of the mahalanobis distance, i.e. the 
distance to the average normalized by the variation in each dimension. Following 
 

 

Fig. 3. Scale-Invariance by Pyramid 
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Cootes et al., we use a mahalanobis distance model to compute the distance of a 
feature function to the average of the learning set[4, 5, 6].  We divided only face 
image space into several probability clusters. The generation seen therefore forms 
model in 3,000 face images and computed mahalanobis distance, and the computed 
result decides face and non-face. Multi-resolution consists of nine steps by an 
experiment, and offset established by four pixels for face detection of various size. 
These models gathered and categorized manually are used to construct initial object 
detector with their possible pattern variations in a high-dimensional image vector space. 

Fig.4 shows result that mahalanobis distance of face and non-face image by Eq1. 
The distance is normalized between 0 and 255. Mahalanobis distance of face has 
lower reaction value and distance of non-face have higher reaction value. When the 
system is given an image in which to find the faces, the image is rescaled to multi-
resolution, it takes each sub-window of the image, rescales them to size of 20x20, 
applies the preprocessing, and computes the mahalanobis distance. The distance 
leading to a classification of each window(area) as a face or non-face. If the 
mahalanobis distance of sub-window is lower than threshold, is a face area. We 
estimate whether test image is face or not by. 

 

Fig. 4. The comparison of Mahalanobis distance of face and non-face image 

The above experiment result mahalanobis distance is effective to face detection, 
but is sensitive in pose. Therefore, pose classification is important. In this paper, 
integrate FuzzyART and RBF for pose's classification. 

2.2   Search Space Reduction Using Facial Color 

Skin –color provides good information for extracting area of the. Several defferent 
Kinds of color space have been proposed, and Terrillon discussed which is fast for 
modeling a Gaussian skin color distribution. We can classify Skin area using 
example-based method. Skin Color‘s area is computed 1,200 face images of 20 x 20 
size. We used YCrCb Color model. A conversion from RGB to YCrCb color model. 
We is represented CrCb color value for illumination. Figure 2 is a sample face images 
for a skin color histogram. 

Input image is 320x240 size. We noticed that Skin color in the color space are in a 
multi region. We define skin color as colors when histogram value over a threshold 
because face images contain non-skin color. The threshold value is determined 
empirically. 
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Fig. 5.  Skin color distribution in face image of 20 x 20 size 

3   Pose Analysis Using Hybrid Learning 

In the proposed approach, pose classification is dealt with as local targets to be 
detected in an image. We formulate the face detector generator to learn to 
discriminate object patterns which can be measured formally, not intuitively as most 
previous approaches did. The pose estimator classifies a face pattern into one of the 
view (pose) set. The facial pose estimation can be used to verify the detection of 
multi-view faces. In this paper, we propose how combined supervised learning and 
unsupervised learning. The proposed learning based classifier generator has 
advantages over previous approaches. 

3.1   Pose Estimation by FART+RBF 

The RBF networks, just like MLP networks, can therefore be used in classification 
and/or function approximation problems. In the case of a RBF network, we usually 
prefer the hybrid approach, described below [7, 8, 9,10]. The RBFs, which have a 
similar architecture to that of MLPs, however, achieve this goal using a different 
strategy. One cluster center is updated every time an input vector x is chosen by 
FuzzyART from the input data set. The cluster nearest to x has its position updated 
using 

Wji(t+1) = (I ∧Wji(t)) + (1- )Wji(t) (2) 

FuzzyART is a varient of ART system derived from the first generation of ART, 
namely ART1. It is a synthesis of ART algorithm and Fuzzy operator. ART1 can only 
accept binary input pattern, but FuzzyART allows both binary and continuous input 
patterns[3,10]. The feature space of object instance with multiple viewing angles must 
be clustered properly so that the location error can be minimized. However, the 
classification of multiple viewing points is very subjective and ambiguous. Thus, we 
adopt FuzzyART and RBF methods for achieving an optimal pose classification 
architecture. Executed step is as following to FuzzyART[11,12,13]. In this Paper, 
Clustering's performance improves by studying repeatedly about done data. 

The cluster center is moved closer to x because this equation minimizes the 
error vector. Each hidden unit calculates the distance of the input vector from the 
corresponding Gaussian: 
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In this paper, centers are obtained from unsupervised learning (clustering), 
FuzzyART algorithm. The weights between the hidden units and the output layer, 
denoted by wkj, are regular multiplication weights (as in a MLP) 

y x w x wk k j j k
j

M

( ) ( )= +
=

φ 0
1  

(4) 

where x is the input vector, mj is the jth prototype vector, σj is the width of the 
Gaussian of that prototype or cluster centre.  

There are various approaches for training RBF networks. In this paper, centers are 
obtained from unsupervised learning (clustering), FuzzyART algorithm. Clustering 
(FuzzyART algorithm) and LMS are iterative. This is the most commonly used 
procedure. Typically provides good results. After finding a suitable cluster using 
clustering algorithm, do laying center on this. The winning node μj is what FuzzyART 
is its best match for the input pattern. Hidden node’s center determined by 
unsupervised learning, FART. 

As showed Fig.6, the idea is to train the network in two separate stages in first 
stage, we perform an unsupervised training (FuzzyART) to determine the Gaussians' 
parameters (j, j). In the second stage, the multiplicative weights wkj are trained using 
the regular supervised approach. Input pattern is vectorized for grayscale image size 
of 20x20 pixels, input node had mosaic of size of 10x10 pixels. The transformation 
from the input space to the hidden unit space is non-linear, whereas the 
transformation from the hidden-unit space to the output-space is linear. RBF classifier 
expand input vectors into a high dimensional space. RBF network has architecture 
that of the traditional three-layer back-propagation. In this paper, hidden units are 
trained using FuzzyART network and basis function used are Gaussians. Proposed 
network input consists of n normalized and rescaled size of 1/2  face images fed to the 
network as 1 dimension vector. And input unit has floating value [0,1] The vector 
value is normalized. In case learn by FuzzyART, performance is best in case used 
picture itself by input node vectorized. 

    

Fig. 6. Training System Architecture 
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4   Experiment 

The experiment of the proposed method for the face detection has been performed 
with images captured in various environments 600 images are captured and 
considered in the experiments. The superiority of the proposed method is discussed in 
the following. We should note that to pose estimation, figure 4 shows face detection 
in real-time image by using multi-resolution.  

Face detection result shows table1. As explained in frontal image and the test 
images have size of 320 x 240 pixels and encoded in 256 gray scale levels. We 
resized to various size using multi-resolution of 5 steps. Rescaled images is 
transferred Each face is normalized into a re-scaled size of  20x20 pixels and each 
data – training image and test images – is preprocessed by histogram equalization and 
max-min value normalization.  

Fig.10 shows the face detection and tacking result in real time system and face 
recognition schema is shown Fig.10 The left image is recognized image ranking.  

 

                                   (a) input image          (b) Recognition data 

Fig. 7. Real -Time Face Detection 

A register image is generated five image that is left shift, right shift, up, down 
transformed experimental result is showed  tables. The clustering results of face pose 
using only FuzzyART and integration FuzzyART and RBF is given in the following 
Table 1, Table 2 and Table 3.  We used 1000 images by train data and 600 images by 
test data of MIT +UMIST database and ORL database. We separated face images 
through recursive learning of 4 times. Result about pose data classification shows in 
Table 2.  

By we were going to do studying repeatedly, clustering's performance improved. 

Table 1. Pose Estimation Result – Our Lab Dataset 

Data RBFN+FART FART BP 
Front Image 597/600 591/600 497/600
Left Image 597/600 593/600 498/600
RightImage 600/600 599/600 485/600



 A Multi-scale and Multi-pose Face Detection System 275 

 

Table 2. UMIST & MIT Database 

Data Accept FAR 
Front Image 292/300 8/300 
Left Image 48/49 1/49 
Right Image 298/300 2/300 

Table 3. ORL Database: 40 Person  * 9 Pose 

Data Accept FAR 
Front Image 40/40 1/40 
Left Image (4 Pose) 120/120 1/120 
Right Image(4 pose) 118/120 2/120 

Table 4. FERET Database : fafb and fafc dataset 

Dataset Accept FAR 

Fafb dataset 98.07% 1.35% 
Fafc dataset 92.78% 5.15% 

 

 

Fig. 8. Face detection rate in CMU database: Training data’s size is 20~20 and 10 ~10 

     

Fig. 9. Face detection example in CMU 
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We could improve pose classification's performance for face through recursive 
studying like experiment result. The combined effect of eye glasses is also 
investigated. In this experiment, the factor of glasses and illumination was considered 
and experimental images were classified by the factor of glasses and illumination. We 
classified bad illumination images into the image including a partially lighted face, 
good images into that including g a nearly uniformly lighted face. 

5   Concluding Remarks  

In this paper, we propose a novel generic appearance-based object detection, 
especially for variance in scale and viewing points in real-time system. Even though 
much research has been done for object detection, it still remains a difficult 
issue.  The proposed system could accumulate the object models by autonomous 
learning process. In appearance-based approach, the object can only be approximated 
with many scales and views, where the partitioning of multiple scales and viewpoints 
is very subjective and ambiguous. A tradeoff representation of pose and its accuracy 
is treated with the FuzzyART and the RBF Network method. The feature space for 
object detection with multiple scale and viewpoints are partitioned into subspaces so 
that the location error can be minimized. mahalanobis distance computing module 
explores the subspaces of multiple viewpoints for an efficient face detecting structure, 
and integrated the FuzzyART and RBF module resolves the subjective and ambiguous 
problem of partitioning boundaries. The experiment shows very encouraging results.  
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Abstract. Statistical dependence of classifiers has recently been shown to im-
prove accuracy over statistically independent classifiers. In this paper, we focus 
on the verification application and theoretically analyze the AND fusion rule to 
find the favorable conditional dependence that improves the fusion accuracy 
over conditionally independent classifiers. Based on this analysis, we come 
with a method to design such classifiers by training the classifiers on different 
partitions of the training data. The AR face database is used for performance 
evaluation and the proposed method has a false rejection rate (FRR) of 2.4% 
and a false acceptance rate of 3.3% on AND fusion, which is better than an 
FRR of 3.8% and FAR of 4.3% when classifiers are designed without taking 
account the AND fusion rule.  

1   Introduction 

Biometric verification is being used to replace physical and virtual access techniques 
such as keys and passwords since biometrics cannot be lost or stolen. A classifier is 
built on enrollment of a person’s biometric features to discriminate between the 
features of the person and features of other people, as well as to tolerate the 
distortions between different variations in the features of the person. During 
verification, the classifier produces an output score using the input test feature. 
Typically, by setting thresholds on the score, a decision is made whether the input 
feature is from an authentic, i.e. from the same person, or from an impostor, i.e. from 
some other person.  In practical applications, there would be large variability present 
in the biometric features obtained. For example, in the face recognition vendor test 
(FRVT) 2002 [1], which involved 37,437 individuals and 121,589 images, the best-
performing algorithm had a FRR of 10% at 1% FAR [1]. In such cases, multiple 
classifier fusion can improve accuracy. 

Classifier fusion is a topic of much investigation and many methods of fusion have 
been proposed [2-8]. Some typical approaches to combining classifiers are: (i)a classi-
fier ensemble combined using a fusion rule [2-4], (ii) dynamic classifier selection 
where the best classifier to use is chosen based on the test feature [5,6]. 

Typically classifier ensembles are fused in parallel by combining scores [2] (e.g. 
sum rule, product rule, etc.) or combining decisions [3] (e.g. majority rule). Kittler et. 
al. [2] formulate the sum, product, min, max, and median of classifier a posteriori 
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probabilities as simplifications or bounds of the maximum a posteriori probability of 
the ensemble of classifiers when classifiers are conditionally independent. In practice, 
the classifier output scores are normalized as an estimate of the classifier a posteriori 
probabilities. Varshney [3] develops methods of finding the best decision fusion rule 
when the probability density functions of classifiers are given and the classifiers are 
conditionally independent. If the classifier outputs are interpreted as fuzzy 
membership values or belief values, Dempster-Shafer [4] techniques are used for 
combination. 

Kleinberg [7] introduced the concept of stochastic discrimination (SD) for 
generation of multiple weak classifiers which are combined to form a strong 
classifier. These classifiers, as well as their combination, are over-training resistant 
under certain strong mathematical assumptions of indiscernibility between training 
and test sets with respect to the weak classifiers. This requirement would lead to a 
requirement for a large training set, which may not be available in practice.  

Ho et al [5] introduced the concept of dynamic classifier selection (DCS) as an 
alternative to classifier ensemble combination where the most appropriate classifier is 
chosen to make the decision. Giacinto and Roli [6] proposed a DCS method based on 
the concept of choosing the best classifier based on the classifier’s local accuracy 
(CLA) around the test feature. Shin and Sohn [8] proposed a combination of DCS and 
classifier ensemble method for fusion. Multiple decision trees are built, but two 
clusters of trees are chosen based on the local accuracy of the test sample, and these 
are combined through majority voting. 

Usually, the classifiers are generated independent to the fusion method and various 
fusion methods are applied to these classifiers to find the best method. Some methods 
of generating classifiers are bootstrapping [9] and Boosting [9]. In bootstrapping [9], 
multiple classifiers are generated in an independent and parallel manner by training 
on random samples of the training set. In Boosting [9], classifiers are generated in a 
sequential manner by training more on misclassified samples by the current ensemble. 

In this paper, we focus on decision fusion from classifier ensembles for biometric 
verification. Kuncheva et al [10] show that negatively dependent classifiers can 
improve MAJORITY voting rule performance over independent classifiers. For 
different fusion rules, the favorable dependence statistics vary. Here, we apply the 
idea to AND rule fusion. Theoretical analysis of the statistics of the classifiers for 
optimal fusion with the AND rule is done and the favorable conditional dependence 
of classifier decisions to improve AND fusion performance over conditional 
independence is found. The same principle can be applied for other fusion rules to find 
their favorable conditional dependence. Based on the theoretical analysis, we come up 
with a method of designing classifiers by partitioning the training set in a manner 
optimal to the fusion rule. We compare the performance of this design method to a 
method where classifiers are generated independent to the fusion rule and show the 
superiority of this design method. We evaluate the verification performance of the AND 
rule on the AR face database [11] using the Fisher Discriminant [12] as the base 
classifier. However, the design method can be applied to other base classifiers. 

The rest of the paper is organized as follows. Section 2 is a theoretical analysis of 
the AND rule to find the favorable conditional dependence of classifiers for improved 
AND fusion. In Section 3, a design method to come up with such classifiers is pro-
vided along with results on the AR database. Conclusions are given in Section 4.  
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2   Analysis of Conditionally Dependent Classifiers for the AND 
Rule 

In verification applications, we wish to differentiate between two classes, authentics 
and impostors. Let H0 and H1 be the two hypotheses denoting impostors and 
authentics, respectively. To provide clarity of analysis, we analyze the AND rule for 
two classifiers. We assume there are two classifiers, each providing a binary decision 
uj. The AND rule provides a global decision 0u  based on the individual classifier 

decisions. If all classifiers declare authentic ( 1 2 1u u= = ), then the AND rule declares 

authentic ( 0 1u = ) and otherwise declares impostor ( 0 0u = ). The error probabilities 

of interest in verification are the probability of false acceptance FAP  and the 

probability of false rejection FRP , which are defined as follows for the two-classifier 

AND rule. 

[ ]( ) [ ](1,2)
0 1 21 1 | ,   AND

FAP P H u u= = =u u  (1) 

[ ]( ) [ ]( ) [ ]( )(1,2)
1 1 10 0 | 1 0 | 0 1 |AND

FRP P H P H P H= = + = + =u u u  (2) 

When the classifier decisions are conditionally independent, we have  

[ ]( ) 1 2| ( | ) ( | ),  0,1  0,1i i iP i j H P u i H P u j H i j= = = = = =u  (3) 

In the paper, we may loosely mention conditional independence (dependence) or 
conditionally independent (dependent) classifiers for classifiers whose decisions are 
conditionally independent (dependent) but the meaning should be clear. For fixed 
individual classifier error probabilities, the FAP  and FRP  for or the two-classifier AND 

rule are fixed for conditionally independent classifiers and are given by 

( ) ( )(1,2) 1 2
1 0 2 0 1| 1|AND

FA FA FAindependent P P u H P u H P P= = = =  (4) 

( ) ( )(1,2) 1 2 1 2
1 1 2 1 1 1| 1 |AND

FR FR FR FR FRindependent P P u H P u H P P P P= − = = = + −  (5) 

where the superscripts on PFA and PFR refer to the classifier. When the classifier 
decisions are conditionally dependent, the error probabilities may be larger or smaller 
than the expressions in Eq.(4) and Eq.(5) for conditionally independent classifier 
decisions. Our interest is to know the conditional dependence for which the error 
probabilities are smaller for the AND fusion rule when the individual classifier error 
probabilities are fixed. For making the error probability on iH  smaller than its 

corresponding value for conditionally independent classifiers, we need to consider 
only the joint probability of the classifier decisions conditioned on iH . The favorable 

conditional dependence on iH  may be different from the favorable conditional 

dependence on jH , j i≠ . This does not pose a problem but states the criteria on the 

classifier design in order to simultaneously satisfy both the conditions. Further, the 
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conditional dependence favorable for one fusion rule may be different from the 
conditional dependence favorable for another fusion rule. Hence each fusion rule must 
be analyzed separately. However, the analysis will be similar for different fusion rules. 

We first focus on finding the conditional dependence for which (1,2)AND
FAP  is smaller 

than that of conditionally independent classifiers for the AND rule ( 1 2
FA FAP P ) (Eq.6), 

for fixed individual classifier false acceptance probabilities (Eq.(7) , Eq.(8)). 

1 2
0( [1 1] | )FA FA FAP P H P P= = <u  (6) 

1
0 0( [1 0] | ) ( [1 1] | )FAP P H P H= = + =u u  (7) 

2
0 0( [0 1] | ) ( [1 1] | )FAP P H P H= = + =u u  (8) 

We also have the constraint that the sum of all probabilities is equal to 1 (Eq.(9)). 

0 0 0 0( [0 0] | ) ( [0 1] | ) ( [1 0] | ) ( [1 1] | ) 1P H P H P H P H= + = + = + = =u u u u  (9) 

We thus have three constraints (Eq.(7) to Eq.(9)) and one inequality (Eq.(6)) while 
there are four variables, one for each of the four combinations of decisions. This im-
plies that each term of the joint conditional probability must satisfy the following ine-
qualities. 

1 2
0( [0 0] | ) (1 )(1 )FA FAP H P P= < − −u  (10) 

1 2
0( [1 1] | ) FA FAP H P P= <u  (11) 

2 1 2
0( [0 1] | ) FA FA FAP H P P P= > −u  (12) 

1 1 2
0( [1 0] | ) FA FA FAP H P P P= > −u  (13) 

subject to the constraint in Eq.(9). We note from the last two inequalities, Eqs.(12 and 
13), the probability of 1 2u u≠ conditioned on H0 is larger for the favorable conditionally 

 

Fig. 1. (a) The general case of a pair of classifiers on impostors. (b) The best pair of condition-
ally dependent classifiers when 1 2 1FA FAP P+ ≥ . (c) The best pair of conditionally dependent clas-

sifiers when 1 2 1FA FAP P+ < . 
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dependent case than the conditionally independent case. In other words, the two clas-
sifier decisions must disagree more than independent classifiers on the impostor data 
to make the false acceptance probability for the AND rule smaller than that of condi-
tionally independent classifier decisions. This statement is always true but the con-
verse is not true in general. For the general case of N classifiers, this solution is one of 
the many possible solutions. 

Fig. 1a) illustrates the idea pictographically. The area of the sets 0
iC  represents the 

probability of correct classification by the ith classifier. The union of the sets repre-
sents the correct classification of the AND rule. When the intersection of the sets is 
smaller than that of conditionally independent classifiers, the union of the sets is lar-
ger or (1,2)AND

FAP  is smaller than that of conditionally independent classifiers. 

The Q statistic [13] could be used as a measure of the conditional dependence. The 
Q statistic between a pair of classifiers j and k is defined as  

11 00 01 10

11 00 01 10jk

N N N N
Q

N N N N

−=
+

 
(14) 

where abN  is the number of elements for which classifier j declares a and classifier k 
declares b. The Q statistic takes values between 1 and –1 and is zero when the classi-
fiers are conditionally independent. For large number of observations, the frequencies 
can be approximated to probabilities. An indication to the sign of the Q statistic as a 
measure of the favorable conditional dependence for the AND rule could be obtained 
by considering the numerator of the Q statistic. From Eqs.(10 to 13), we have 

( ) ( ) ( ) ( )
11 00 01 10

1 2 1 2 2 1 1 2
2

(1 )(1 ) (1 ) (1 ) 0FA FA FA FA FA FA FA FA

N N N N
P P P P P P P P

N

− < ⋅ − − − − ⋅ − =  
(15) 

This implies that the Q statistic of the conditionally dependent classifiers on the im-

postor data, 0HQ , would need to be negative for making the false acceptance of the 

two-classifier AND rule smaller than that of conditionally independent classifiers.  
From Fig. 1b) and 1c), we can see that the smallest (1,2)AND

FAP  is obtained when the 

union of the sets is the largest and is given by 
1 2 1 2

(1,2)

1 2

1, 1
smallest 

0,        1
AND FA FA FA FA

FA

FA FA

P P P P
P

P P

+ − + ≥
=

+ ≤
 

(16) 

For this special case, the joint probability of the classifier decisions are as follows. 

1 2

0 1 2 1 2

0, 1
( [0 0] | )

1 ( ), 1,
FA FA

FA FA FA FA

P P
P H

P P P P

+ ≥
= =

− + + ≤
u  

(17) 

1 2 1 2

0 1 2

( ) 1, 1
( [1 1] | )

0, 1,
FA FA FA FA

FA FA

P P P P
P H

P P

+ − + ≥
= =

+ ≤
u  

(18) 

1 1 2

0 2 1 2

1 , 1
( [0 1] | )

, 1,
FA FA FA

FA FA FA

P P P
P H

P P P

− + ≥
= =

+ ≤
u  (19) 
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2 1 2

0 1 1 2

1 , 1
( [1 0] | )

, 1,
FA FA FA

FA FA FA

P P P
P H

P P P

− + ≥
= =

+ ≤
u  (20) 

In each case, 0HQ at the smallest probability of false acceptance would be –1 since ei-

ther of 11N or 00N (proportional to 0( [1 1] | )P H=u or 0( [0 0] | )P H=u , respec-

tively ) is zero. 
We now focus on finding the conditional dependence for which (1,2)AND

FRP  is smaller 

than that of conditionally independent classifiers (Eq.(21)), for fixed individual classi-
fier false rejection probabilities 1

FRP  and 2
FRP  (Eq.(22-23)).  

(1,2) 1 2 1 2
11 ( [1 1] | )AND

FR FR FR FR FRP P H P P P P= − = < + −u  (21) 

1
1 1( [0 0] | ) ( [0 1] | )FRP P H P H= = + =u u  (22) 

2
1 1( [0 0] | ) ( [1 0] | )FRP P H P H= = + =u u  (23) 

The other constraint is due to the fact that all probabilities sum to 1 (Eq(24)). 

1 1 1 1( [0 0] | ) ( [0 1] | ) ( [1 0] | ) ( [1 1] | ) 1P H P H P H P H= + = + = + = =u u u u  (24) 

This implies that each term of the joint conditional probability must satisfy the fol-
lowing inequalities.  

1 2
1( [0 0] | ) FR FRP H P P= >u  (25) 

1 2
1( [1 1] | ) (1 )(1 )FR FRP H P P= > − −u  (26) 

1 1 2
1( [0 1] | ) FR FR FRP H P P P= < −u  (27) 

2 1 2
1( [1 0] | ) FR FR FRP H P P P= < −u  (28) 

subject to the constraint of Eq.(24). We note from the first two inequalities, Eqs.(25 
and 26) that the classifier decisions must agree more on the authentic data to make the 
false rejection probability for the AND rule smaller than that of conditionally inde-
pendent classifier decisions. From Eqs.(25 to 28), we have  

11 00 01 10
1 2 1 2 2 1 1 2

2
(1 )(1 )  (1 )   (1 ) 0FR FR FR FR FR FR FR FR

N N N N
P P P P P P P P

N

− > − − ⋅ − − ⋅ − =  
(29) 

Hence the Q statistic on authentics, 1HQ , would be positive with favorable conditional 

dependence for the AND rule.  
Fig. 2 illustrates the idea. The area of each of the sets 1

iC  represents the probability 

of correct classification of the ith classifier on authentics. When the intersection of the 
sets is larger, (1,2)AND

FRP  is smaller than that of conditionally independent classifiers. 

When the intersection is the largest, we have the smallest possible (1,2)AND
FRP .  
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(1,2) 1 2smallest max( , )AND
FR FR FRP P P=  (30) 

This happens when the joint probability of the classifier decisions is as follows. 

1 2
1( [0 0] | ) min( , )FR FRP H P P= =u  (31) 

1 2
1( [1 1] | ) min(1 ,1 )FR FRP H P P= = − −u  (32) 

1 2 1 2

1 1 2

,  
( [0 1] | )

0,              
FR FR FR FR

FR FR

P P P P
P H

P P

− >
= =

<
u  

(33) 

1 2

1 2 1 1 2

0,              
( [1 0] | )

,  
FR FR

FR FR FR FR

P P
P H

P P P P

>
= =

− <
u  

(34) 

1HQ is +1 at the smallest possible (1,2)AND
FRP  for the AND rule, since either of 10N  or 

01N (proportional to 1( [1 0] | )P H=u  or 1( [0 1] | )P H=u , respectively) is zero. 
 

 

Fig. 2. (a) The general case of a pair of classifiers on authentics. (b) The best pair of condition-
ally dependent classifiers. 

Due to lack of space in this paper, we are unable to show the favorable dependence 
statistics for the general case of AND fusion using N classifiers. However, the general 
idea can be explained. Similar to the analysis from Fig.1, it can be seen that when the 
union of the sets 0

iC , 1, ,i N=  is larger, (1, , )AND N
FAP is smaller than for conditional 

independence. Although there are many solutions by which the union is larger, one 

solution is all pairs of sets have smaller intersection, i.e. 0HQ  between all pairs of 

classifiers is negative. And similar to the analysis from Fig. 2., (1, , )AND N
FRP  is smaller 

when the intersection of all the sets 1
iC , 1, ,i N=  is larger. While there are many 

solutions for the intersection of all sets to be larger, one solution is all pairs of sets 
have larger intersection, i.e., 1HQ  between all pairs of classifiers is positive. In the 

next section, we implement a method of finding two conditionally dependent classifi-
ers favorable for the AND rule. 
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3   Design of Conditionally Dependent Classifiers for the AND Rule 

The AR face database [11] is used here for performance evaluation. It contains color 
images of expression, illumination and occlusion variations taken at two sessions 
separated by two weeks. There is some slight pose variation also present in the 
images. Registered and cropped grayscale images (size 64×64 pixels) of 95 people are 
used for evaluation here because of missing data for some of the people. Performance 
on 20 images of expression, illumination and scarf occlusion per class is evaluated 
here since the registration of sunglass images is difficult. Fig. 3 shows sample images 
of one person in the AR database used here for evaluation. 

The Fisher linear Discriminant [12] is chosen here as the base classifier because it 
has shown good performance in biometric verification and it uses both authentic and 
impostor data during training. While more details are given in [12], the Fisher 
Discriminant finds a projection direction where the distance between the two class 
means is maximized while the scatter of the two classes is minimized. When the 
number of training images is smaller than the dimension of the images, then the 
within class scatter matrix, used in finding the projection direction, is singular and the 
classical Linear Discriminant Analysis (LDA) fails. To avoid this, a Gram Schmidt 
(GS) Orthogonalization based approach for LDA proposed in [12] is used here. While 
details of the implementation can be found from [12], this method finds the projection 
direction that is in the null space of the within class scatter matrix and in the non-null 
space of the scatter matrix. The dimension of the projection vector is the same as the 
image dimension. 

Three images from each person (images 1, 4 and 5 from the first row of Fig. 3) are 
used for training. By using training data from all 95 classes, i.e. 3 authentic images 
and 94*3 impostor images, a Fisher Discriminant classifier [12] is found for each 
class. This classifier is tested on all the 20 images of all classes. By setting thresholds 
on the projection values, decisions are made. When the false acceptance rate is equal 
to the false rejection rate, it is called the equal error rate (EER). The thresholds are 
tuned for each class and the average EER over all classes with a single classifier is 
4.4%.  

We desire to reduce this EER by designing two classifiers (from the same training 
set) and fusing them with the AND rule. If we did not use any knowledge of how the 
two classifiers should be for fusion with the AND rule, one way to design the two 
classifiers is to use bootstrapping [9]. A random subset of the authentic training data 
and a random subset of the impostor training data on which to train each classifier are 
generated here by random sampling with replacement of the training data. We com-
pare this method to a more informed way of generating the two classifiers based on 
the knowledge obtained from Section 2. 

From Fig.1 of Section 2, we can see that when the intersection of the sets 0
iC  is 

smaller, then the union of the sets 0
iC  is larger and hence AND

FAP  is smaller than the 

corresponding values for conditional independence. Since the sets stand for correct 
classification on impostors, we conjecture that when the intersection of the impostor 
training sets of the classifiers is small, the probability of correct classification of both 
classifiers will be small. Since the union of the sets should be large, the impostor 
training subsets of different classifiers should cover different regions of the impostor 
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space and the union of all training subsets should cover the entire impostor space. 
From Fig. 2 of Section 2, we can see that when the intersection of the sets 1

iC  is 

larger, AND
FRP  is smaller than the corresponding values for conditional independence. 

Since the intersection should be as large as possible for AND
FRP  to be small, we 

conjecture that the authentic training subsets of the classifiers should overlap 
completely and should cover the entire authentic space. Here, we partition the 
impostor training sets into two disjoint subsets, male impostors and female impostors, 
to train two classifiers. The entire authentic training set is used to train both 
classifiers. In future, better clustering methods of choosing the training subsets for the 
multiple classifiers will be investigated. 

 

Fig. 3. Sample face images of one person in the AR database 

Table 1. Results of fusion (95% confidence interval of the error rates) when classifiers are 
designed indepedent of the fusion rule and when they are designed by taking into account the 
fusion rule by our proposed method.  

 EER1(%) EER2(%) FARAND(1,2) (%) / 
FAR1 FAR2(%) 

FRRAND(1,2) (%) / 1-   
(1-FRR1)(1-FRR2) (%) 

Random subsets 
of training set 

7.4±1.18 7.7±1.20 4.3±0.09 /1.7±0.06 3.8±.86 / 6.0±1.07 

Proposed method 5.5±1.03 8.9±1.28 3.3±0.08 /2.0±0.07 2.4±0.68 / 3.7±0.83 

Table 1 provides the results of both approaches to design classifiers. The 
thresholds on the Fisher projections for the two classifiers were chosen so that FAR is 
equal or close to FRR for the AND rule (thus equal to EER of the AND rule). This is 
done by varying the thresholds to compute the ROC curve and the point on the ROC 
curve where FAR is equal or closest to FRR corresponds to the pair of desired 
thresholds. As expected, the proposed method of designing classifiers has a lower 
FAR and FRR for the AND rule than the method where independent and random 
subsets of the training set are used to design classifiers. The proposed design method 
also has lower error rates than the single classifier which uses all training samples. 
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Table 1 also shows the theoretical values for the AND rule FAR and FRR if the 
classifiers were independent. These numbers are obtained in a purely theoretical 
manner and do not represent practically designed classifiers. These are simply used to 
check if the designed classifiers have the desired conditional dependence statistics as 
given in Section 2. It is seen that the designed classifiers have favorable conditional 
dependence on authentics. It may not be possible to obtain desired conditional 
dependence statistics between the classifiers, but the proposed design method is better 
than designing the classifiers without taking into account the applied fusion rule. 

4   Conclusions 

Three important contributions have been made in this paper. The first is a theoretical 
analysis to find the conditional dependence of the classifiers which are favorable for the 
AND fusion rule. The second is use this knowledge to come up with a method of 
designing classifiers on different partitions of the training set that take into account the 
AND fusion rule. The last is to show that this design method improves AND fusion 
performance over a method that designs the classifiers independent to the fusion rule.  
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Abstract. In this paper, we propose a method to evaluate the possible recognition 
degree of a face, called face recognizability, before face recognition. If we can 
measure the recognizability, we can increase the system efficiency by avoiding 
recognizing the faces with poor recognizabilities. Based on the features of the 
orientation distribution on the face regions, we found the facial components. 
Then we collected lines on the face with major orientations. Last, we used the 
triangle formed by two eyes and mouth, the degree of the face shape symmetry 
and intensity symmetry to define the measurement of face recognizability. 
Experimental results show that recognizability can be used as a measurement to 
determine whether we need to perform face recognition or not. 

1   Introduction 

The security problem is an important issue with the increasing crime rate. The setup of 
a surveillance system becomes essential in many enterprises and organizations. To 
extract a suspect from recorded films, a safe guard has to check the films manually, 
which is a time-consuming task. The system also needs much storage for recording. 
Vision-based surveillance systems are brought to avoid these disadvantages. 

A vision-based surveillance system generally contains modules like foreground 
segmentation, face extraction, and so on. The foreground segmentation module 
segments persons from recorded images. The face extraction module locates face 
regions from the segmented persons. These modules are helpful to reduce the workload 
of safe guards. However, the work of recognition is still ineffective. Not all detected 
faces have to be recognized, because recognition systems can only recognize well 
frontal faces. Faces with orientations or covers may be recognized incorrectly. 
Therefore, a method that can determine whether a face is appropriate for recognition is 
very helpful. 

Background subtraction is a popular method for foreground segmentation, 
especially under a relatively stationary background. It attempts to detect moving 
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regions in an image by differencing between the current image and a reference 
background image in a pixel-by-pixel manner. Yang and Levine [1] proposed an 
algorithm to construct the background primal sketch by taking the median value of the 
pixel color over a series of images. Stauffer and Grimson [2] presented an adaptive 
background mixture model for real-time tracking. 

Many research studies have been proposed for detecting faces in these 
applications. These methods can be roughly classified into four categories [3]: 
knowledge-based, feature-based, template matching and appearance-based. In the first 
category, most proposed methods encode human knowledge of a typical face. These 
methods are designed mainly for face location. Yang and Huang [3] proposed a 
hierarchical knowledge-based method to detect faces. In the second category, the 
proposed methods try to find invariant features for face detection. The commonly used 
facial features include eyebrows, eyes, nose, mouth, etc. Zhou et al. [4] presents a 
framework of orientation analysis for rotated human face detection. Sirohey [5] 
proposed a localization method which used an edge map and heuristic to remove and 
group edges. Yow and Cippola [6] proposed a feature-based method which utilize a 
large amount of image evidence. Augusteijn and Skufca [7] developed a method that 
infers the presence of a face through the identification of face-like textures. Jun et al. 
[8] proposed a fast search scheme of gravity-center template matching in an image for 
human face detection. Hsiun and Fan [9] proposed a system to detect multiple faces in 
complex backgrounds. In the third category, several standard patterns of a face are 
stored to describe the face as a whole or the facial features separately. The correlations 
between an input image and the stored patterns are computed for detection [10]. In the 
last category, the models are learned from a set of training images which should capture 
the representative variability of facial appearances [11]. 

In the paper, we assume that the surveillance environment is indoors. The light 
condition is stable and the digital camera is stationary. Input images are gray-scale and 
only a single person is in the processing image. We aim to measure the recognizable 
degree for the face, called recognizability. In general, a frontal view face has the best 
recognizability. When the face is tilt, swing and rotation, the recognizability of the face 
is low. Covers on faces, beard and hair will affect the recognizability. 

2   Head and Facial Component Extraction  

2.1   Head Extraction 

Input images usually contain complex background. The foreground objects must first 
be segmented. We apply a background subtraction scheme to segment regions of 
moving objects in an image sequence by comparing each new frame to a model of the 
scene background. 

To extract a head, one can find the neck from a human region since the neck is 
narrower than its upper and lower components such as the head and the shoulder. The 
neck location can be found according to the first valley in the horizontal projection 
profile. However, if a person bows his head, a portion of the head can be lower than the 
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neck location. A part of head may be lost. The extraction method should be improved 
by adopting other procedures. 

Because the shape of a head is approximately an ellipse, we adopt an ellipse to 
represent the head region. There are several methods to find an ellipse fitting a certain 
region, including gravity center-based ellipse finding methods and Hough transforms. 
The ellipse finding algorithm we propose consists of five steps. The details are 
described as follows: 

1. Choose two horizontal lines (A, B) in the upper zone and lower zone. The upper 
zone for choosing line A is between 0.1*h and 0.3*h; the lower zone for choosing 
line B is between 0.7*h and 0.9*h, where h is the height of the segmented head in 
horizontal projection. 

2. Since the head shape is not a perfect ellipse, we can take multiple lines in the two 
zones. In our experiments, we take two lines in regions A and B. 

3. Compute the intersection point between the foreground contour and two lines. 
Connect the midpoints in these two lines by a straight line C. 

4. Along the orthogonal direction on both sides of line C and get the distance to the 
contour. Choose the point (x0, y0) in line C, whose distances to both sides are 
equal and the longest. This point (x0, y0) is regarded as the center of an ellipse. 

5. Find the major axis a and minor axis b. 

This method can find several ellipses for the segmented head quickly. We select the 
largest ellipse as the head region.  

2.2   Facial Component Identification 

Next we will extract the facial components from the head. In a human face, the 
orientations of facial components are strong. For the upright and frontal face, the facial 
components can be roughly divided into two groups: horizontal (for most organs such 
as eyebrows, eyes and mouth) and vertical (for nose and cheek). The facial components 
will form darker lines in the face. If we can find the lines in the face, we will locate the 
facial components. Our facial component identification consists of the following 
stages: face extraction, orientation analysis, line detection, line filtering, and facial 
component identification 

Stage1: Face Extraction 
First, the system needs to segment the face component from the head. When the light 
condition is stable, the intensity range of skin should be located in a range, between 65 
and 145, trained from 40 faces in our experiments. We can use the property to segment 
the face from the head and then find the face contour by a tracing algorithm.  

Stage 2: Orientation Analysis 
An orientation histogram is constructed by statistical analysis of the face images. We 
then compute the possible orientations of the facial components from the orientation 
histogram because of the strong orientations of the facial components. To compute the 
orientation histogram, we have to calculate the gradient and the strength for every 
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pixel. The face has several major peaks in the orientation distribution, which define the 
orientation characteristic for the analyzed region. 

Stage 3: Line Detection 
According to line orientations, we will detect the lines along these orientations. The 
procedure of the line detection is as follows: 

1. Select k angles, (t1, t2, …, tk) with respect to the major peaks from the 
orientation histogram. 

2. For each angle ti, (i = 1, 2, …, k) 

i. Detect point1(x1, y1) with angle ti from top to bottom and left to right. 
ii. Compute the coordinate point2(x2, y2) from point1 and ti. (d is 5 in our 

experiment) 

 +=
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2

2

tan td

d

y

x

y

x                                         (1) 

iii. If the angle of point2 is also ti, then connect point1 and point2 as a line 
segment.  

iv. Let point2 be point1, and go back to Step 2 until the angle between point1 
and point2 is different with ti.  

An example of line detection is shown in Figure 1(a).  

Stage 4: Line Filtering 
There are several false lines detected from previous processes, which may be formed by 
face contour, cheek and eyeglass frame. Since the lines formed by the shadow of the 
facial contour and the hair are near the head contour, we remove the lines near the face 
contour. Figure 1(b) shows an example of line filtering based on the face contour. 

             

Fig. 1. (a) The result of line detection. (b) The result after contour filtering. 

The vertical distribution value of line-centers formed by two eyes and mouth has 
higher values than that of cheek or glass frame. To remove these lines, we delete the 
lines whose centers belong to low distribution values in the vertical projection. The 
remainder lines should belong to the facial components.  

Stage 5: Facial Component Identification 
For the lines remained after filtering, we will find the lines that can represent facial 
components. For instance, the lines formed by eyes whose intensity values should be 
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darker and whose location is higher than other. The lines formed by the mouth whose 
intensity values should be darker than those around the mouth and the location is low.  

We will use these properties to identify the lines corresponding to facial 
components. The procedure of the identification includes three steps: 

1. Remove the lines with light intensity values. 
2. Identify the lines with the appropriate properties of facial components. 
3. Merge the lines with similar properties of the facial components. 

Figure 2 shows an example of facial component identification. 

      

Fig. 2. (a) The result of identifying the lines with the appropriate properties of facial components. 
(b) The result of merging the lines in the same facial components. 

3   Computation of Face Recognizability 

There are several factors that will affect face recognition rates. The size of a detected 
face is related with its recognition accuracy. A frontal face can be recognized better 
than an oriented face. Before we recognize a human face using detected facial features, 
we use a simple measurement, called recognizability, to indicate the possibility of face 
recognition. If a lower measurement is obtained, the recognition rate may be poor and 
face recognition is not recommended. 

To measure the face recognizability, we analyze facial features under various 
orientations. Faces can be classified into three classes: frontal faces, oriented faces, and 
side faces. The orientation distribution of a frontal face is symmetric along an axis. The 
triangle formed by the centers of eyes and mouth, called eyes-mouth triangle, will be an 
isosceles triangle in the center region of the head. For an oriented face, the intensity 
distribution of face regions should be asymmetric with respect to the symmetric axis. 
The eyes-mouth triangle may not be an isosceles triangle. For a side face, the 
eyes-mouth triangle may not be formed because several facial components cannot be 
detected. After analyzing face properties, each detected face will be classified 
according to the two measurements. 

Measurement 1: Shape symmetry 
The symmetric degree of a triangle is defined as follows: 
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where E1 and E2 are the centers of the two eyes and M is the intersection of the vertical 
projection on the line joining two eye centers from the mouth center. The value of S is 
between 0 and 1, which is near 1 when the triangle is close to an isosceles triangle and 
low when the triangle is deformed from an isosceles triangle.  

Measurement 2: Intensity symmetry 
A human face is strongly symmetric with respect to the line dividing the nose 
vertically. To measure the symmetry, we divide the face image into left and right 
regions. The symmetric axis can be found from the orthogonal orientation of the line 
formed by two eyes. To compute the face intensity symmetry, we define the following 
measurement along the symmetric axis. 

),(

),(*2
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rightleftelsMatchedPix
P =                                    (3) 

where left is the left region; right is the right region of the face; MatchedPixels is the 
number of pixels between the left and the right face that have the same intensity value; 
SumOfPixels is the sum of the left and the right face. In our experiments, if P >= 0.90, 
the region is symmetric and the face is frontal. Otherwise, the region is asymmetric and 
the face belongs to oriented.  

The value of recognizability, Recog, is defined as S * P * size. Figure 3(a) shows two 
frontal faces and Fig. 3(b) two oriented faces. For side faces and the faces with covers, 
the eyes-mouth triangles cannot be found. The measurement S is non-computable and 
Recog is assigned as 0. Figure 3(c) shows five side faces. 

 

(a) (b) 

 
(c) 

Fig. 3. Examples of face classification 
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4    Experimental Results and Discussion 

The proposed approach has been implemented on a personal computer with Pentium IV 
2GHz CPU. The input images are gray scales, ranging between 640 x 480 and 1024 x 
768. The sizes of detected faces are between 46 x 56 and 152 x 170. There are 229 
images from 15 people. The recognition system is developed in [12]. We take 75 
images from 15 people as training samples, each person takes 5 images from different 
views. There are 30 frontal faces, 104 oriented faces and 20 side faces. The faces with 
different sizes will be tested in our experiments. The recognizability and the 
recognition rate with the relative sizes, 100%, 80% and 60% are listed in Tables 1-3. 

From Tables 1-3, we can found that the recognition rate of the face with the same 
recognizability is lower when the size of the detected face is smaller. Class 1 faces have 
higher recognizability values than those of Classes 2 and 3. The recognizability is 
related to the recognition rate. There are some errors that cannot be handled properly, as 
shown in Fig. 4, a tilted head and a face with heavy shading. 

   

Fig. 4. A tilted head and a face with heavy shading 

Table 1. The recognizability and the recognition rate with the size rate 100% 

  Class 1 Class 2 Class 3 
Recognizability 1 0.8 ~ 1 0.4 ~ 0.8 0 ~ 0.4 0
Recognition Rate 90% 

(28/31)
82% 

(34/41)
67% 

(25/37)
30% 

(8/26)
0% 

(0/19)

Table 2. The recognizability and the recognition rate with the size rate 80% 

  Class 1 Class 2 Class 3 

Recognizability 0.8 0.64 ~ 0.8 0.32 ~ 0.64 0 ~ 0.32 0

Recognition Rate 64% 
(22/34)

52% 
(20/38)

32% 
(12/37)

24% 
(6/25)

0% 
(0/20)

Table 3. The recognizability and the recognition rate with the size rate 60% 

  Class 1 Class 2 Class 3 
Recognizability 0.6 0.48 ~ 0.6 0.24 ~ 0.48 0 ~ 0.24 0
Recognition Rate 59% 

(19/36)
35% 

(14/39)
28% 

(11/38)
23% 

(7/30)
0% 

(0/20)
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5   Conclusions and Future Work 

In this paper, we have presented a system for measurement of face recognizability. Our 
system first segments the foreground objects from an input image. An ellipse finding 
algorithm method has been proposed to extract the human head. We have also proposed 
a method to extract facial components under various orientations by detecting the lines 
with the major peaks in the orientation histogram. We also used line-centers to 
represent the locations of facial components. 

The recognizability was computed from the facial features such as the triangle 
formed by the facial components, the degree of shape symmetry and the degree of 
intensity symmetry. Experimental results have shown that face recognizability can 
supply a reliable measurement to the recognition system. 

To improve the performance of our system, the foreground segmentation should be 
more efficient by adding other color information. The facial component identification 
can also be more accurate by adding color information. The recognizability 
measurement should be more reliable by adding more features. 
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Abstract. With the advancement of mobile technology, mobile phones can 
store significant amount of sensitive and private information. The security issue 
of mobile phones becomes an important field to investigate. This paper 
proposes a prototype of fingerprint authentication mobile phone based on sweep 
sensor MBF310. The prototype is composed of the front-end fingerprint capture 
sub-system and the back-end fingerprint recognition system. A sweep 
fingerprint sensor MBF310 is used to fit the request of the mobile phone in the 
field of the size, cost, and power consumption. The performance of the 
proposed prototype is evaluated on the database built by the sweep fingerprint 
sensor. The EER is 4.23%, and the average match time of the prototype is about 
4.5 seconds. 

1   Introduction 

With the advancement of mobile technology, mobile phones can run more powerful 
applications (e.g. camera, MP3, handwriting recognition) and store significant amount 
of sensitive and private information (e.g. address book, SMS, scheduler and even a 
bank account). Moreover, with the number of mobile phone user rapidly increasing, 
nowadays, the mobile phone has become a necessary part of our daily life.  

Currently, many mobile phones come with a four-digit Personal Identification 
Number (PIN) and a numerical entry key as a tool for user authentication [1]. They 
can’t satisfy the increasing need of effective protection of the mobile phone against 
unauthorized access. As the merits of convenient use, low cost and accuracy, 
fingerprint authentication is the best replacement or complement passwords among 
numerous biometrics authentication technologies. 

                                                           
*  This paper is supported by the Project of National Science Fund for Distinguished Young 

Scholars of China under Grant No. 60225008, the Key Project of National Natural Science 
Foundation of China under Grant No. 60332010, the Project for Young Scientists’ Fund of 
National Natural Science Foundation of China under Grant No.60303022. 

** Corresponding author: Jie Tian; Telephone: 8610-62532105; Fax: 8610-62527995. 



296 Q. Su et al. 

 

This paper proposes a fingerprint authentication mobile phone based on BIRD 
E868. The fingerprint mobile phone is composed of a fingerprint recognition sub-
system and a fingerprint capture sub-system. The fingerprint recognition sub-system 
includes the enroll unit, match unit and system Application Program Interface (API). 
Integrated a MBF310 sweep sensor, the fingerprint capture sub-system is responsible 
for capturing the fingerprint image frames, reconstructing the image and sending it to 
the recognition sub-system.  

In this paper, section 2 describes the structure of the fingerprint authentication 
mobile phone. Section 3 illustrates the software of fingerprint mobile phone. Section 
4 shows the experimental results and the conclusion is in section 5. 

2   The Fingerprint Authentication Mobile Phone 

The fingerprint authentication mobile phone is composed of two parts. One is the 
front-end fingerprint capture sub-system and the other is back-end fingerprint 
recognition sub-system. The structure of the whole system is shown in Fig. 1. 

 

Fig. 1. The fingerprint authentication mobile phone block diagram 

The hardware platform of the fingerprint authentication mobile phone includes the 
BIRD mobile phone E868 [2] and the fingerprint capture sub-system. The E868 
mainly targets the high-end business market. The central process unit of the E868 is a 
16-bit embedded processor S1C33 and its working frequency is 13 MHz.  

The fingerprint capture sub-system is an external module. It is controlled by an 
ARM-Core processor LPC2106 [3] and uses a solid-state capacitive fingerprint sweep 
sensor MBF310 [4] for taking fingerprint image. The LPC2106 processor receives the 
commands from the mobile phone via Universal Asynchronous Receiver and 
Transmitter (UART) interface and controls fingerprint sensor MBF310 to capture the 
fingerprint image. Because of the limitation of the sweep sensor, the processor need 
reconstructs the original image frames to a full fingerprint image, and sends it to the 
mobile phone. 
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The MBF310 includes 218 columns and 8 rows of sensor plate which can provide a 
resolution of 500 dpi fingerprint image. A 2 Kbytes asynchronous FIFO is integrated 
in the sensor. It serves as a data buffer which can efficiently prevent the data from 
loss. With the technical advance of the smaller size, lower cost and low power 
consumption, the LPC2106 and MBF310 are suitable for mobile hand-held devices, 
such as E868 mobile phone. 

3   System Software Descriptions 

The prototype of fingerprint authentication mobile phone includes two main 
functions: enroll and match. The block diagram of the two functions is shown in Fig 
2. Each function is composed of 4 process stages. The first three stages are the same. 
They are fingerprint image capture, fingerprint preprocess and feature extract. The last 
stage of enroll is to save the fingerprint features to the feature database, while the last 
one of the match is to search inquired features in the database and output the result.  

 

Fig. 2. Flowchart of enroll and match 

3.1   Fingerprint Capture 

The process of fingerprint acquisition is completed in the fingerprint capture sub-
system (shown in Fig. 3). Because of the feature of the sweep sensor MBF310, the 
reconstruction algorithm is necessary to obtain a full fingerprint image. The 
acquisition process has two main parts: 

1) When the finger sweeps vertically over the MBF310, the sensor will read the 
fingerprint image frames continuously. After an image frame is captured, the sensor 
can directly fill the FIFO and set the FIFO full flag to inform the LPC2106. Because 
of this virtue, the sensor can reduce the burden of the LPC2106 and can quicken the 
process of fingerprint acquisition. 

2) When the LPC2106 receives the FIFO full flag, it will read the whole image 
frame from the FIFO at once. It saves the image frame in its inner RAM and 
reconstructs the fingerprint image by using the linear correlation algorithm which 
adopts the virtue of the registration algorithm proposed by Hassan Foroosh etc [5].  
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In fact, because of the limitation of the LPC2106’s memory space, the part one and 
part two execute alternately. The LPC2106 will reconstruct the image when the sensor 
is capturing the next image frame. Because the speed of the finger swept over the 
sensor will influence the size of the image, we limit the format of the full fingerprint 
image to 200×200, 8-bit grey level. After finishing the process of fingerprint 
acquisition, the LPC2106 sends the fingerprint image to the mobile phone by UART 
interface. 

 

Fig. 3. The fingerprint capturing block diagram 

3.2   Fingerprint Recognition Algorithm 

In fingerprint preprocess stage, fingerprint enhancement algorithm based on filtering 
in frequency domain [6] is used. After the fingerprint image is converted from spatial 
domain to frequency domain by Fourier transforming, the image is enhanced by the 
proposed filter in frequency domain. Then we compute the average grey value in each 
of the 8 directions to estimate the orientation field (Fig. 4). The ‘*’ donates the pixel 
in the image and the directions are limited from 0 degree to 180 degrees.  

 

Fig. 4. Eight directions of a pixel 

To reduce the influence of noise, we use the algorithm proposed by Yuliang He [7] 
to get the thinned ridge fingerprint map and to extract the minutiae. We use Cartesian 
coordinate system to represent each minutia saved in the fingerprint template. 

T
iiii yxpm ),,()( θ=  (1) 
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Where )( pmi denotes thi  minutia of the fingerprint image p , ix , iy , iθ  denote the 

x-coordinate, y-coordinate and direction of the thi  minutia respectively. 
Because of using sweep sensor MBF310, the non-linear deformations of the 

fingerprint image are more serious than those captured by an area sensor. The main 
idea of the match algorithm is using an affine transformation model T to relate the 
fingerprint template and the minutiae set of the inquired fingerprint. We use the 
Maximum-likelihood estimation to calculate the optimal deformation parameters [8]. 
To define a matching criterion, a probability density function (Equation 2) is used to 
measure the global similarity which consists of local minutia similarity. 

)2/())(()),,,,(( 22/),,,,( 2

πσβθ σθ yxyxi ssttd
iyxyxi efssttdp −×Δ=  (2) 

Five variables in the affine transformation model are used to describe the rotation, 
scale, translation deformations between the template and the inquired image, where 

xt  and yt  represent horizontal and vertical translation respectively, xs  and ys  

correspond to horizontal and vertical scale respectively, θ  denotes rotation. )(xf  is 

used to evaluate the type of a minutia. i  represents the thi  pair of the minutiae pick-
up from two minutiae sets. 

3.3   Energy Management 

Because the E868 mobile phone is battery-powered, we propose a method that is 
suitable for the external module to balance the system performance and battery 
duration. The fingerprint capture sub-system works in the slave mode. It waits for the 
commands come from the application software running into the E868, and carries out 
the relevant operations. After finishing the operations, the LPC2106 and MBF310 will 
go into sleep mode waiting for the next commands. When the sub-system is in the 
sleep mode, the power consumption is less than 500 μA current. 

In addition, the LPC2106 processor possesses a power management unit, which 
can turn off selected peripheral. So we can reduce the energy consumption of the sub-
system in the normal operation through shutting down the unused peripherals. 

4   Experimental Results 

Fig. 5 shows the prototype of fingerprint authentication mobile phone. The prototype 
has achieved the functions of fingerprint enroll and match. Moreover, we develop an 
address book with the support of fingerprint authentication APIs. The address book 
can verify the true user by fingerprint authentication. 

We use two different kinds of methods to test the performance of the prototype of 
fingerprint authentication mobile phone. One method is to test the EER (Equal Error 
Rate), FNMR (False Rejection Rate), FMR (False Match Rate) of the proposed 
algorithm on a PC, and the other method is to test other runtime performance, 
including the average match time and the maximum template size of the prototype by 
using the applications running on the mobile phone. 
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The fingerprint database on the PC totally includes 480 fingerprints. Thumb, 
forefinger and middle finger of both hands (six fingers total) of 20 volunteers were 
captured by the sweep fingerprint sensor MBF310. Four fingerprint images were 
taken per finger. 

As the result of the tests, the value of EER of the proposed algorithm is 4.23%. The 
value of FNMR equals to 6.24% for FMR = 1%. The average match time is about 4.5 
seconds and the maximum template size is smaller than 128 bytes. 
 

      
(a)                                  (b) 

Fig. 5. The appearance of the fingerprint recognition mobile phone (a) and fingerprint capture 
sub-system (b). 

5   Conclusion 

In this paper, we have designed a prototype of fingerprint authentication mobile 
phone based on sweep sensor MBF310. It consists of the front-end fingerprint capture 
sub-system and back-end fingerprint recognition sub-system. The hardware platform 
is composed of E868 mobile phone and the external fingerprint capture module based 
on MBF310. The system software includes enroll and match functions. The proposed 
algorithm is optimized prior being ported to the prototype. The performance of the 
proposed algorithm is evaluated on the 480 fingerprints database captured by the 
MBF310. The EER is 4.23%. The average match time of fingerprint authentication 
mobile phone is about 4.5 seconds. Further works will be focused on the system 
performance optimization and the security implementations of the fingerprint 
authentication mobile phone. 
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Abstract. This paper presents a robust and efficient eye detection algorithm for 
gray intensity images. The idea of our method is to combine the respective 
advantages of two existing techniques, feature based method and template 
based method, and to overcome their shortcomings. Firstly, after the location of 
face region is detected, a feature based method will be used to detect two rough 
regions of both eyes on the face. Then an accurate detection of iris centers will 
be continued by applying a template based method in these two rough regions. 
Results of experiments to the faces without spectacles show that the proposed 
approach is not only robust but also quite efficient. 

1   Introduction 

As one of the salient features of the human face, human eyes play an important role in 
face recognition. In fact, the eyes can be considered salient and relatively stable fea-
ture on the face in comparison with other facial features. Therefore, when we detect 
facial features, it is advantageous to detect eyes before the detection of other facial 
features. The position of other facial features can be estimated using the eye position 
[1]. In addition, the size, the location and the image-plane rotation of face in the im-
age can be normalized by only the position of both eyes. 

Eye detection is divided into eye position detection [1, 2] and eye contour detection 
[3, 15, 16]. (The second plays an important role in applications such as video confer-
encing and vision assisted user interface [2]. However, most algorithms for eye con-
tour detection, which use the deformable template proposed by Yuille et al. [3], re-
quire the detection of eye positions to initialize eye templates. Thus, eye position 
detection is important not only for face recognition but also for eye contour detection. 
In this paper eye detection means eye position detection. 
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The existing work in eye position detection can be broadly classified into three 
categories: template based methods [3-6], appearance based methods [7-9] and feature 
based methods [10-14]. In the template based methods, a generic eye model, based on 
the eye shape, is designed firstly. Template matching is then used to search the image 
for the eyes. While these methods can detect eyes accurately, they are normally time-
consuming. The appearance based methods [7-9] detect eyes based on their photomet-
ric appearance. These methods usually need to collect a large amount of training data, 
representing the eyes of different subjects, under different face orientations, and under 
different illumination conditions. These data are used to train a classifier such as a 
neural network or the support vector machine and detection is achieved via classifica-
tion. Feature based methods explore the characteristics (such as edge and intensity of 
iris, the color distributions of the sclera and the flesh) of the eyes to identify some 
distinctive features around the eyes. Although these methods are usually efficient, 
they lack accuracy for the images which have not high contrast. For example, these 
techniques may mistake eyebrows for eyes. In summary, these approaches lack either 
efficiency or accuracy, and they are not ideal for some real applications. 

In this paper, we propose a robust and efficient algorithm for eye detection on gray 
intensity face, based on combining the feature base methods and template based ap-
proaches. Combining the respective strengths of different complementary techniques 
and overcoming their shortcomings, the proposed method uses firstly the feature 
based method to find out broadly the two regions of eyes in a face, and the template 
based method is then used to locate the center of iris accurately. 

The template based approaches are usually time-consuming. Its inefficiency comes 
from two main factors. Firstly, in order to improve the accuracy, these methods have 
to match the whole face with an eye template pixel by pixel. Secondly, as we don’t 
know the size of eyes for an input face image, we need to repeat the matching process 
with eye templates of different sizes. That is to say, we have to perform the template 
matching several times. So the solution to improve the efficiency of this algorithm 
focuses on two points: reducing the area in the face image for template matching and 
cutting down the times of this type of matching. In fact, our method firstly detects the 
two rough regions of eyes in the face using a feature based method. Thus the follow-
ing template matching will be performed only in these two regions which are much 
smaller than the whole face. In addition, we can evaluate the size of eye template 
according to the size of these two regions. In other words, profiting from possibility 
of evaluating the size of eyes, our algorithm performs the template matching just 
once. Altogether, the proposed method combines the accuracy of template based 
methods and the efficiency of feature based methods. 

2   Proposed Method 

2.1   Architecture 

Currently, there are a lot of promising face detection methods [17-19]. This paper 
therefore assumes that (1) a rough face region has been located or the image consists 
of only one face, and (2) eyes in face image can be seen. 
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The architecture of the proposed approach is shown in Fig. 1. When a face image is 
presented to the system, face detection will be firstly performed to locate the rough face 
region. The second step, which uses an efficient feature based method, is to locate two 
rough regions of eyes in the face. In the same time, on the basis of these two regions, the 
sizes of two eyes will be evaluated, and the templates of eyes will be created according 
to the estimated sizes. Finally, the precise locations of the two centers of iris will be 
found out after template matching is applied in these two rough regions.  

 

Fig. 1. Flowchart of proposed method 

2.2   Detection of Eyes’ Regions 

When the rough face region is detected, as we have said, an efficient feature based 
method will be sequentially applied to locate the rough regions of both eyes which 
will be used to the following affining detection. Fig. 2 shows the processes of the 
proposed method: 

The first step is to calculate the gradient image (b) of the rough face region image 
(a). Then we apply a horizontal projection to this gradient image. As we know that the 
eyes locate in the upper part of the face and that the pixels near the eyes are more 
changeful in value comparing with the other parts of face, it is obvious that the peak 
of this horizontal projection in the upper part can give us the horizontal position of 
eyes. According to this horizontal position and the total height of the face, we can 
easily line out a horizontal region (c) in which the eyes locate. 

And then we perform a vertical projection to all pixels in this horizontal region of 
image (c), and a peak of this projection can be found near the vertical center of face 
image. In fact, the position of this vertical peak can be treated as the position of verti-
cal center of face (d), because the area between both eyes is most bright in the hori-
zontal region.  

In the same time, a vertical projection will be done to the gradient image (b). There 
are two peaks of projection near the right and left boundary of face image which cor-
respond to right and left limit of the face (e). In addition, from these two vertical limit 
lines, the width of face can be easily estimated. 

Combining all results from (c), (d) and (e), we can get an image segmented like (f). 
Finally, based on the result of (f) and the estimated width of face, the regions of both 
eyes can be lined out (g). 
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Fig. 2. Detection of eyes’ regions 

2.3   Creation of Eye Templates 

After the two rough regions of eyes are detected, template matching will be used to 
locate the precise positions of iris centers in these regions. Because the matching 
region reduces from the whole face to the two rough regions, the efficiency of algo-
rithm is well improved. 

Obviously, the first obligatory step for a template matching is to create a template. 
It’s easy to find out eye templates which can be obtained from a real face image. But 
the template can’t be directly used for matching, because the size of the eye in the 
template is not same as that in the input image. A simple solution for this problem is 
to perform the process of matching several times, and each time we will use the tem-
plate with different size. But this method is very ineffective.  

Concerning our algorithm, in order to improve the efficiency, the size of the eyes 
will be estimated automatically. Thus the process of matching can be only performed 
just once. As we have said, the width of face is already estimated (see Fig. 2), and the 
size of eye template can be easily decided according to the width of face and the 
geometric structure of human face. The last image (g) in Fig. 2 shows two eye tem-
plates (at two top corners) created basing on the estimated eye sizes. 

2.4   Localization of Iris Centers 

Suppose that we have a template g[i, j] and we wish to detect its instances in an image  
f[i, j]. An obvious thing to do is to place the template at a location in an image and to 
detect its presence at that point by comparing intensity values in the template with the 
corresponding values in the image. Since it is rare that intensity values will match ex-
actly, we require a measure of dissimilarity between the intensity values of the template 
and the corresponding values of the image. Several measures may be defined: 
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where R is the region of the template. 
The sum of the squared errors is the most popular measure. In the case of template 

matching, this measure can be computed indirectly and computational cost can be 
reduced. We can simplify: 
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Now if we assume that f and g are fixed, then fg  gives a measure of mismatch. 
A reasonable strategy for obtaining all locations and instances of the template is to 
shift the template and use the match measure at every point in the image. Thus, for an 
m n template, we compute: 
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where k and l are the displacements with respect to the template in the image. This 
operation is called the cross-correlation between f and g. 

Our aim will be to find the locations that are local maxima or are above a certain 
threshold value. However, a minor problem in the above computation was introduced 
when we assumed that f and g are constant. When applying this computation to im-
ages, the template g is constant, but the value of f will be varying. The value of M will 
then depend on f and hence will not give a correct indication of the match at different 
locations. This problem can be solved by using normalized cross correlation. The 
match measure M then can be computed using: 
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3   Experimental Results 

In this section, we present the experimental results of our algorithms. We use the 
images in the ORL database, a well-known free database of faces, to do our experi-
ments. In this database, there are completely photographs of 40 persons, of which 
each one has 10 various views. The 10 views of the same person include faces look-
ing to the right, to the left, downward and upward (see the first line of Fig. 3). All 
faces in this database are presented by images in gray-level with the size of 92×112. 

We made experiments using all faces without spectacles which concerns 227 face 
images and 29 persons. The success rate of proposed algorithm for all 227 faces is 
95.2%.  



 A Robust and Efficient Algorithm for Eye Detection on Gray Intensity Face 307 

 

Fig. 3 shows examples of the images for which the proposed algorithm could cor-
rectly detect the irises of both eyes. In the first line, there are five face views of the 
same person. And the images in the second line are faces of five different persons. 

The execution time of the proposed algorithm is about 0.982 second on average by 
a PC whose CPU is Pentium IV, 1.8 GHz. It’s remarkable that this execution time is 
reckoned for a program written in Matlab. Obviously, the execution time would be 
reduced a lot if the program is transplanted from Matlab to C or C++. 

  

Fig. 3. Examples for faces without spectacles 

4   Conclusion 

A robust and efficient eye detection method for gray intensity faces is reported in this 
paper. The proposed algorithm combines two existing techniques: feature base 
method and template based method. The proposed algorithm firstly makes use of 
feature based methods to detect two rough regions of eye. The precise locations of iris 
centers are then detected by performing template matching in these two regions. 

The proposed method has been tested by images from ORL face database. Experi-
mental results show that this method works well with the faces without spectacles. 
For 227 faces without spectacles, the detection accuracy is 95.2%. In addition, the 
average execution time of proposed algorithm shows that this approach is also quite 
efficient. 
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Abstract. Gait has received substantial attention from researchers. Different 
from other biometrics, gait can be captured in a distance and it is difficult to 
disguise. In this paper, we propose a feature template: Silhouette Spatio-
temporal (SStS). It generates by concatenating silhouette projection vectors 
(SPV) which is formulated by projection of silhouette in vertical direction. We 
applied the Principle Component Analysis (PCA) for dimension reduction of 
the input feature space for recognition. The proposed algorithm has a promising 
performance, the identification rate is 95% in SOTON dataset and 90% CASIA 
dataset. Experiments showed that SStS has a high discriminative power and it is 
suitable for real-time gait recognition system. 

1   Introduction 

Today, Biometrics has received substantial attention from researchers. Biometrics is 
method of recognizing a human according to physiological or behavioral 
characteristic. Gait is one of the biometrics that different from the traditional 
biometrics. It is not required to stay closer enough to or touch the input device. In 
early medical research, Murray, Drought and Kory [1] had formed some rules of gait 
analysis. It showed that gait is unique and it is difficult to disguise. Different from 
other biometrics, gait can be captured in a distance. Besides, it is only necessary to 
capture the sequence of gait in low resolution. 

In this paper, we propose a Spatio-temporal template, called Silhouette Spatio-
temporal Spectrum (SStS), for gait recognition. SStS is formulated by concatenating a 
sequence of silhouette projection vector (SPV). SPV is the projection of the silhouette 
image in vertical direction. We use SStS as the feature template for recognition. We 
further apply Principal Component Analysis (PCA) on SPV for reducing the dimen-
sionality of the input space and optimizing the class separability of different SPV. We 
use the SOTON dataset [2] and CASIA dataset [3] to demonstrate the efficacy of the 
proposed method. The rest of this paper is organized as follows. We show the related 
work about gait recognition in section 2. In section 3, we show the detail about Sil-
houette Spatio-temporal Spectrum (SStS) and the proposed recognition algorithm. 
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The experimental results and analysis are shown in section 4. Conclusion appears in 
section 5. 

2   Related Work 

 Model-free recognition used motion information without any model reconstruction 
for recognition. Most of the current gait recognition algorithms are model-free 
recognition. Model-free approaches, or namely holistic approaches, usually use 
sequence of binary silhouettes. The silhouettes of moving object in video are 
extracted by using segmentation techniques like background subtraction. 

Murase and Sakai [4] proposed a parametric eigenspace representation for moving 
object recognition. The extracted silhouette images projected to the eigenspace by us-
ing PCA. The sequence of movement forms a trajectory in the eigenspace, called pa-
rametric eigenspace representation. All the reference patterns are saved in a database. 
The input image sequence of movement is preprocessed to form a sequence of binary 
silhouette and these formed a trajectory in the eigenspace. The smallest distance be-
tween the input trajectory and the reference sequence would be the best match. 
Huang, Harris and Nixon [5] applied the similar technique for gait recognition. They 
used Linear Discriminating Analysis (LDA) or namely canonical analysis, for gait 
recognition. The advantage of using LDA is the best discrimination between different 
classes. Wang and Tan proposed a new transformation method for reducing the di-
mensionality of the input feature space [6]. The transformation is done by unwrapping 
human silhouette to generate a distance signal. The time-varying distance signals are 
applied to eigenspace transformation based on PCA. The recognition performance of 
our proposed algorithm is compared with Wang and Tan’s algorithm and the detail of 
the experimental results are shown in section 4. 

3   Recognition Algorithm 

 In this section, we talk about how to create SStS for recognition and the detail about 
the gait recognition algorithm by using SStS and PCA. 

3.1   Silhouette Spatio-temporal Spectrum (SStS) 

 Silhouette Spatio-temporal Spectrum (SStS) is an image which embedded the spatial 
and temporal information of gait. SStS uses silhouettes as the basis of the feature. 
First, the silhouette image is extracted by simple background subtraction and 
thresholding [5]. The bounding box of the silhouette image in each frame is 
calculated. The silhouette image is extracted according to the size of the bounding 
box and resized to a standard size (128 pixels x 88 pixels).The normalized silhouette 
image is projected to vertical direction to generate a silhouette projection vector 
(SPV). The sequences of projection vector concatenate to form a Silhouette Spatio-
temporal Spectrum (see Fig. 1). Experiments show that SStS has a higher 
discriminative power than unwrapping representation [6]. The detail of the 
experimental results is shown in section 4. 
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Fig. 1. Examples of Silhouette Spatio-temporal Spectrum 

3.2   Principle Components Analysis (PCA) 

 The main objective of Principle Components Analysis (PCA) is to reduce the 
dimension of the feature space by maximize the variance of classes. The silhouette 
projection vectors (SPV) in silhouette Spatio-temporal Spectrum (SStS) are used for 

PCA training. Suppose there are C classes for training, each class Cc∈  has Nc of 
silhouette Spatio-temporal Spectrum SStSc, i where i is the instance label. Each SStSc, i 
contains Nframe c, i frame of silhouette projection vector SPVc, i, j where j is the 
instance label. The total number of training samples is Ntotal = Nframe1,1 + Nframe1,2 + 

… + Nframec,Nc. The mean of all samples SPVmean and the covariance martrix of all 
samples SPVcov define as follows: 
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A transformation matrix Tp =[t1, t2,…tp] is obtained for variance maximizeation. In 
Tpca, t1, t2…tp are the eigenvectors of the samples covariance matrix SPVcov correspond-
ing to p largest eigenvalues. These eigenvectors are orthonormal to each others and 
they span the eigenspace. The mean of silhouette projection vector SPVi of the input 
silhouette Spatio-temporal Spectrum is calculated for PCA projection. The SPVm is 
projected to points Pm in p-dimensional eigenspace by using the transformation matrix 
Tpca. (eqn. 3) 

[ ] i
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.                                   (3) 

3.3   Recognition 

 Suppose there is an input image sequences, SStSi is generated by using proposed 
algorithm which mentioned in section 3.1. The mean of SPVi is calculated from SStSi 
and used for PCA projection to form pi by (3). The Euclidean distance Ed between the 
projected testing feature vector and the projected training feature vector is calculated 
by (4). 
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where pr is the projected feature vector of training silhouette projection vectorsi. The 
testing sample is classified as class c if the Euclidean distance Ed is minimum among 
other training samples. 

4   Result and Analysis 

 We use SOTON and CASIS datasets for evaluation. CAISA contains 20 persons; 
each person contains 3 views (lateral view, frontal view and oblique view) and 4 
sequences per view. There are total 240 walking sequences. In this paper, we only 
deal with the lateral view gait recognition problem. Therefore, we only use lateral 
view sequences (80 sequences) for our experiment. SOTON dataset contains 115 
persons, total 2,128 walking sequences. The sequence can be divided into two 
categories: (a) walk from left to right and (b) walk from right to left. After 
background subtraction and image binarization, the silhouettes is extracted and 
normalized to 88 x 128 pixels. We adopted the scheme of FERET [7] for the 
evaluation and measure the identification rate and the verification rate by cumulative 
match score. We implemented Wang’s unwrapping transformation algorithm [6]. The 
performance of our proposed algorithm is compared with the performance of the 
Wang’s unwrapping algorithm. All experiments are implemented by Matlab and run 
in a PC computer with P4 2.26GHz and 512MB memory. 

4.1   Direct Comparison 

 We used SOTON and CASIS datasets in this experiment. We use SOTON for three 
tests: (a) 50% of the image sequences in each class is used for training and other 50% 
is used for testing; (b) 75% of the image sequences in each class is use for training 
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and other 15% is used for testing; (c) 90% of the image sequences in each class is 
used for training and other 10% is used for testing. We do not use PCA for dimension 
reduction, instead we calculated the Euclidean distance between the input feature 
vector and the reference vector directly (direct comparison). Nearest Neighbor 
classifier is adopted in this experiment. Table 1 shows the experiment results by using 
SStS and unwrapping methods for comparison. The average identification rate of 
SStS in three different tests is around 98% and it is higher than Wang’s method by 
around 4%. 

Table 1. Recognition rates by using SStS and unwrapping in SOTON database (direct 
comparison) 

Method SStS Unwrapping 
Rank Top 1 Top 5 Top 10 Top 1 Top 5 Top 10 
a. 50% train 
50% test 

97.09% 98.41% 98.50% 93.25% 97.09% 98.22% 

b. 75% train 
25% test 

98.57% 98.75% 98.75% 94.12% 97.33% 97.86% 

c. 90% train 
10% test 

98.39% 99.20% 99.60% 95.58% 98.39% 98.39% 

4.2   PCA 

 The experiment setup is the same as 4.1. However, we use PCA for dimension 
reduction before classification. 95% of the accumulated variance of eigenvalues is 
chosen in this experiment. Table 2 shows the experimental results of the recognition 
rate by SStS and Wang’s unwrapping method. The recognition rate by using our 
proposed algorithm SStS and Wang’s algorithm is nearly the same in SOTON dataset. 
The rank order statistic for three different tests is shown in Fig. 2. 

Table 2. Recognition rates by using SStS and unwrapping in SOTON database (PCA) 

Method SStS Unwrapping 
Rank Top 1 Top 5 Top 10 Top 1 Top 5 Top 10 
a. 50% train 
50% test 

92.22% 96.34% 96.91% 93.16% 97.56% 98.31% 

b. 75% train 
25% test 

94.30% 97.15% 97.50% 94.47% 97.33% 98.04% 

c. 90% train 
10% test 

94.78% 97.99% 98.80% 94.38% 97.59% 98.39% 

 
We further apply our proposed recognition algorithm to CASIA dataset. As we 

mentioned before, we investiage the problem of gait recognition in lateral view. 
Therefore, we use the lateral view of CASIS dataset only. The lateral view of CASIA 
contains total 80 walking sequences, each class contains 4 sequences. We use CASIA 



314 T.H.W. Lam, T.W.H.A. Ieong, and R.S.T. Lee 

for two tests (I) 50% of the image sequences in each class is used for training and 
other 50% is used for testing; (II) 75% of the image sequences in each class is use for 
training and other 15% is used for testing. The results are tabulated in Table 3. The 
identification by using SStS is 97.50% in (I) and 95.50% in (II). In [6], the identifica-
tion rate is 70% in leave-one-out in lateral view of CAISA dataset. The result showed 
that the performance of our proposed algorithm is better than Wang’s unwrapping  
algorithm. 

 

Fig. 2. Identification performance in terms of rank order statistics in SOTON database (SStS 
with PCA) 

Table 3. Recognition rates by using SStS in CASIA database (PCA) 

Rank Top 1 Top 5 Top 10 
I. 50% train 50% test 92.50% 100% 100% 
II.75% train 25% test 90.00% 100% 100% 

5   Conclusion 

 In this paper, we used Silhouette Spatio-temporal Spectrum (SStS) as the feature 
template for the gait recognition. The recognition performance is quite promising in 
SOTON and CASIA dataset. Experiments showed that SStS has a higher 
discriminative power than unwrapping distance signal. During data preparation, we 
found that the processing time for feature extraction by unwrapping is much longer 
than our proposed method. The average processing time in unwrapping 
transformation is 250s in CASIA and the average processing time in SStS formation 
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is 1s in CASIA. The reason that long processing time in unwrapping transformation is 
that it needs to unwrap the contour of the silhouette to form a distance signal in each 
frame. It is much time consuming processing. It showed that SStS is more suitable 
than unwrapping for real-time gait recognition application. Currently, we investigate 
and apply some kernel methods for the gait recognition by using SStS. 

Acknowledgements 

 This work was partially supported by the CERG iMASS Project (B-Q569) and the 
CRG CORN Project (G-T850) from the Hong Kong Polytechnic University. 

References 

1. M.P. Murray, A.B. Drought and R.C. Kory, “Walking patterns of normal men,” Journal of 
Bone and Joint Surgery, Vol. 46 – A, No. 2, pp. 335-60 

2. J. D. Shutler, M. G. Grant, M. S. Nixon, and J. N. Carter "On a Large Sequence-Based 
Human Gait Database", The 4th International Conference on Recent Advances in Soft 
Computing, Nottingham (UK), pp 66-71, 2002 

3. CASIA Gait Database, http://www.sinobiometrics.com 
4. H. Murase, R. Sakai,“Moving object recognition in eigenspace representation: gait analysis 

and lip reading, ” Pattern Recognition Letters, Vol. 17, pp. 155-62, 1996 
5. P.S. Huang, C.J. Harris and M.S. Nixon, “Human Gait Recognition in Canonical Space Us-

ing Temporal Templates,” IEE Proceedings - Vision, Image and Signal Processing, 146(2), 
pp. 93-100, 1999 

6. L. Wang and T. Tan, “Silhouette Analysis-Based Gait Recognition for Human Identifica-
tion,” IEEE Trans on PAMI, Vol. 25 (12), 1505-1518, 2003 

7. J. Phillips, H. Moon, S. Rizvi, and P. Rause, “The FERET Evaluation Methodology for 
Face Recognition Algorithms,” IEEE Trans. PAMI, Vol. 22, No.8, pp. 1090-1104, Oct. 
2000 

 



S. Singh et al. (Eds.): ICAPR 2005, LNCS 3687, pp. 316 – 325, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Adaptive Estimation of Human Posture  
Using a Component-Based Model 

Kyoung-Mi Lee 

Department of Computer Science,  Duksung Women’s  
University Seoul, Korea 

kmlee@duksung.ac.kr 

Abstract. To detect a human body and recognize its posture, a component-
based approach is less susceptible to changes in posture and lighting conditions. 
This paper proposes a component-based human-body model that comprises ten 
components and their flexible links. Each component contains geometrical in-
formation, appearance information, and information on the links with other 
components. The proposed method in this paper uses hierarchical links between 
components of human body, so that it allows to make coarse-to-fine searches 
and makes human-body matching more time-efficient. To adaptively estimate 
the posture in change of posture and illumination, we update the component 
online every time a new human body is incoming. 

1   Introduction 

Determining the posture of the human-body has recently become an important issue 
in computer vision. To detect a human body and recognize its posture, a full-body 
approach is subject to a high degree of transformation because the method is affected 
significantly by changes in posture and lighting conditions. Therefore, a component-
based approach has been widely adopted to consider each part of the human body a 
component and to subsequently use the relationships between the components to rep-
resent the entire human body. A pictorial structure is developed by using links that 
can acquire geometric arrangement between different parts [1]. In [2], the relation-
ships between the locations of parts are represented in terms of variable configuration. 
The pairs of parts are connected with visual springs that are created on the basis of 
their relative positions. 

In this paper, we estimate the posture of the human body by matching the human 
body configuration after finding the connection points and the respective parts of the 
human body in an image. Each part of the human body is represented as a component 
that includes shape, position, and connection, while each part is connected in a hierar-
chical manner. Coarse-to-fine searches are then utilized to make an efficient matching 
of the human-body. Additionally, whenever a new example arrives, each component 
is updated to adaptively estimate the human posture related to changes in posture and 
illumination. 
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2   Matching with a Component-Based Model 

In this section, we introduce a human body model that connects body parts in hierar-
chical manner and a description to make the matching of the human body with this 
model. The human body model that consists of components classifies different parts 
into head, torso, arms, and legs through generic search, after which more detailed 
classification is used to make the human-body parts matching complete. Also, the 
components are updated online every time a new human body is incoming. 

2.1   Component-Based Human-Body Model 

In this section, we introduce a human-body model that consists of ten body parts as 
components, and subsequently connects the components in a hierarchical manner 
(Fig. 1). Each part contains geometrical information (position, relative size, and 
shape) and appearance information (average color and standard deviation). Addition-
ally, each part includes information on its link with other parts, such as the connec-
tible sides out of the four sides that represent each part, names of parts being con-
nected, the connecting angles, and the connecting distances. A human-body model 
can be represented as follows: 

Fig. 1.  A component-based hierarchical human model consists of head (H), body (T), left 
upper arm (LUarm), left lower arm (LLarm), right upper arm (RUarm), right lower arm 
(RLarm), left upper leg (LUleg), left lower leg (LLleg), right upper leg (RUleg), right lower leg 
(RLleg). Lines between components mean their hierarchical relations for matching. 

( )iiii RagHuman ,,= ,                        i=1, …, I                    (1) 

where Human represents a human-body model that consists of I (=10) number of 
parts, while 

ig  and 
ic  refer to geometrical and appearance information on each part, 

respectively, and 
iR  represents information on the link between parts. 

The proposed human-body model is made up of hierarchical relationships. Using 
such a hierarchical structure can improve efficiency in time-usage by restricting the 
search space for matching. Different from the star-like structures used in [2], how-
ever, the proposed component-based model has a standard tree structure. The human-
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body model first classifies the different parts into head, torso, arms, and legs through 
generic search, after which more detailed classification is used to make the matching 
of human-body parts complete. 

2.2   Matching with a Hierarchical Search 

Estimating postures with a component-based human-body model is a matching proc-
ess which is used to configure a proper human-body model by combining the detected 
components. The human-body model (Eq. (1)) is matched to take the combination 
that has the least variance or the most matching probability,  
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where (
jp ,

jq ,
jr ) refer to geometrical information and appearance information re-

garding the j-th component and its relationships to other components. 
In this paper, matching of coarse-to-fine searches is adopted. This method limits 

the relationship between components to tree structures in a top-down model, and 
restricts the matching sequence in a hierarchical way, so as to reduce the range of any 
search for different components [7]. For example, the left arm is matched prior to a 
detailed search for the upper/lower left arm, and the matching probability of the left 
arm, 

Larmd , is considered to be the sum of the matching probability of the upper/lower 

left arm (
LUarmd /

LLarmd ): 
LLarmLUarmLarm ddd += . To detect the other parts, such a hierar-

chical technique can be applied iteratively. 

2.3   Online Update of the Component-Based Model 

Each component of the proposed human-body model can change with posture and 
lighting environments, so it is necessary that the geometrical and appearance informa-
tion to be updated. If a set of human examples is given, the model is simply updated 
by calculating averages, μ , and standard deviations, σ , of each component. How-

ever, such a batch update is not suitable for maintaining the model in an online envi-
ronment. Therefore, instead of collecting all previous examples each time a new ex-
ample is modeled, it is more useful to extend the human model with only the new 
example. 

When an n-th example, 
nh , is modeled, the averages and standard deviations of i-th 

component of the human model are updated as follows:  
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ig , or appearance, 
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1,1 )()( −−− −+= ninininu μμσ . It follows that Eq. (1) and (2) can be respectively 

modified as follows: 
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Thus, after training on n examples, each component represents the statistical informa-
tion of the corresponding body part in the component space. This makes it possible to 
adaptively estimate human posture in case of posture and lighting changes. 

3   Estimating Human-Body Posture 

Estimating postures using component-based models is a process of creating a model 
that possesses different components allocated to each part of human body. In this 
section, we describe the method with which a human body is located in an image and 
human body parts are matched. 

3.1   Detecting an Estimated Human-Body Area 

In a given color image (Fig. 2(a)), the skin color is the most useful data which can be 
used to detect a person. People may wear different attire and accessories, so that, in 
reality, it is very difficult to estimate human-body posture according to skin color 
alone. In this paper, we assume that it is possible to detect at least a human face using 
 

(a) (b) 

(c) (d) 

Fig. 2. Detection of an estimated human area. (a) Original image, (b) Skin color pixels, (c) Skin 
color regions, and (d) an estimated human area. 
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the color of the skin. Given a color image, we apply a Median smoothing filter, and 
then a skin-color filter [3], to make a semantically binary image consisting of skin 
color pixels and non-skin (black) color pixels  (Fig. 2(b)). 

Such a binary image is grouped according to connected skin pixels and is seg-
mented into regions [4]. After grouping, we will come up with a list of connected skin 
areas, and remove the unnecessary areas that have low probability of being a part of 
the human-body. Fig. 2(c) shows the candidate areas that are found outside of the 
detected skin-colored areas. 

The human body can be located only around the skin-color ranges; this makes the 
search more efficient if we search for only the relevant parts of the whole image. The 
range of the human-body search can be defined as  (  >1.0) times the area that con-
tains all of the detected skin-colored areas (Fig. 2(d)). 

3.2   Detecting Human-Body Parts with Generic Search 

Before estimating accurate human body posture, we can combine components with 
connecting relations, which leads to the rough-cut detection of human-body parts. 
Such combination is measured by Eq. (3) to find the best combination. The human 
model (Fig. 1) detects the color data outside of the assumed test clothes in the estima- 
ted human body area if information on clothes is given. We then generate a list of 
areas that have the color of the clothes, and remove the unnecessary areas that do not 
meet the minimum conditions for area, size, and rectangularity (Fig. 3(a)). 
 

(a) (b) 

(c) (d) 

Fig. 3. Detection of human body parts using course search: (a) Clothes, (b) body and upper leg 
candidates, (c) estimated body and upper legs, and (d) coarse human model construction. 
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A head is located at the top of an image, does not reach beyond full length of an 
arm, and has the densest skin color compared to other body parts. In the image, two 
types of data – the shape data and the connection data that a head is located closest to 
the torso – are used to detect the head. After finding skin regions as head candidates 
located around the top area, we selected the most head-like region. The torso is then 
detected using the fact that it is located at the upper part of an image compared to the 
other candidate areas, while its area is larger than the given size condition. (Fig. 3(b)). 
Searching the list of the human body candidate areas, we can detect the limbs, which 
are connected to the torso. Combining the torso and the four limbs leads to the detec-
tion of both arms and both legs connected to the torso (Fig. 3(c)). Fig. 3(d) shows a 
human-body model that is detected with a generic search. 

3.3   Estimating Precise Human-Body Posture 

Based on the rough-cut human-body model (Sec. 3.2), we can make a more precise 
estimation of human body posture by combining other data, including the angles and 
lengths of the parts of the human body. In most cases, detailed search is required for 
the arms and legs.  In this paper, we chose a more refined search for only the arms. 

  

Fig. 4. Fine search for arms: detection of an elbow 

By dividing the arm into upper and lower parts, we can estimate the arm posture 
after getting the arm angle and connection data. An arm consists of a shoulder, the tip 
of a hand, and an elbow that connects these two parts. Combining these three parts of 
an arm leads to an estimation of the posture of the upper and lower arms. The elbow 
is detected from the arm model constructed in Sec. 3.2, after defining the search area 
as the area that is a product of width × length from the point closest to the torso to the 
length of the upper arm (Fig. 4). The part that is closer to the torso is assumed to be 
the shoulder, whereas, the most distant part is considered as the tip of a hand. The 
elbow search is comprised of two steps: (i) a rough-cut boundary search that traces 
the skin-color areas, moving from the inside to the outside and from top to bottom; 
and (ii) the location of the central point of the boundary. For more accurate estimation 
of arm posture, we divide possible postures into five different cases, the first four 
being when each of the arms is individually raised or lowered, and the fifth, where a 
hand is placed on the waist. Fig. 4 shows the direction of elbow search in the four 
cases. Out of the four arm postures, we are estimating the posture of left arm as an 
example in this paper. The position for an arm signifies the four vertexes of the edges 
of an arm. The closest vertex to the torso is the shoulder while the farthest one is the 
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tip of the hand. Given the connection with the torso, if one hand is placed on the waist 
on the side of the other hand, the upper left point of the torso is the left shoulder and 
the upper right point becomes the right shoulder. 

We can also apply such fine searches for the legs. The leg angle is achieved by us-
ing the position data of a leg, that is, y coordinate value, and the external shape data, 
or compression rate (space of leg area / space of the smallest circumscribed rectan-
gle). When a leg is lifted, the minimum y coordinated values of both legs, that do not 
differ when standing with both legs, will differ widely with the added effect that one 
leg gets longer in an oblique line, so that the compression rate of the leg drops lower 
than a certain rate. Fig. 5 shows an estimated human body posture. 

 

Fig. 5. Estimation of human posture using fine search 

4   Results and Conclusions 

The proposed algorithm is implemented with Java platform on Windows 2000 XP. 
The images used in this experiment are taken from the 108 images (420×316) that are 
acquired with Sony DSC-P10. These images contain a variety of postures (Fig. 7). 
The proposed method estimate of human body posture with a hierarchical search has 
been applied to a hundred and two images, with an average processing time of 0.615 
seconds. Compared to the processing time in [5], 3-5 seconds, and that in [6], 10 sec-
onds, the proposed method is 4.88-16.26 times more efficient. 

 

Fig. 6. Matching accuracy of each human body part for estimating postures 
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Fig. 7. Matching results 

Fig. 6 shows the results of matching human-body parts to estimate human-body 
posture. The first target of our search shows 100% matches of head, followed by torso 
(body) with a high matching rate of 97.22%. Arms and legs that are matched by divid-
ing the parts into upper and lower parts result in matching rate of 89.81% and 
92.59%, respectively. The estimation rate for human-body posture is calculated on the 
assumption that it is good only when all the human-body parts are matched correctly. 

Well(Human) = Well(Head) & Well(Body) & Well(Arm) & Well(Leg) 
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where the function Well(A) means how well A is matched and the operator '&' repre-
sents an AND operation.  The Well() function can be acquired according to the hier-
archical structure. For instance, arm matching is determined as follows: 

Well(Arm) = Well(LArm) & Well(RArm) 

Well(LArm) = Well(LUArm) & Well(LLArm) 

With this matching method, we get 87.96% estimation rate of human-body posture. 
Matching accuracy was measured after the updating of every example. Fig. 6 

shows the results of matching human body parts to estimate human body posture. Fig. 
6 illustrates that as the system is processed on a greater number of examples, its abil-
ity to correctly match the human body part in images increases. After a few examples, 
the matching rate becomes stable. 

Table I. Confusion matrix on 108 test images 

Class 
True Predicted 

Head Body Arm Leg 

Positive Positive 108 105 97 100 
Positive Negative   2 3 
Negative Positive  3 8 6 
Negative Negative     

Table I shows the matching counts for well-matched parts with the proposed 
matching algorithm. We achieved 108 match counts of head, 105 of body, 97 of 
arms, and 100 of legs. Two arms and three legs were detected, but mismatched to 
legs and arms, respectively. There were seventeen non-parts to be matched to body, 
arm, and leg. 

5   Conclusion 

In this paper, we propose a method to estimate postures of the human body through 
hierarchical relations of a component-based human-body model. The proposed 
method has the following advantages over the other methods proposed so far: 

(i) A component-based method is useful for estimating an appropriate human body 
posture even when all of the components are not clearly detected due to partial 
distortion. The component-based human-body model proposed in this paper 
makes use of the external shape, including color and size of human-body com-
ponents, the flexible connection data, and the hierarchical relationship data. 
Color data is used to detect a human-body part or a group of body parts, and ex-
ternal data and connection data are leveraged to combine these parts to estimate 
the posture. 

(ii) Hierarchical structure data restricts the range of searches for possible combina-
tions, which makes the estimation of human body posture more time-efficient.  
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(iii) Additionally, the proposed component-based method makes for a better estima-
tion of the human body because it uses an adaptive model that has been devel-
oped using many examples and is less affected by different lighting conditions 
or postures than other methods. 

The most difficult problem in estimating human-body posture is the fact that the col-
ors and forms of human body fluctuates widely and that it is not easy to extract the 
relative position and connection data for body parts in an image. The future tasks of 
this project add learning and implement an adaptive system that can recognize the 
posture of people out of an image that contains different people with different pos-
tures against a more complicated background. Also, we can extend our work to detect 
the rear of a person. 
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Abstract. We proposed a novel approach for face recognition to address the 
challenging task of recognition using a fusion of nonlinear dimensional 
reduction; Locally Linear Embedding (LLE) and Principal Component Analysis 
(PCA) .LLE computes a compact representation of high dimensional data 
combining the major advantages of linear methods, With the advantages of non-
linear approaches which is flexible to learn a broad of class on nonlinear 
manifolds. The application of LLE, however, is limited due to its lack of a 
parametric mapping between the observation and the low-dimensional output. In 
addition, the revealed underlying manifold can only be observed subjectively. To 
overcome these limitations, we propose our method for recognition by fusion of 
LLE and Principal Component Analysis (FLLEPCA) and validate their efficiency. 
Experiments on CMU AMP Face EXpression Database and JAFFE databases 
show the advantages of our proposed novel approach. 

1   Introduction 

Face recognition system from images is of particular interest to researchers owing to 
its wide scope of potential applications such as identity authentication, access control 
and surveillance. It is quite a challenging task to develop a computational model for 
face recognition because faces are complex, multidimensional, and meaningful visual 
stimuli. 

Much research on face recognition, both by computer vision scientists and psy-
chologists, has been done over the last decade. From the aspect of computer vision, 
generally, face recognition can be distinguished into two categories: geometric fea-
ture-based approaches and template matching approaches. 

In the first category, facial feature values depend on the detection of geometric fa-
cial features like eye corners and nostril. However, it is time-consuming and complex 
about modeling face. The second category assumes that an image as single or multiple 
arrays of pixel values. The virtue of template methods is that it is not necessary to 
create representations or models for objects.  

Most recognition systems using linear method are bound to ignore subtleties of 
manifolds such as concavities and protrusions, and this is a bottleneck for achieving 
highly accurate recognition. This problem has to be solved before we can make a high 
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performance recognition system. Generally speaking, faces are empirically thought to 
constitute of highly nonlinear manifold in the observation space [7]. 

We therefore assume that an effective face recognition system should be based on 
“face manifold”, and the full variations in lighting condition, expression, orientation, 
etc. may be viewed as intrinsic variables which generate nonlinear face manifold in 
the observation space.  

While there are many impressive results about how to mine the intrinsic invariants 
of face manifold, manifold learning on face recognition has fewer reports. A possible 
explanation is that the practical face data include a large number of intrinsic invariant 
and have high curvature both in the observation space and in the embedded space; 
meanwhile the effectiveness of current manifold learning methods strongly depend on 
the selection of neighbor parameters.  

Of recent, manifold learning provides an interesting way to discover the intrinsic 
dimensionality of image manifold. However, most of manifold learning methods lack 
an effective way to model relationship from face manifold into low-dimensional space 
without dimensionality limitation and have fewer applications on face recognition. 
We therefore propose a fusion of LLE and PCA to model mapping relationship be-
tween low-dimensional embedded space and face manifolds in the observation space. 

2   Problem Statement 

For face images, classical dimensionality reduction methods include Eigenface [1], 
Independent Component Analysis (ICA) [2, 3], Linear Discriminate Analysis [4], and 
Local Feature Analysis (LFA) [5, 6], etc. The linear methods have their limitations. 
Firstly, they cannot reveal the intrinsic distribution of a given data set. Secondly, if 
there are changes in pose, facial expression and illumination, the projections may not 
be appropriate and the corresponding reconstruction error may be much higher. To 
overcome these problems, we propose a new algorithm combing the advantages of 
linear and nonlinear methods, which is the combination of locally linear embedding 
and principal component analysis. Locally Linear Embedding [7, 8], which is able to 
do nonlinear dimensionality reduction in an unsupervised way. A disadvantage of 
LLE algorithm is that mapping of test samples is difficult for computation cost of 
eigen-matrix. Thus our novel approach manages to overcome these problems. 

3   Previous Work on Face Recognition 

Earlier, face recognition systems were mainly based on geometric facial features and 
template matching [15, 16]. In those works, a face is characterized by a set of features 
such as mouth position; chin shape, nose width and length, which are potentially 
insensitive to illumination conditions. Brunelli et al. [15] compared this approach with 
a traditional template-matching scheme that produced higher recognition rates for the 
same face database (90% against 100%). Cox, Ghosn and Yianilos [17] proposed a 
mixture distance technique which achieved the best reported recognition rate among 
the Geometric feature approaches using the same database. Those results were 
obtained in an experiment where the features were extracted manually. The Principal 
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Component Analysis technique was first suggested for the characterization of human 
faces by Kirby and Sirovich [18] and later extended by Turk and Pentland [1]. Many 
refinements to the original idea were further introduced [19,20,21,22]. Several 
psychologists and neurophysiologists use PCA to model the way the human brain 
stores, retrieves and recognizes faces. The experiments of Turk and Pentland [1] 
achieved recognition rates around 96%, 85% and 64% respectively for lighting, 
orientation and scale variation. Recognition rate around 95% are reported by Pentland 
and Moghaddam (1994) [19] for a database consisting of 3000 accurate registered and 
aligned faces. 

Junping Zhang, Stan Z. Li, and Jue Wang presented a new algorithm, which is 
Manifold Learning and Applications in Recognition [23]. Samaria & Harter presented 
an approach based on Hidden Markov Models that achieved a recognition rate of 95% 
for the ORL database at the expense of a high computational overhead. All those 
works, as well as this one, rely on a preprocessing to detect a face in a scene and to 
compensate for variation of lighting, position, rotation and scale. 

The work reported here studies face recognition systems consisting of nonlinear 
manifold learning technique local linear embedding used for dimensionality reduction 
and a standard PCA, followed respectively by a Euclidean distance classifier. Roweis, 
S., originally proposed the LLE approach Saul, L [7]. In the first step, an n-pixel face 
image is projected onto embedding space, whose basis is given by the d (d < N) ei-
genvectors (d+1), which is embedding space. In the second step the PCA maps the 
projection of the input image on the face space onto discriminate features. Based on 
distance measures Euclidean distance used as classifier. 

4   Locally Linear Embedding and Principal Component Analysis 

4.1   Locally Linear Embedding 

Locally Linear Embedding is a powerful method for nonlinear mapping. LLE 
establishes the mapping relation between the observed data and the corresponding 
low-dimensional one, the locally linear embedding algorithm is used to obtain the 
low-dimensional data Y (Y ⊂  Rr)of the training set X (X ⊂  RN,N>>d), Y* are 
optimal eigenvectors obtain by LLE from training data is define as follow: 

YWiWIYY TT

Y
)()(minarg* −−=       (1) 

The details of LLE algorithm can be referred as to [7]. 

4.2   Principal Component Analysis 

PCA generates a set of orthonormal basis vectors, known as principal components 
(PCs), which maximize the scatter of all the projected samples.  

Let X =[ X1,  X2,……….,Xn ] be the sample set of the original images. 
After normalizing a new image set C = [C1, C2 , ….,Cn] is derived. Each  Ci repre-

sents a normalized image with dimensionality N, Ci =(ci1 , ci2 , …..,cin)
t
 ,(i= 1,2,…,n) , 

the details of PCA algorithm can be referred as to [1]. 



 Fusion of LLE and PCA for Face Recognition 329 

5   The Proposed FLLEPCA Algorithm 

In our proposed novel method data are first mapped into the intrinsic low-dimensional 
space base on LLE as in equation 1 and then mapped into the projection space based 
on PCA. We subtract the unknown samples xi from entire embedding space obtain by 
LLE considering the neighbor of unknown samples, the weighted values among un-
known data and training data are first calculated.  

|||| *Yxz ii −= .    (2) 

Then calculate the average face of the entire weighted values. 

=

=Ψ
M

i
iz

M 1

1
. 

(3) 

Having calculated the average, we set up a new group of images Φ , obtained 
from the difference between each image of the training set and the average fea-
tures. Thus, each image Φ  differs from the average image of the distribution. 
Each individual distance is calculated by subtracting them from the average im-
age, which derives a new space of images in the following. 

),...,1( Mizii =Ψ−=Φ . (4) 

Then, we calculate the eigenvectors of covariance matrix C. Since we know 
that only the eigenvectors with the larger eigenvalues are necessary for the face 
recognition, we used only (M’<M) eigenvectors. Every image from each class is 
projected into the “projection space” in the following way: 

Ncizi
T

i ,...,1),( =Ψ−=Ω . (5) 

Face recognition is performed by extracting the new image submitted for rec-
ognition compared with the images of the classes stored in the database, calcu-
lated in the same manner using the Euclidean distance. Thus, each image submit-
ted for face recognition is projected in the projection space by obtaining the vec-
tor Ω in the following way: 

)( Ψ−Γ=Ω T . (6) 

Hyphen is subject to a special rule. If the first word can stand alone, the second 
word should be capitalized. The font sizes are given in Table 1.  

Here are some examples of headings: "Criteria to Disprove Context-Freeness of 
Collage Languages", "On Correcting the Intrusion of Tracing Non-deterministic Pro-
grams by Software", "A User-Friendly and Extendable Data Distribution System", 
"Multi-flip Networks: Parallelizing GenSAT", "Self-determinations of Man".  
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6   Experiment Results 

Experiments were carried out to evaluate the face recognition of the proposed 
FLLEPCA in face recognition performance using two face databases, namely the 
CMU AMP Face EXpression Database [25] and JAFFE database [24]. The CMU 
AMP Face EXpression Database consists of 75 different images for 13 peoples 
with varied poses and expression. The JAFFE database consist of 213 images of 
10 Japanese females, the head is almost frontal pose, in our experiments the data-
bases is used for oriental face recognition. For CMU AMP Face EXpression Da-
tabase, the 75 images of 13 persons are randomly partitioned into two sets; 
namely: 520 training images and 455 test images without overlapping, each one 
containing 64x64=4096 pixels. As for dimensionality reduction, the reduction 
dimensions of training set are set to be 100.The JAFFE database is partitioned 
into two sets; 18 images of the 10 persons are randomly extracted to make 180 
training set and remaining images are as the test images. In our experiments, two 
parameters neighbors factors K’ and d dimension of LLE algorithm need to be 
predefined first, we set K’ to be 40 for CMU AMP Face EXpression Database and 
set d to 100. For JAFFE database 18 for K’ and 100 for d. The result is tabulated 
in table 1 and illustrated in figure 1 show the performance of FLLEPCA It can be 
seen from the figure and table that FLLEPCA algorithm has good recognition 
result. From the experiments we have seen that the LLE works better when we set 
d to low dimensions that means less eigenvectors.  And PCA works better if we 
have used more eigenvector (more dimension), that mean we have to select a 
proper dimension in order to achieve a good recognition rate. We found that the 
dimension d of LLE between 100 and 150 is stable; if it is more or less than that 
dimension, the recognition rate will decrease for CMU AMP Face EXpression 
Database. For JAFFE Database the good dimension is 70 as stated in table 1. 

Table 1. Recognition Rate 

LLE 
(Dimension) 

JAFFE Data-
base (%) 

CMU AMP Face 
Expression DB (%) 

40 81.8 84.08 

50 87.88 90.33 

60 81.8 84.08 

70 93.93 90.33 

80 87.88 90.33 

100 90.9 90.33 

150 87.88 90.33 

170 69.7 63.7 
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Fig. 1. Recognition Rate (%) 

7   Discussions 

The experiments have been systematically performed. These experiments reveal a 
number of interesting points: 

In all the experiments, the recognition performance increases if the number of K’ 
(LLE) increase till a certain number (which is the number of images per class) after 
which it declines. 

Embedding space by LLE approach encodes more discriminating information in 
the low dimensional face subspace by preserving single local coordinate which is 
important for classification, an efficient and effective subspace representation of face 
images should be capable of charactering the nonlinear Manifold structure. By dis-
covering the face manifold structure, our approach can identify the person with vari-
ous poses and expressions. The LLE approach appears to be the best at simultane-
ously handling variation in pose and expression. 

8   Conclusions and Future Works 

Face recognition is introduced in this paper in order to detect the underlying nonlinear 
manifold structure in the manner of embedding space then use a classifier. To the best 
of our knowledge, this is the first devoted work on face recognition that uses this 
combination for face recognition. The Embedding is obtained by LLE that optimally 
preserves a single global coordinate system of lower dimensionality. Experimental 
results on the Face Expression database show the effectiveness of our method.  
     We are currently trying to implement the face recognition using Radial Basic 
Function in order to highly discriminate the classes.   
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Abstract. This paper presents novel features for face detection in the
paradigm of AdaBoost algorithm. Features are multi-dimensional his-
tograms computed from a set of rectangles in the filtered images, and
they represent marginal distributions of these rectangles. The filter banks
consist of intensity, Laplacian of Gaussian (Difference of Gaussians), and
Gabor filters, aiming at capturing spatial and frequency properties of hu-
man faces at different scales and different orientations. The best features
selected by AdaBoost, pairs of filter and rectangle, can thus be inter-
preted as boosted marginal distributions of human faces. The result of
preliminary experiments demonstrate that the selected features are much
more powerful to describe the face pattern than the simple features of Vi-
ola and Jones and some variants which can only capture several moments
of ONE dimensional histogram in intensity images.

1 Introduction

Face detection has extensively been studied [15] because of many interesting ap-
plications in fields such as security, multimedia retrieval, and human computer
interaction. In recent years, Viola and Jones [13] present a seminal paper dealing
with face detection surprisingly rapidly, whereas maintaining comparable per-
formance with the state of art face detection algorithms. The success of their
work depends on the proposal of redundant simple rectangle features computed
by integral images, features selection with AdaBoost algorithm, and the cascade
classifier architecture.

Many researchers present their work following the idea of Viola and Jones,
mainly addressing two problems: 1) improving the convergence performance of
the algorithm (training time on the order of weeks reported in [13]); and 2)
pursuing more powerful features to represent example patterns. Li et al. [4]
introduce new rectangle features to detect multi-view faces by FloatBoost. Wu et
al. [14] present an algorithm based on the forward feature selection and produce
cascades of similar quality with two orders of magnitude less computational time.
Lienhart et al. [5] evaluate different boosting algorithms and different classifiers.
From the view of feature selection, Murphy et al. [9] use a set of filters, including
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edge filters, corner detection filters, and a Laplacian filter, to convolve the image,
and the second and the fourth moments are utilized to construct weak learners
of one dimensional histogram from the special patch on the filtered images.

In this paper, we present novel features for face detection in the paradigm of
AdaBoost algorithm. The features used are multi-dimensional histograms com-
puted from a set of rectangles in the filtered images. Our filter bank is similar to
that in [16], in which a set of filters are selected from the filter bank based on his-
togram characterizing distribution of texture according to Maximal Entropy. Our
algorithm comprise four parts: filter selection, histogram statistics, fit normal
distribution, and feature selection based on AdaBoost learning, as listed below.

– Filter bank for face detection. We convolve each image patch with three
kinds of filters: intensity, Laplacian of Gaussian (Difference of Gaussians),
and Gabor filters, to capture spatial (frequency) properties of human faces
at different scales and different orientations.

– Histogram statistics as feature. We summarize the responses of the
patch convolved with filters using histograms, which represent marginal dis-
tributions of these patches.

– Fit Normal distribution as the proposal of weak learner. We make a
very simple assumption by fitting the normal distribution for each histogram
feature only to positives (faces) in the sample set. Then for each weak learner
we determine the best threshold to separate face and non-faces examples in
accordance with this Gaussian.

– Feature selection using AdaBoost learning. To decide which features
describe the face pattern best, features are selected by AdaBoost learning.
The best features (pairs of filter and rectangle) can thus be interpreted as
boosted marginal distributions of human faces.

This paper is arranged as follows. The bank of filters is described in Sec-
tion 2. In Section 3, we present the histogram feature set. Weak learner based on
Gaussian assumption is shown in Section 4. In Section 5, the AdaBoost train-
ing of our detector is described. Experiments and discussion are presented in
Section 6. Finally, conclusions and directions for future research are given.

2 Filter Bank for Human Face Detection

Transform domain features can exhibit high “information packing” properties
compared with the original input samples by filtering operation and capture
spatial and frequency properties of human faces at different scales and different
orientations. Our filter bank includes three kinds of filters: 1) the intensity filter
δ(·), which captures the DC component; 2) the isotropic center-surround filters,
i.e., the Laplacian of Gaussian (LoG)/ Difference of Gaussians (DoG) filters; and
3) the Gabor filters [1] with both sine and cosine components.

2.1 Intensity Filter

The ideal impulse in the image plane is defined using Dirac distribution δ(·),
which captures the DC component. We may express the image function as a
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linear combination of Dirac pulses located at the points (a, b) that cover the
whole image plane∫ ∞

−∞

∫ ∞

−∞
f(a, b)δ(a− x, b− y)dadb = f(x, y) (1)

where samples are weighted by the image function f(x, y).

2.2 Laplacian of Gaussian(LoG)/Difference of Gaussians(DoG)

Considering the Laplacian operator of an image smoothed by a 2D Gaussian
smoothing, we get a convolution mask of a Laplacian of Gaussian (LoG) operator
shown as Equ. (2):

LoG(x, y) =
1

πσ4

(
1 − x2 + y2

2σ2

)
e−

x2+y2

2σ2 (2)

where the standard deviation σ is proportional to the size of the neighborhood
on which the filter operates. It can be shown that LoG is the derivative with
respect to 2σ2 of a Gaussian. In order to avoid the large computation of the
LoG operator, the DoG operator (Difference of Gaussians) (see Equ.(3)) can be
used as an approximation to the LoG by taking the difference of two Gaussians
having different standard deviations.

DoG(x, y) =
1

2πσ2
1
e
− x2+y2

2πσ2
1 − 1

2πσ2
2
e
−x2+y2

2πσ2
2 (3)

The ratio σ1/σ2 = 1.6 results in a good approximation of the LoG.

2.3 Gabor Filter

In the spatial domain, a Gabor wavelet [1] is a complex exponential modulated
by a Gaussian function. Its kernels are similar to the 2D receptive field profiles
of the mammalian cortical simple cells, exhibiting desirable characteristics of
spatial locality and orientation selectivity.

The Gabor filters can be defined as follows, assuming that σx = σy = σ [6]:

ψμ,ν(z) =
‖ kμ,ν ‖2

2πσ2 e−
‖kμ,ν ‖2‖z‖2

2σ2 [eizkμ,ν − e
− σ2

2‖kμ,ν‖2 ] (4)

where μ and ν define the orientation and scale of the Gabor kernels, z = (x, y)
is a given pixel, ‖ · ‖ denotes the norm operator, and the wave vector kμ,ν ,
restricted by a Gaussian envelope function, is defined as follows:

kμ,ν = kνeiφμ =
(

kν cosφμ

kν sinφμ

)
, kν = a−νfmax, φμ = μ

2π

n
, μ = {0, . . . , n−1}

(5)
where kν is the ν-th frequency, and let fmax = π/2 be the highest frequency
desired, and a is the frequency scaling factor (a > 1). Useful values for a include
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a = 2 for octave spacing and a =
√

2 for half-octave spacing. The width σ/kν of
the Gaussian is controlled by the parameter σ = 2π. φμ is the μth orientation
and n is the number of orientations to be used. However, often the computation
can be reduced to half since responses on angles [π, 2π] are phase shifted from
responses on [0, π] in a case of a real valued input.

3 Feature Generation with Integral Histogram Image

Image filters remove information redundancies in the previous section. We as-
sume that a set of reference patterns (templates) are available in this section.
To seek statistical models that avoid making strong assumptions about distrib-
utional structure while still retaining good properties for estimation. The best
compromise we found was histograms.

Take 64 × 64 image for example, it includes 892 different rectangle spatial
templates. Fig.1 shows 59 reference patterns with the top left point (0, 0). Other
rectangle templates are created in step of eight pixels. Each template includes
256 pixels at least. Both width and height of the template are no less than eight
pixels.

Fig. 1. Example spatial templates with the top left point (0, 0) for 64 × 64 image. The
orange rectangles are the masks used to calculate histogram feature.

Inspired by the work of Viola and Jones [13], our histogram features can
be computed very rapidly using an intermediate representation for the image
which is called the “integral histogram image”. Given an n × m image, create
(n + 1) × (m + 1) arrays of length L (the number of possible gray levels), noted
as Hx,y[p]. Initialization Hx,0[p] = 0, H0,y[p] = 0, and integral row histogram
hx,y[p] = 0, where x = 0, . . . , m; y = 0, . . . , n, and p = 1, . . . ,L. The integral
histogram Hx,y[p] at location (x, y) is according to the histogram of the image
above and to the left of (x, y), inclusive:

Hx,y[p] =
∑

x′≤x,y′≤y

δ(x′, y′) (6)

where δ(x′, y′) = 1 if the intensity of pixel (x, y) belongs to the p-th bin of
histogram; otherwise δ(x′, y′) = 0. Using the following pair of recurrences:

hx,y[p] = hx,y−1[p] + δ(x, y), Hx,y[p] = Hx−1,y[p] + hx,y[p], p = 1, . . . ,L (7)

the integral histogram can be computed in one pass over the original image.
Using the integral histogram any rectangular histogram can be computed in
four array references.
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4 Proposal of Weak Learner Under Gaussian Assumption

Building a model for the face detection task is challenging because of the diffi-
culty in characterizing prototypical “non-face” images. Instead we make a very
simple assumption by fitting the normal distribution for each histogram feature
only to positives (faces) in the sample set. Then for each weak learner we deter-
mine the best threshold to separate face and non-faces examples in accordance
with this Gaussian.

Assume now that the likelihood function of feature λi with respect to his-
togram feature of sample x in the d-dimensional feature space, which is according
to the dimensions of the histogram, follow the general multivariate normal den-
sity N (μ,Σ):

p(x|λi) =
1

(2π)d/2|Σi|1/2 exp
(
−1

2
(x − μi)TΣ−1

i (x − μi)
)

, i = 1, . . . ,M (8)

where M is the feature count, the d-component mean vector of the feature λi is
described as

μi = E [x] = [v1, v2, . . . , vd]T (9)

the d × d covariance matrix Σi is defined in Equ.(10), |Σi| and Σ−1
i are it

determinant and inverse.

Σi = E [(x − μi)(x − μi)T ] = [σpq]d×d, p, q = 1, . . . , d (10)

where (x − μi)T is the transpose of (x − μi).
Given histogram features X = (x1,x2, . . . ,xn), xk = [x1k, x2k, . . . , xdk]T ∈

X, the j-th component of μi is described as vj =
∑n

k=1 xjkωk, where ωk is
the weight of xk, and

∑m
i=1 ωi = 1. In Equ.(10), σpq is defined as σpq =∑n

k=1 ωk(xpk − νp)(xqk − νq). The feature value of all samples (both positives
and negatives) can now be reached via Equ.(8). Next, features are selected by
AdaBoost learning.

5 Learning Classification Functions by AdaBoost

Utilizing AdaBoost [2], each trained classifier produces a weak classification rule
with one feature. The weight distribution is updated at each round of learning.
The threshold of the final strong classifier is decided by the prescribed hit ratio
of the strong classifier to the training example set. The construction of the final
cascade detector depends on the ratio of false positives for the training set.
Features used are the histogram feature described in the previous section. To
speed up the process of detection, only intensity filter is adopted at the first few
stages. Then Difference of Gaussians and Gabor filters are added to the feature
set used for training.
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6 Experiments and Discussion

In this section, we first introduce the training data set, filters, and feature set.
Then preliminary learning results and detection results are described. Finally
based on the results, we give a detailed discussion.

6.1 Preliminary Experiment Results

We crop 8, 664 frontal face images as training samples from below sources:
ORL[11], BioID1, Caltech2, PIE[12], FG-NET3, IMM4, JAFFE[7], AR[8], and
YaleB[3] face set. The negative samples are collected by selecting random sub-
windows from a set of 24, 621 images which do not contain faces. For each layer,
the maximum size of the negative set is 8, 000. Each sample is scaled to 64 by
64 pixels. We take histogram equalization for both training samples and test
samples to make each image with equally distributed brightness levels over the
whole brightness scale.

To DoG filter, nine groups of (σ1,σ2) (see Equ.(3)) are taken into account.
We choose two scales and five orientations (0, π/8, 3π/8, 5π/8, 7π/8) for Gabor
filter. Thus, our feature set includes 1, 402 histogram features, which is far less
than the size of Viola and Jones’ feature set.

The final detector of Viola and Jones is a 38 layer cascade of classifiers
which included a total of 6, 060 features [13]. However, our cascade detector only
includes 13 layers with 507 features. It is trained following two steps: “coarse”
learning, which speeds up both training and detection and “fine” learning, which
picks up more “meaningful” features. The coarse learning gets 332 intensity
histogram features with eight layers. Fig.2 shows the first four selected features.

To demonstrate that our whole feature set is powerful to describe the face
pattern, we continue to train the 9th and 10th layer by two ways. When the
training features are only based on intensity filter, the detector holds 141 and
201 features for the 9th and 10th layer, respectively. However, when the whole
feature set based on intensity, LoG/DoG, and Gabor filters is used, there are
four features and nine features at the 9th and 10th layer achieving the same
performance. Thus the whole feature set is used to “fine” learning. Finally, we
get five layers hold 175 features by fine learning, which include 49 features based
on the intensity filter, 55 features based on DoG filters, 71 features based on
Gabor filters. Because our features contain rich information for face detection,
our approach has potential to decrease the number of features, which is supported
by the preliminary result.

We train a cascaded classifier containing six 20-feature classifiers according to
what Viola and Jones do in the part of their experiment [13]. The first stage clas-
sifier in the cascade is trained using 5000 faces and 10000 non-face sub-windows
randomly chosen from non-face images. The second stage classifier is trained on
1 http://www.humanscan.de/support/downloads/facedb.php
2 http://www.vision.caltech.edu/html-files/archive.html
3 http://sting.cycollege.ac.cy/∼ alanitis/fgnetaging/index.htm
4 http://www.imm.dtu.dk/∼aam
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(a) 1st feature ( 0, 24, 64, 16 ), threshold 0.717 (b) 2nd feature ( 8, 8, 16, 16 ), threshold 0.385

(c) 3rd feature ( 0, 16, 64, 8 ), threshold 0.581 (d) 4th feature ( 16, 40, 32, 24 ), threshold 0.531

Fig. 2. The choice of first four features in the detector. X axis represents the sample
ID. The first 8, 000 samples are positives and the Id from 8, 000 to 16, 000 represents
negatives. Y axis is the feature value. The threshold is represented by red line. For
example, the first feature is located at (0, 24) with 64 pixels width and 16 pixels height.
And its threshold is 0.717.
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(b) Our ROC Curves for Cascaded 
Set of 6 20-feature Classifiers

Fig. 3. ROC curves comparing a cascaded classifier containing ten 20-feature classifiers
(by Viola and Jones) with our cascaded classifier containing six 20-feature classifiers.

the same 5000 faces plus 1094 false positives of the first classifier. This process
continues so that subsequent stages are trained using the false positives of the
previous stage. ROC curves comparing the performance of our detector and Vi-
ola and Jones’ are given in Fig. 3. The experiment result proves that the features
selected by our detector are more powerful than Viola and Jones’ detector.

A prototype implementation of the discussed face detection framework is
ongoing. In the following, we show the preliminary results of this ongoing work.
This is an original unoptimized face detection system combining our novel feature
set. The detector scans across the image at multiple scales and locations. Scaling
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Fig. 4. Output of our face detector on a number of test images from the CMU new
test set.

is achieved by scaling the image. And the test set is the CMU new frontal face
test set without containing line drawn faces. The detection rate achieves 89%
with 125 false detections. Figure 4 shows the output of our detector on some
test images.
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6.2 Discussion

Based on the above results, we can conclude the following.

– Variation of training set. By observing the performance of our face de-
tector on the test set, we have noticed a few different failure modes. The face
detector was trained with frontal, upright faces. It is possible that adding new
tilted images to the training set will improve the performance of our detec-
tor. The size of our detector is 64 by 64. However, the test set includes more
small size faces. We will train 48×48 or 32×32 detector in our future work.

– Variation of lighting. We also noticed that some failures are caused by
harsh back lighting in which the faces are very dark while the background is
relatively light. And our feature selection depends on the gray distribution
greatly. The current preprocessing step, histogram equalization, makes each
image with equally distributed brightness levels over the whole brightness
scale. However, there are limits with no knowledge of the structure of faces.
Rowley [10] presented the methods to use linear lighting models of faces to
explicitly compensate for variations in lighting conditions before attempting
to detect a face. Integrating the idea on intelligently correcting lighting varia-
tion to our framework will improve the detection performance of our detector.

– Weak functions. We derive the functional form of our detector using a
Gaussian distribution to model variation in visual appearance. The problem
is, we have no idea whether the Gaussian distribution used here are in the
right place, because it is not tractable to analyze the joint statistics of large
numbers of pixels. The initial face detection framework can be extended to
choose other weak functions, such as the fisher linear discriminant.

– Histogram features. The current histogram range is divided equally to
n units. One way to improve the expression of the features is to make the
histogram boundary chosen adaptively.

7 Summary and Conclusions

This paper presents novel histogram features for face detection in the paradigm
of AdaBoost learning. First, intensity, Laplacian of Gaussian (Difference of Gaus-
sians), and Gabor filters are used to capture spatial and frequency properties of
human faces at different scales and different orientations. Then, the responses
of the patch convolved with filters are summarized with multi-dimensional his-
tograms. For simplicity and efficiency, we fit normal distribution to histogram
features only based on positives. Finally, the best features are selected with Ad-
aBoost learning. The experiment result demonstrates that the selected features
are powerful to describe the face pattern.
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Abstract. The feature selection is very important for improving classifier’s accu-
racy and reducing classifier’s running time. In this paper, a novel feature selection
method based on KPCA, SVM and GSFS is proposed for face recognition. The
proposed method can be described as follows, first KPCA is used for extracting
initial face features, secondly, the extracted features are divided into some single
feature sets, and then the single feature sets are trained separately by SVM to
obtain the best feature set through GSFS. In this way, the dimensionality of the
initial features can be reduced and also the best features can be obtained. Experi-
mental results on ORL, IITL and UMIST face databases indicate the effectiveness
of the proposed method.

1 Introduction

The feature selection problem is an old and difficult problem studied in pattern recogni-
tion, statistics and machine learning. Actually, the feature selection problem is to solve
how to obtain the best features with the smallest classification error from the initial fea-
tures and reduce running time. So the feature selection problem can be addressed to in
the following two ways: (1) given a fixed m � n , find the m features that give the
smallest expected generalization error; or (2) given a maximum allowable generaliza-
tion error γ , find the smallest m or the feature subsets with smallest dimensionality.
For different purposes feature selection methods are different [1], [2]. In the field of
face recognition, principal component analysis (PCA) and kernel principal component
analysis (KPCA) are two typical feature selection methods. PCA linearly transforms
the original inputs into new uncorrelated features. KPCA is a nonlinear PCA devel-
oped by using the kernel method. Because KPCA firstly maps the original inputs into a
high-dimensionality feature space using the kernel method and then calculates PCA in
the high-dimensionality feature space. KPCA performs better than PCA in face feature
selection [3]. Support Vector Machine (SVM) as a popular classification tool is well
applied to pattern recognition [4]. A SVM is to find the hyperplane that separates the
largest possible fraction of points of the same class on the same side, while maximizing
the distance from the either class to the hyperplane [5]. Generalized Sequential Forward
Selection (GSFS) is basically a SFS method but here r features are added to the current
feature set at each stage of the algorithm.

In this paper, we present a novel face feature selection method based on KPCA,
SVM and GSFS for face recognition. We use KPCA for extracting the initial face fea-
ture set. Because the dimensionality of the extracted initial face feature set still might

S. Singh et al. (Eds.): ICAPR 2005, LNCS 3687, pp. 344–350, 2005.
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be high it is necessary to reduce the dimensionality further. So we use SVM and GSFS
for obtaining the best feature set to improve classification accuracy and to reduce the
dimensionality. To verify the feasibility of the proposed method, experiments on ORL,
IITL and UMIST face databases are executed separately. Experimental results show the
effectiveness of the method.

The rest of this paper is organized as follows. Section 2 gives a brief review to
KPCA, SVM. In Section 3, the feature selection method based on KPCA, SVM and
GSFS is presented. Section 4 gives the experimental results, followed by the conclu-
sions in the last section.

2 KPCA and SVM

2.1 KPCA

Principal component analysis (PCA) is a well-known method for feature extraction.
By calculating the eigenvectors of the covariance matrix of the original inputs, PCA
linearly transforms a high dimensionality input vector into a low-dimensionality one
whose components are uncorrelated. Nonlinear PCA has also been developed through
using different algorithms. Kernel principal component analysis (KPCA) is one type
of nonlinear PCA developed by generalizing the kernel method into PCA [6]. KPCA
firstly maps the original inputs into a high-dimensionality feature space using the ker-
nel method and then calculates PCA in the high-dimensionality feature space. The func-
tional form of the mappingΦ(x) does not need to be known since it is implicitly defined
by the choice of kernel, k(xi, xj) = (Φ(xi),Φ(xj)), or inner product in feature space.
With a suitable choice of kernel the data can become separable in feature space despite
being non-separable in the original input space. Hence kernel substitution provides a
route for obtaining non-linear algorithms from algorithms previously restricted to han-
dling linearly separable data sets.

Three steps of KPCA algorithm are

– Step 1: Compute the dot product matrixK by using kernel functionKij=k(xi, xj);
– Step 2: Compute Eigenvectors of K and normalize them λk(αk · αk) = 1;
– Step 3: Compute projections of a test point onto the Eigenvectors V k using kernel

function. kPCk(x) = (V k · Φ(x)) =
∑m

i=1 α
k
i k(xi, x).

2.2 SVM

Support Vector Machine (SVM) is a state of the art classification algorithm that is known
to be successful in a wide variety of applications [7]. High generalization ability of the
method makes it particularly suited for high dimensionality data. The basic idea of SVM
is to maximize the margin around the separating hyperplane between two classes, which
can be formulated as the following convex quadratic programming problem:

m∑
i=1

αi − 1
2

m∑
i,j=1

αiαjyiyjx
T
i xj ,

s.t.0 ≤ α ≤ C(i = 1, · · · , m),
m∑

i=1

αiyi = 0 ,
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where {x1, · · · , xm} is a training set in Rd space, {y1, · · · , ym} is class label data,
and αi(≥ 0) are Lagrange multipliers. C is a parameter that assigns penalty cost to
misclassification of samples. By solving the above optimization problem, the form of
decision function can be derived as

f(x) = wT x + b ,

where w =
∑m

i=1 αiyixi and b is a bias term. Only vectors corresponding to nonzero
αi contribute to decision function, and are called support vectors. High generalization
ability of SVM is based on the idea of maximizing the margin. The margin is M =
2/ ‖ w ‖.

3 Feature Selection Method Based on KPCA, SVM and GSFS

According to the characteristics of KPCA, SVM and GSFS we can construct an outline
of the proposed method for feature selection as shown in figure 1.

KPCA SVM_GSFS

  Original
face image

Best combination
          features

Evaluation of the 
selected features

Fig. 1. The outline of the proposed method for feature selection

From figure 1 it can be seen that KPCA is used for extracting initial face features
from original face image data as mentioned in Section 2.1. After done, the extracted
initial face features may be divided into some signal feature sets. Thus active feature
training set can be constructed by using the support vectors of SVM and the support
vectors are used for replacing to the initial face feature set. Lastly, the best feature
combination set can be obtained by GSFS. The procedure carried out by SVM GSFS is
as follows:

(1) Divide the extracted initial face features into some single feature sets F i
1 = {fi},

fi ∈ F , i = 1, · · · , n;
(2) Calculate out the corresponding margin set M i

1 and support vector set V i
1 = {vi},

i = 1, · · · , n, through training F i
1 by SVM;

(3) According to j = arg mini∈{1,2,3,···,n}M i
1, obtain the best single feature set Fj =

{fj} and the active training feature set Vj = {vj};
(4) Add r new features into F1 and update the active training feature set V1. Then train

V1 once more by SVM;
(5) At step k, obtain the best combination feature set Fk and the active training feature

set Vk;
(6) At step k+1, the combination feature set and the active combination training feature

set are F i
k+1 = Fk∪{fi}∪{fi+1}∪· · ·∪{fi+r−1}, V i

k+1 = Vk∪{vi}∪{vi+1} · · ·∪
{vi+r−1}, fi, · · · , fi+r−1 ∈ F av

k , F av
k = {fs | fs ∈ F, fs 	∈ Fk};
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(7) Training V i
k+1 once more by SVM, according to j = arg minfi,···,fi+r∈F av

k
M i

k+1,

obtain the best combination feature set Fk+1 = F j
k+1 and the active combination

training feature set Vk+1 = V j
k+1;

(8) Repeat from step (4) to step (7), until no significant margin reduction is found or
the desired number of features is obtained.

4 Experimental Results

In KPCA, polynomial kernel function K(xi, xj) = (xi · xj)d is adopted for extract-
ing initial face features. Then SVM and GSFS are used for obtaining the best feature
combination set. Lastly, a linear SVM is designed for classification experiments.

4.1 Experiment 1: ORL Face Database

Experiment 1 was carried out on ORL face database. There are 10 different images
of 40 distinct subjects in the ORL face database. For some of the subjects, the images
were taken at different times, varying lighting, slightly rotation and facial expressions as
shown in figure 2. Six images per subject were arbitrarily picked up as training samples
and four images as testing samples. Table 1 shows the relationship between polynomial
kernel parameter d and classification rate. From Table 1, we can see that when d changes
from 0.4 to1.5 the classification rate is the best one. Table 2 shows the comparison
between feature dimensionality and classification rate or running time in the ORL face
database.

Fig. 2. A sample of ORL face database

Table 1. Relationship between polynomial kernel parameter d and classification rate

d 0.1-0.2 0.2-0.3 0.4-1.5 2.0 2.5-3.0 3.5 4.0

Classification rate(%) 96.88 97.50 98.13 97.50 96.88 97.50 96.88

Table 2. Comparison between feature dimensionality and classification rate or running time in
the ORL face database

Feature dimensionality Classification rate(%) Running time (s)

Originality features 10304 97.5 15.1020

KPCA 239 98.13 (d = 0.8) 0.2300

KPCA SVM GSFS 99 98.75 0.1200
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4.2 Experiment 2: IITL Face Database

Experiment 2 was executed on IITL face database. The IITL face database was build by
Intelligential Information Technology Lab of Chongqing University, China. The face
database consists of 1456 images of 52 distinct subjects. Each subject covers different
poses from profile to frontal views with different lightings, facial expressions, sexes and
appearances. Figure 3 shows a sample of these subjects.

Fig. 3. A sample of IITL face database

Table 3. Relationship between polynomial kernel parameter d and classification rate

d 0.1-0.5 0.6-1.0 2.0 3.0 4.0

Classification Rate(%) 86.82 86.36 90.45 90.00 90.00

Table 4. Comparison between feature dimensionality and classification rate or running time in
the IITL face database

Feature dimensionality Classification rate (%) Running time (s)

Originality features 10304 86.36 14.456

KPCA 239 90.45(d = 2.0) 0.220

KPCA SVM GSFS 99 91.81 0.1813

In the same way of Experiment 1, six training samples and eleven testing samples
are randomly taken out from 40 subjects in the IITL face database. Table 3 shows the
relationship between polynomial kernel parameter d and classification rate. From Ta-
ble 3, it can be seen that when d is 2.0 the best classification rate is obtained. Table 4
shows the comparison between feature dimensionality and classification rate or running
time in the IITL face database.

4.3 Experiment 3: UMIST Face Database

Experiment 3 was carried out on UMIST face database [8]. The UMIST face database
consists of 575 images of 20 distinct subjects. Each subject covers different poses from
profile to frontal views with different races, sexes and appearances. Figure 4 shows a
sample of these subjects. In the same way of Experiment 1, six training samples and
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Fig. 4. A sample of UMIST face database

Table 5. Relationship between polynomial kernel parameter d and classification rate

d 0.1-0.5 0.6-1.5 2.0 2.5 3.0 4.0

Classification rate (%) 91.92 86.92 86.53 85.77 84.23 84.08

Table 6. Comparison between feature dimensionality and classification rate or running time in
the UMIST face database

Feature dimensionality Classification rate (%) Running time (s)

Originality features 10304 86.92 13.7190

KPCA 119 91.92 (d = 0.4) 0.2350

KPCA SVM GSFS 99 92.30 0.1950

thirteen testing samples are randomly taken out from the UMIST face database. Table 5
shows the relationship between polynomial kernel parameter d and classification rate.
From Table 5, it can be seen that when d changes within 0.1 to 0.5 the classification
rate is the best one. Table 6 shows the comparison between feature dimensionality and
classification rate or running time in the UMIST face database.

4.4 Discussion on Selecting Feature Dimensionality

It should be noted that during the KPCA stage, all eigenvectors corresponding to non-
zero eigenvalues are selected, thereby the selection of KPCA dimensionality is fulfilled
automatically. After done, 239, 239 and 119 features are obtained separately.

If the KPCA SVM GSFS is used, according to the results in all experiments, in
average meaning, 99 features selected from the initial 10304 ones are necessary for
each experiment to obtain the optimal classification. So 99 features are retained from
all features for experimental analysis.

5 Conclusions

According to the experimental results in three face databases, we can make the follow-
ing conclusions:

(1) Although KPCA can not only reduce the feature dimensionality but also improve
the classification accuracy the proposed method base on KPCA, SVM and GSFS is
more efficient than KPCA.



350 W. Li et al.

(2) The polynomial kernel parameter d affects their classification rate for the each face
database. For the ORL face database, the classification rate is best when d is around
1. It indicates that the images in the ORL face database include more linear com-
ponents, and then ones of the other two face databases include more nonlinear
components.

(3) For different face databases, the selection of training sample and testing sample
numbers affect classifier performance. The reason caused the phenomena will be
studied in our further work.
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Abstract. In this paper we propose a novel method for performing pose-tolerant 
face recognition. We propose to use Fourier Magnitude Spectra of face images 
as signatures and then perform principal component analysis (PCA) and Fisher-
faces (LDA) leading to new representations that we call Eigen and Fisher-
Fourier Magnitudes. We show that performing PCA and Fisherfaces on the 
Fourier magnitude spectra provides significant improvement over traditional 
PCA and Fisherfaces on original spatial-domain image data. Furthermore, we 
show analytically and experimentally that our proposed approach is shift-
invariant, i.e., we obtain the same Fourier-Magnitude Spectra regardless of the 
shift of the input image. We report recognition results on the ORL face database 
showing the significant improvement of our method under many different 
experimental configurations including the presence of noise. 

1   Introduction 

Face recognition [1] has been an area of continuing and growing research due to its 
increasing application in fields such as biometrics and security. However, it is also a 
challenging area of research due to the variability in facial features due to pose and 
illumination variations. Two well-known methods for face recognition are Principal 
Component Analysis (PCA) [2], [3] and Fisherfaces [4].  Both are dimensionality 
reduction methods, however PCA seeks projections that best represent the data in the 
minimum squared error sense while Fisherfaces seeks projections that best separate 
the data classes based on maximizing the Fisher criterion [5]. 

In this paper we propose to compute the Fourier-Magnitude Spectra of the face 
images and then perform PCA and Fisherfaces on those to demonstrate that Fourier 
magnitudes of images are much more effective than spatial image representations for 
pose-tolerant face recognition. Along with demonstrating the pose tolerance of the 
methods, we will show that Fourier magnitudes additionally provide a shift-invariant 
model (i.e. even if the input image is shifted, the Fourier magnitude spectra remain 
the same). 

2   Eigenfaces 

Eigenfaces or PCA method introduced by Turk and Pentland [2] (also sometimes 
referred to as Karhunen Loeve transform or Hotelling Transform) is one of the most 
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common methods applied in face recognition. PCA is applied to an ensemble of face 
images to compute the principal directions of variation in the high-dimensional face 
space. These resulting principal components are named Eigenfaces and a few of these 
Eigenfaces (corresponding to their largest eigenvalues) are then used to form a basis 
to represent the original data.  PCA finds a linear subspace that represents the training 
data in the least mean squared error sense. The principal directions of variation are 
identified by diagonalizing the covariance matrix C of the training data, defined as 

{ }{ } =−−=
N

1

TT
ii XXmxmxC , (1) 

where X is a matrix of size M × N where M is the number of pixels in each face 
image and N is the number of training images and m is the mean of the training 
images. Each column of X contains a training face image lexicographically reordered 
and placed along the column (note that these images are in the spatial domain). PCA 
involves solving the following eigenvalue problem: 

vCvvXXT λ== , (2) 

where the covariance matrix C is symmetric and positive semi-definite. Thus the 
eigenvectors computed in Eq. (2) form an orthogonal basis that best represents the 
variance in the training data in the minimum mean squared error sense. 

3   Eigen Fourier Magnitudes (FM-PCA) 

In this paper, we propose to represent the face images by their Fourier-Magnitude 
Spectrums and model the intra-class variations of the magnitude spectra using PCA. 
We first compute the two-dimensional Fourier transforms of all the images, and then 
retain the magnitude spectra of these transforms and then perform eigen-analysis to 
find the principal directions of variations. We denote this method as Fourier-
Magnitude PCA (FM-PCA). It has been shown in [6] that performing PCA using the 
complete Fourier transforms does not provide any advantage over performing PCA in 
the spatial domain. This is because the Fourier transform is a unitary transformation and 
in fact the eigenvectors obtained in the frequency domain are exactly the Fourier 
transforms of the eigenvectors obtained by performing PCA in the spatial domain data. 

However, when we discard either the phase or the magnitude in the Fourier 
transform and then do PCA, this is completely different from doing spatial domain 
PCA. In fact Savvides [6] has shown that phase information is more tolerant to 
illumination variations, and here we show that the Fourier magnitude spectrums are 
more tolerant to pose variations, thus depending on type of variation at hand one can 
employ a different feature representation.  

We also show that FM-PCA has other advantages over the PCA method, such as 
shift-invariance, i.e., even if the input image is shifted, the resulting Fourier 
magnitudes remain exactly the same and hence are invariant to shifts and more 
importantly are not prone to registration errors of the input image as is the case with 
traditional spatial-domain PCA. 
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4   Experimental Datasets 

The face database used in our experiment is the Olivetti Research Laboratory (ORL) 
dataset. This dataset is comprised of 40 people each with 10 images yielding a total of 
400 images. Each image is 112 × 92 pixel size with the face occupying most of the 
image, however there is considerable variation among the face imagery with respect 
to angle, expression, and size of the face (scale changes) as shown in Figure 1. 

 

Fig. 1. Face images from Persons 1 and 5 from ORL database 

There are also people with glasses who also take off their glasses during their 
captured 10 face images. An important aspect of this dataset is that within the face 
images of a single person there is significant intra-class pose variation as shown in 
Fig. 1. 

4.1   Face Recognition Using FM-PCA 

Following the methodology described above, we set out to determine if Fourier 
Magnitude PCA (FM-PCA) yields better results than spatial domain PCA in terms of 
recognition. By demonstrating this, we will show that FM-PCA is more tolerant to 
intra-class pose variation. In this particular dataset pose variation is significant. To 
determine which method yielded better performance we performed experiments 
involving different training sets, variable size training sets, varying image sizes, 
addition of additive white Gaussian noise (AWGN), and introduction of registration 
errors on the complete ORL dataset. 

For each class or person we randomly select a pre-set number of images to train 
from.  For each experiment, the number of images trained upon and the training list 
remains the same for each person. Using these training sets, we generate two different 
eigen-spaces for each class. One eigen-subspace is based on the raw spatial-domain 
face images. The second subspace is from the Fourier Magnitude spectra of the same 
training face images. 

Each testing image is projected onto each person’s eigenspace and reconstructed.  
From the reconstructed image, we measure the reconstruction error which indicates 
how well the test image is modeled by the eigenspace.  This was repeated for 
traditional spatial-domain PCA and our proposed FM-PCA method. We ran 
experiments involving the previously mentioned variations (different training sets, 
variable size training sets, etc.) for both methods for each number of training images 
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and computed the average recognition accuracy (Table 1). These results clearly show 
an increased recognition rate of our proposed FM-PCA over the traditional spatial-
domain PCA, PCA variants [7], [8], and other classification methods [9], [10]. 

Table 1. Recognition  accuracy with different numbers of training images with ORL dataset 

Number of 
Training 
Images 

3 4 5 6 7 8 9 

FM-PCA 92.96% 96.30% 98.03% 98.6% 99.08% 99.49% 99.84% 
PCA 89.28% 93.14% 95.38% 96.48% 97.18% 97.61% 98.28% 

5   Fisherfaces (Fisher LDA) 

Fisher linear discriminant analysis (FLDA) [5] is a popular tool for multi-class pattern 
recognition. FLDA finds the optimal projection vectors w such that the projected 
samples have a small within-class scatter (i.e., compact clusters), and large between-
class scatter (separating the classes far apart). This is done by maximizing the ratio of 
determinant of the projected between-class scatter matrix SB to the determinant of the 
within-class scatter matrix SW, shown below: 

( )( )
=

−−=
c

1i

T
iiB mmmmS , (3) 
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−−=
c

1i

N

1k

T
i

i
ki

i
kW

i

mxmxS , (4) 

where Ni is the number of training images in the ith class, m is the mean of the training 
images, and the superscript on x indicates its class. The Fisher ratio that must be 
maximized is as follows: 

( )
wSw

wSw
wJ

W
T

B
T

= . (5) 

However in most pattern recognition applications where the dimensionality of the 
data is larger than the number of samples (such as face identification), the within-
class scatter matrix SW is not full rank leading to zero determinant. This is also true 
for the between-class scatter matrix SB which is of at most rank C-1 as defined in Eq. 
(3).  Since there are at most N training images in total from all C classes, the rank of 
SW is at most of rank N-C. To avoid a singular matrix Sw, [4] proposed to first 
perform PCA on the data to reduce the dimensionality to N-C and then perform multi-
class FLDA in the reduced-dimensional space. This cascade of transformations has 
been termed Fisherfaces. Maximizing the Fisher criterion in Eq. (5) leads to the 
following generalized eigenvalue problem: 

wSwS WB λ= . (6) 
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From Eq. (6), we observe that the number of non-zero eigenvalues is dominated by 
the scatter matrix with the smaller rank. In this case SB has rank C-1 as there are C 
classes, therefore after performing LDA in the PCA space we obtain a maximum of 
C-1 optimal projection vectors w. Once LDA is performed, we can cascade the two 
projections into one transformation for convenience: 

LDAPCAfisherface WWW = . (7) 

For identification, all the training faces are projected into the Fisherface subspace 
in Eq. (7), and typically a simple nearest neighbor classifier is used to label the test 
face based on the residue. 

5.1   Face Recognition Using Fisher-Fourier Magnitudes (Fisher-FM) 

To compare Fisher-Fourier Magnitudes (Fisher-FM) to Normal-Fisher(faces), we 
performed experiments in which we compared the recognition rates of the two 
methods while varying image size. Training and testing image dimensions varied 
from their original 112×92 down to 64×64 and finally 32×32 pixels.  By doing this we 
can measure the performance of our proposed method when presented with varying 
face resolutions.  This is turn approximates the scenario of low-resolution cameras 
and non-uniform range to camera situations which result in scaling issues. 

As stated above, Fisherfaces maximizes the ratio of between-class-scatter to 
within-class-scatter. Thus we expect that the projected data classes should be well and 
closely clustered to their projected class means. FM-Fisher accomplishes better class 
separation more effectively than traditional Fisherfaces. 

FM-Fisher achieves a much smaller within-class-scatter and a much larger 
between-class-scatter than Normal-Fisher as demonstrated in Figure 2. This allows 
FM-Fisher to achieve a higher recognition rate than traditional-Fisherfaces in most 
cases as indicated in Table 2 (showing average of multiple experiments using a 
random set of different training images). 

 

Fig. 2. 3-D plots of eigenvector clusters. (Left) Normal Fisher (Right) FM-Fisher. The * 
represent the eigenvector of the training imagery while the ° represent the eigenvector of the 
testing imagery. For these plots we only trained and tested on 4 people (i.e. 4 classes) which are 
each represented by a single color or cluster. 
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Table 2. Recognition accuracy with different image sizes 

Image Size (pixels) 32×32 64×64 112×92 128×128 

FM-Fisher 80.8% 83.25% 84.58% 84.39% 

Normal Fisher 77.69% 79.50% 77.36% 74.00% 

6   Effect of Registration Errors in Test Images 

Registration errors occur when the input images are not correctly centered that 
typically arise from poor face segmentation. However, the classification algorithm is 
typically trained on images which are perfectly centered. These offsets in the test 
image can create significant errors in recognition as the image looks different due to 
shifts. Such shifts do not affect the Fourier-Magnitude spectra. This tolerance allows 
for FM-PCA and FM-Fisher to operate with high recognition rates even in the 
presence of such registration errors.  

We verified the improved shift-tolerance of FM-PCA versus PCA by performing 
experiments on the complete dataset using 5 different random training images. The 
training images were zero-padded to fit in the center of an area twice the dimensions of 
the original image. FM-PCA and PCA were trained using this set of training images. 
Testing images was similarly padded, but positioned at different locations from the 
original centered images. These shifts ranged from -10 to 10 pixels in each direction. 

The results of these experiments clearly show that FM-PCA is shift-tolerant while 
PCA is not. Even small registration errors caused significant decreases in recognition 
rates. Figure 2 demonstrates the average of the experiments. It is also clear that FM-
PCA is not affected by registration errors due to the shift-invariance of the Fourier 
Magnitudes Spectra (FM). 

 

Fig. 3. (Left) Average recognition rates of traditional Spatial-FLDA (bottom surface) and 
Fisher-FM (top surface) as a function of pixel shift in the input image. (Right) Average 
recognition rates of traditional Spatial-PCA (bottom surface) and FM-PCA (top surface) as a 
function of registration error. The upper surface represents the accuracy of our frequency 
domain approach and the bottom surface represents traditional spatial domain approach which 
degrades rapidly with registration error. 
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Similarly, we performed experiments (with 5 random training images) using FM-
Fisher and Normal-Fisher and computed the average recognition results. The 
complete dataset was tested using 5 training images. In these experiments, we zero-
padded the images into areas twice their original dimensions. Training images were 
centered in this area, but the testing images were shifted in different amounts. In the 
Fisher experiments we used shift values ranging from 0 to 32 pixels in each direction. 
The effect of these shifts was dramatic as Fisher recognition rate degraded to below 
50% with shifts of more than 8 pixels in any one direction. Figure 3 shows the 
averages of these experiments. 

The results of both sets of experiments on Fisher and PCA clearly show that their 
FM counterparts are completely shift-invariant and thus are far more robust. Due to 
the high likelihood of registration errors in real word applications, FM-PCA and FM-
Fisher will be far more applicable than their normal version. 

7   Effect of Noise in Test Images 

Another potential problem in real-world face recognition system, is the presence of 
noise in the images (e.g. due to camera thermal noise). To evaluate the tolerance of 
our proposed method to noise we added white Gaussian noise to the test images as 
shown in Figure 4. The level of noise introduced varied from 20 dB to 12 dB (SNR) 
at intervals of 0.5 dB. However, it is important to note that the subspaces were trained 
on noise-free images; it is only the test images that were corrupted with noise. We ran 
50 experiments (using different set of random training images) for each noise level 
and the averaged results are shown below in Table 3. Our results clearly show that 
FM-PCA has a higher noise tolerance than traditional spatial PCA. 

Table 3. Recognition accuracy with different levels of AWGN noise 

Noise Level 
(dB) 

PCA FM-PCA 
Noise Level 

(dB) 
PCA FM-PCA 

12 88.00% 89.50% 16.5 88.00% 95.5% 

12.5 88.00% 88.50% 17 88.00% 95.00% 

13 88.00% 92.00% 17.5 88.00% 95.50% 

13.5 88.50% 93.00% 18 88.50% 95.50% 

14 88.50% 93.50% 18.5 88.00% 96.50% 

14.5 88.00% 93.50% 19 88.00% 96.00% 

15 88.50% 92.00% 19.5 88.00% 96.00% 

15.5 88.00% 94.50% 20 88.00% 96.00% 

16 88.50% 93.50%    
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Fig. 4. Images of Person 12. (Left) Original image. (Right) Image with 15dB of Additive White 
Gaussian Noise (AWGN). 

8   Conclusion 

This paper shows a novel approach of representing facial images using the Fourier-
Magnitude spectra. By performing PCA and Fisherfaces using the Fourier-Magnitude 
Spectra (Eigen and Fisher-Fourier Magnitudes), we can achieve significantly higher 
face recognition accuracy than using their traditional spatial counterparts. 
Furthermore we show both analytically and through experimentation that our 
approach is shift-invariant. This is in contrast to the traditional spatial approach in 
which any small registration errors of the test input images significantly degrade the 
performance. We also show that our approach is particularly good for handling pose 
variations and our results also indicate tolerance in the presence of significant noise 
levels. Future work includes extending the use of Fourier Magnitude Spectra to other 
classification methods including Kernel based PCA, LDA variants, and Support 
Vector Machines. 
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Abstract. In this article we propose simple descriptor for the purposes
of 3D objects recognition and classification. Princeton Shape Benchmark
2004 is used for testing the proposed descriptor. Small size (512b) of the
proposed descriptor and short generation and comparison times combine
with relatively high recognition abilities. Surprisingly, we found that de-
spite its simplicity and the small size the proposed descriptor took the first
place in “coarser” classification test, where all 3D models were divided into
6 large classes: buildings, household, plants, animals, furniture, vehicles
and a miscellaneous class not included in averaged retrieval results.

1 Q-Gram Shape Descriptor

The development of information technologies and 3D shape scanning techniques
leads to the growth of 3D object databases. Large volumes of various 3D data re-
quire advanced algorithms of the shape recognition and automated classification.
In comparison with the image recognition, shape recognition is rather young and
poorly known. A three dimensional object often does not allow applying of two
dimensional approach due to a high time complexity and difficulties with a suit-
able 3D object description. Thus the construction of a small, but an informative
shape descriptor is one of the basic tasks in many areas of the shape recogni-
tion and automated classification. In this paper we continue to investigate 3D
descriptors, started in [5,6], and propose a simple descriptor for the automated
classification of 3D shapes. Princeton Shape Benchmark 2004 [12] showed that
in spite of the small size of the proposed descriptor and the small time needed
to generate and compare the descriptors, the precision of the automated classi-
fication is relatively high.

There are two main approaches to the representation of 3D shapes: polygonal
and voxel. The proposed shape descriptor and comparison procedure deal with
binary voxel representation. So before constructing the descriptor we convert
polygonal models to the binary voxel representation in the voxel lattice of fixed
size N ×N ×N (the lattice is called voxel cube).

The conversion process consists of 3 stages including normalization and filling
the inner area. Firstly, the polygonal model is normalized for rotation by aligning
its principal axes to the x−, y−, and z−axes. The ambiguity between positive
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and negative axes is resolved by choosing the direction of the axes so that the
area of the model on the positive side of the x−, y−, and z−axes is greater than
the area on the negative side [3]. Then, the model is normalized for the size by
isotropically rescaling it to the maximum size, which fits N ×N ×N voxel cube.
The next step is the voxelization, which is similar to the rasterization of the
vector pictures into the pixel lattice: every small cube of the lattice contains a
voxel only if it is crossed by the polygons of normalized model. Finally we fill in
all inner areas in the discrete voxel object using 6-neighbour topology on cubic
lattice. Thus in the result we get the solid voxel object inside the voxel cube.

Once the voxel representation is obtained, 3D object descriptor may be con-
structed as follows. Let’s consider binary three-dimensional 2-grams (small cubes
2 × 2 × 2). There are 22×2×2 = 256 possible two-coloured 3D 2-grams. Let’s
number possible 2-grams from 1 to 256 and designate i-th 2-gram as Qi. The
descriptor of 3D shape is the vector V in 256-dimensional space, whose i-th co-
ordinate is the number of Qi 2-grams in the voxel representation of 3D shape.
(descriptor V is called 2-GR below)

In order to count 2-grams as described above we need to browse the obtained
voxel object and read for each position (h, j, k) three dimensional 2-gram Q from
cube [h, h+1]× [j, j+1]× [k, k+1]. Usually the most part of 2-grams in the voxel
object is completely empty or completely filled. We found that distributions of
these two 2-grams are low informative and may be omitted. Such omission often
allows to decrease the size of the variables, where V coordinates are stored. So if
Q is neither empty nor filled, we get such i that Q = Qi and increase V [i] by 1.

Time complexity of the construction of the descriptor V from the voxel object
is linear in the size of voxel cube N×N×N . In our experiments we used N = 32.
Such a lattice contains (32−1)3 = 29791 different positions (h, j, k). It allows to
store each coordinate of vector V in 2-byte variable (29791 < 256×256 = 65536).
There are 256 coordinates. Thus the resulting size of the descriptor V is 512
bytes.

In order to measure the similarity between two 3D objects O1 and O2 we
measure the similarity between corresponding vectors-descriptors VO1 and VO2 .
There are many known measures of the similarity for vectors. In our experiments
we used following simple measure:

d =
256∑
i=1

|VO1 [i] − VO2 [i]|. (1)

2 Princeton Shape Benchmark 2004

Princeton Shape Benchmark (PSB) appeared in 2004 is one of the most ex-
haustive benchmarks for 3D shape automated recognition today. It contains a
database of 1,814 classified 3D models collected from 293 different Web domains.
All models are divided into training and test sets (907 models each). There are
4 main human classifications given to the objects in the database: “The base
classification provides the grouping with finest granularity in this experiment.
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It contains the 92 classes ... Most classes contain all the objects with a partic-
ular function (e.g., microscopes). Yet, there are also cases where objects with
the same function are partitioned into different classes based on their forms
(e.g., round tables versus rectangular tables). In the alternative classifications,
we recursively merge classes to form coarser granularity groups. Specifically, the
“Coarse” classification merges objects with similar overall function to form 44
classes, the “Coarser” classification merges groups further to form the 6 classes
(buildings, household, plants, animals, furniture, vehicles), plus a miscellaneous
class not included in averaged retrieval results. Finally, the “Coarsest” classifi-
cation merges those classes until just two classes remain: one with man-made
objects and the other with naturally occurring objects.” [12]

Every studied measure of similarity is used for constructing the distance
matrix, which represents the dissimilarity of all pairs of models in the training
or test sets of the database. Distance matrix is used as input data for six PSB
statistics tools: “Nearest Neighbor: the percentage of the closest matches that
belong to the same class as the query. This statistic provides an indication of
how well a nearest neighbor classifier would perform. Obviously, an ideal score
is 100%, and higher scores represent better results [1,12]. First-Tier and Second-
Tier: the percentage of models in the query’s class that appear within the top
K matches, where K depends on the size of the query’s class. Specifically, for a
class with |C| members, K = |C| − 1 for the first tier, and K = 2(|C| − 1) for
the second tier. The first tier statistic indicates the recall for the smallest K that
could possibly include 100% of the models in the query class, while the second
tier is a little less stringent (i.e., K is twice as big). These statistics are similar
to the “Bulls Eye Percentage Score” (K = 2|C|), which has been adopted by the
MPEG-7 visual SDs [16]. In all cases, an ideal matching result gives a score of
100%, and higher values indicate better matches [12]. E-Measure: a composite
measure of the precision and recall for a fixed number of retrieved results [13].
The intuition is that a user of a search engine is more interested in the first page
of query results than in later pages. So, this measure considers only the first 32
retrieved models for every query and calculates the precision and recall over those
results. The E-Measure is defined as [10,13]: E = 2/(1/P +1/R). The E-measure
is equivalent to subtracting van Rijsbergen’s definition of the E-measure from 1.
The maximum score is 1.0, and higher values indicate better results. Discounted
Cumulative Gain (DCG): a statistic that weights correct results near the front
of the list more than correct results later in the ranked list under the assumption
that a user is less likely to consider elements near the end of the list. Specifically,
the ranked list R is converted to a list G, where element Gi has value 1 if element
Ri is in the correct class and value 0 otherwise. Discounted cumulative gain is
then defined as follows [7]:

DCG1 = G1; DCGi = DCGi−1 +
Gi

lg2(i)
, if i > 1 (2)

This result is then divided by the maximum possible DCG (i.e., that would
be achieved if the first C elements were in the correct class, where C is the size
of the class) to give the final score:
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DCG =
DCGk

1 +
∑|C|

j=2
1

lg2(j)

(3)

where k is the number of models in the database. The entire query result list is
incorporated in an intuitive manner by the discounted cumulative gain [10], so
we typically use it to summarize results when comparing algorithms.” [12]

Given a classification and a distance matrix computed with any shape match-
ing algorithm, a suite of PSB benchmark tools produces statistics and visualiza-
tions that facilitate evaluation of the match results. [12]

The 12 shape matching algorithms included in PSB-2004 are all similar in
that they proceed in three steps: the first step normalizes the models for differ-
ences in scale and possibly translation and rotation; the second step generates
a descriptor for each model; and the third step computes the distance between
every pair of shape descriptors, using their L2 difference unless otherwise is
noted. The differences between the algorithms lie mainly in the details of their
shape descriptors: “D2 Shape Distribution: a histogram of distances between
pairs of points on the surface [11]. Extended Gaussian Image (EGI): a spher-
ical function giving the distribution of surface normals [4]. Complex Extended
Gaussian Image (CEGI): a complex-valued spherical function giving the distri-
bution of normals and associated normal distances of points on the surface [8].
Shape Histogram (SHELLS): a histogram of distances from the center of mass
to points on the surface [1]. Shape Histogram (SECTORS): a spherical function
giving the distribution of model area as a function of spherical angle. Shape His-
togram (SECSHEL): a collection of spherical functions that give the distribution
of model area as a function of radius and spherical angle [1]. Voxel: a binary ras-
terization of the model boundary into a voxel grid which is represented by the 32
spherical descriptors representing the intersection of the voxel grid with concen-
tric spherical shells [12]. Spherical Extent Function (EXT): a spherical function
giving the maximal distance from center of mass as a function of spherical an-
gle [13]. Radialized Spherical Extent Function (REXT): a collection of spherical
functions giving the maximal distance from center of mass as a function of spher-
ical angle and radius [15]. Gaussian Euclidean Distance Transform (GEDT): a
3D function whose value at each point is given by composition of a Gaussian
with the Euclidean Distance Transform of the surface. Spherical Harmonic De-
scriptor (SHD): a rotation invariant representation of the GEDT obtained by
computing the restriction of the function to concentric spheres and storing the
norm of each (harmonic) frequency [9]; Light Field Descriptor (LFD): a repre-
sentation of a model as a collection of images rendered from uniformly sampled
positions on a view sphere. The distance between two descriptors is defined as
the minimum L1 difference, taken over all rotations and all pairings of vertices
on two dodecahedra [2].”

Every model was normalized for size by isotropically rescaling it so that the
average distance from points on its surface to the center of mass is 0.5. Then,
for all descriptors except D2 and EGI, the model was normalized for translation
by moving its center of mass to the origin. Next, for all descriptors except D2,
SHELLS, SHD, and LFD, the model was normalized for rotation by aligning



364 E. Ivanko and D. Perevalov

its principal axes to the x−, y−, and z−axes. The ambiguity between positive
and negative axes was resolved by choosing the direction of the axes so that the
area of the model on the positive side of the x−, y−, and z−axes was greater
than the area on the negative side [7]. Every spherical descriptor (EGI, CEGI,
Sectors, etc.), was computed on a 64 × 64 spherical grid and then represented
by its harmonic coefficient up to order 16. Similarly, every 3D descriptor (e.g.,
Voxel and GEDT) was computed on a 64 × 64 × 64 axial grid, translated so
that the origin is at the point (32, 32, 32), scaled by a factor of 32, and then
represented by 32 spherical descriptors representing the intersection of the voxel
grid with concentric spherical shells. Values within each shell were scaled by
the square-root of the corresponding area and represented by their spherical
harmonic coefficients up to order 16. Histograms of distances (D2 and Shells)
were stored with 64 bins representing distances in the range [0, 2]. All descriptors,
except LFD, were scaled to have L2-norm equal to 1. The LFD comprises 100
images encoded with 35, 8-bit, coefficients to describe Zernike moments and 10,
8-bit, coefficients to represent Fourier descriptors.

For more details about PSB-2004 refer [12].

3 Results

Shape descriptors from [12] and proposed vector descriptor V (called below 2-
GR) were used for the construction of the distance matrix that reflects the
dissimilarity of all pairs of the models in the training set. Five PSB statistics tools
generate five numbers that show the accuracy of the automated classification in
relation to one of the four human made classifications.

Table 1. Comparing 2-GR with 12 shape descriptors by PSB statistics utilities, using
base classification

Descr.
name

Size of
descr.
(bytes)

Gener.
time
(sec)

Comp.
time
(10−4 sec)

Nearest
Neigh-
bor

First
Tier

Second
Tier

E-Msr. DCG

LFD 4700 3.25 13 0.657 0.380 0.487 0.280 0.643
REXT 17416 2.22 2.29 0.602 0.327 0.432 0.254 0.601
SHD 2184 1.69 0.27 0.556 0.309 0.411 0.241 0.584
GEDT 32776 1.69 4.5 0.603 0.313 0.407 0.237 0.584
2-GR 512 0.105 0.035 0.555 0.287 0.391 0.230 0.563
EXT 552 1.17 0.08 0.549 0.286 0.379 0.219 0.562
SECSH. 32776 1.38 4.51 0.546 0.267 0.350 0.209 0.545
VOXEL 32776 1.34 4.5 0.540 0.267 0.353 0.207 0.543
SECT. 552 0.90 0.14 0.504 0.249 0.334 0.198 0.529
CEGI 2056 0.37 0.27 0.420 0.211 0.287 0.170 0.479
EGI 1032 0.41 0.14 0.377 0.197 0.277 0.165 0.472
D2 136 1.12 0.02 0.311 0.158 0.235 0.139 0.434
SHELLS 136 0.66 0.02 0.227 0.111 0.173 0.102 0.386
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Table 2. Comparing 2-GR with 12 shape descriptors by PSB statistics utilities, using
“coarse” classification

Descriptor
name

Nearest
Neigh-
bor

First
Tier

Second
Tier

E-Msr. DCG

LFD 0.75 0.303 0.419 0.257 0.683
REXT 0.678 0.280 0.393 0.231 0.653
SHD 0.636 0.286 0.397 0.228 0.647
GEDT 0.68 0.265 0.373 0.215 0.641
EXT 0.625 0.24 0.351 0.203 0.624
2-GR 0.568 0.243 0.36 0.196 0.602
VOXEL 0.631 0.232 0.337 0.191 0.612
SECSHELL 0.623 0.228 0.33 0.187 0.61
CEGI 0.561 0.237 0.356 0.19 0.604
SECTORS 0.573 0.218 0.32 0.186 0.603
EGI 0.505 0.226 0.355 0.184 0.598
D2 0.388 0.177 0.281 0.139 0.548
SHELLS 0.303 0.141 0.238 0.108 0.515

Table 3. Comparing 2-GR with 12 shape descriptors by PSB statistics utilities, using
“coarser” classification

Descriptor
name

Nearest
Neigh-
bor

First
Tier

Second
Tier

E-Msr. DCG

2-GR 0.723 0.324 0.490 0.15 0.759
LFD 0.781 0.285 0.483 0.147 0.758
REXT 0.724 0.285 0.482 0.14 0.75
GEDT 0.734 0.276 0.475 0.133 0.743
EXT 0.692 0.277 0.474 0.131 0.74
SHD 0.69 0.275 0.468 0.133 0.741
CEGI 0.617 0.301 0.502 0.128 0.739
EGI 0.583 0.297 0.511 0.125 0.737
SECSHELL 0.698 0.269 0.465 0.123 0.735
VOXEL 0.682 0.273 0.461 0.126 0.734
SECTORS 0.668 0.255 0.455 0.121 0.729
D2 0.497 0.248 0.45 0.104 0.71
SHELLS 0.413 0.244 0.445 0.094 0.702

The four tables below represent the results of the comparison of 2-GR with
other 12 known shape descriptors. The results in Table 1 that concern the known
shape descriptors were taken from [12]. In Tables 2-4 such results were kindly
sent to us by Princeton Shape Retrieval and Analysis Group. 2-GR computations
were performed on a Windows PC with a Pentium4 CPU running at 1.7 GHz,
1GB of memory and GeForce2 MX200 32Mb video card.

We want to note that 2-GR is a small descriptor (only D2 and SHELLS
are the smaller). The generation time of 2-GR descriptor is more than three
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Table 4. Comparing 2-GR with 12 shape descriptors by PSB statistics utilities, using
“coarsest” classification

Descriptor
name

Nearest
Neigh-
bor

First
Tier

Second
Tier

E-Msr. DCG

EGI 0.892 0.657 0.939 0.101 0.929
CEGI 0.89 0.643 0.921 0.099 0.926
2-GR 0.884 0.595 0.969 0.097 0.912
LFD 0.901 0.581 0.902 0.088 0.905
REXT 0.885 0.577 0.903 0.088 0.904
GEDT 0.894 0.573 0.896 0.085 0.899
VOXEL 0.851 0.571 0.891 0.084 0.899
EXT 0.836 0.569 0.916 0.082 0.897
SECSHELL 0.864 0.572 0.886 0.083 0.899
SHD 0.827 0.579 0.893 0.083 0.897
SECTORS 0.842 0.573 0.899 0.082 0.896
D2 0.696 0.576 0.898 0.074 0.888
SHELLS 0.673 0.577 0.897 0.074 0.889

times less than the smallest generation time (CEGI). Time of comparison is
a little bigger than the smallest time (D2, SHELLS). These benefits combine
with the high classification accuracy showed in four tests with “base”, “coarse”,
“coarser” and “coarsest” classifications. In all four classifications 2-GR descriptor
was among the six descriptors that produced the best results. Surprisingly, we
found that despite its simplicity and the small size 2-GR descriptor took the
first place in “coarser” classification test, where all 3D models were divided into
6 large classes: buildings, household, plants, animals, furniture, vehicles and a
miscellaneous class not included in averaged retrieval results. All the above allows
considering 2-GR descriptor as a perspective feature for 3D shape recognition.
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Abstract. In this paper, we present a new application of the mathematical mor-
phology: a single-image approach for the automatic detection and elimination 
of highlights in colour images. We use a 2D-histogram that allows us to relate 
the achromatic and saturation signals of a colour image and to identify interior 
brightness. To eliminate the highlights detected, we use an image-inpainting 
method, by means of connected vectorial filters of the mathematical morphol-
ogy. This new filter operates exclusively on bright zones, reducing the high cost 
of processing the connected filters and avoiding over-simplification. The new 
method proposed here achieves good results, which are similar to those ob-
tained from other multimedia techniques, yet does not require either costly mul-
tiple-view systems or stereo images. 

1   Introduction 

In visual systems, images are acquired in work environments in which illumination 
plays an important role. Sometimes, a bad adjustment of the illumination can 
introduce highlights (brightness or specular reflectance) into the objects captured by 
the vision system. Highlights in images have long been disruptive to computer-vision 
algorithms. The presence of such brightness alters the pattern recognition process 
because the previous stage of detection of edges in the objects fails: in a 
morphological watershed, the highlights and specular reflectances are considered as 
different objects in the environment in which they are located and therefore it is not 
possible to perfectly detect the objects in the scene. 

To effectively eliminate the highlights in captured scenes, we must first identify 
them. The dichromatic reflection model, proposed by Shafer [1], is one tool that has 
been used in many methods for detecting specularities. It supposes that the interaction 
between the light and any dielectric material produces different spectral distributions 
within the object (specular and diffuse reflectance). The specular reflectance has the 
same spectral makeup as the incident light, whereas, the diffused component is a 
product of illumination and surface pigments. Based on this model, Lin et al [2] have 
developed a system for eliminating specularities in image sequences by means of 
stereo correspondence. Bajcsy et al [3] use a chromatic space based on polar co-
ordinates that allows the detection of specular and diffuse reflections by means of the 
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previous knowledge of the captured scene. Klinker et al [4] employ a pixel-clustering 
algorithm that has been shown to work well in detecting brightness in images of 
plastic objects.  

Wolff [5], for his part, removes highlights by taking advantage of differences in 
polarization between diffuse reflections and highlights. These above-mentioned 
approaches have produced good results but entail requirements that limit their 
applicability, such as the use of stereo or multiple-view systems, a long processing 
time, the previous knowledge of the scene, or the assumption of a homogeneous 
illumination. Furthermore, some techniques merely detect brightness without 
eliminating it. 

In this paper, we explain a new application of the mathematical morphology, an 
automatic and single-image system for the detection and elimination of brightness in 
colour images. The organisation of this paper is as follows: In Section 2, we present 
the extension of the geodesic operations to colour images. Section 3 shows the 
algorithm used for detecting highlights. The elimination process and our experimental 
results are presented in Section 4. Finally, our conclusions are outlined in the final 
section.  

2   Vector Connected Filters in HSV Colour Space 

Morphological filters by reconstruction have the property of suppressing details while 
preserving the contours of the remaining objects [6,7]. The use of such filters in 
colour images requires an ordered relationship among the pixels of the image. For the 
vectorial morphological processing, the HSV colour space with a lexicographical 
ordering olex=v→s→h [8], will be used.  

Once the orders have been defined, the morphological operators for the 
reconstruction of colour images can be applied. Geodesic dilation is an elementary 
geodesic operation. Let g denote a marker colour image and f a mask colour image (if 
olex(g)≤ olex(f), then g v∧ f  = g). The vectorial geodesic dilation of size 1 of the marker 

image g with respect to the mask f can therefore be defined as:  

              (1) (1)( ) ( )v v vδ δ= ∧g g ff                        (1) 

where (1) ( )vδ g is the vectorial dilation of size 1 of the marker image g. This 

propagation is limited by the colour mask f. The vectorial geodesic dilation of size n 
of a marker colour image g with respect to a mask colour image f is obtained by 
performing n successive geodesic dilations of g with respect to f:   

( ) (1) ( 1)( ) ( )n n -
v v v

δ δ δ=g gf f f
                   (2) 

with (0) ( )vδ =g ff . 

Geodesic transformations of images always converge after a finite number of 
iterations. The propagation of the marker image is limited by the mask image. 
Morphological reconstruction of a mask image is based on this principle. The 
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vectorial reconstruction by dilation of a mask colour image f from a marker colour 
image g, (both with Df=Dg and ( ) ( )lex lexo o≤g f ) can be defined as: 

( )( ) ( )nRv vδ=g gf f                       (3) 

where n is such that ( ) ( 1)( ) ( )n n
v vδ δ +=g gf f . 

3   Highlight Detection by HSV Colour Space 

It is known that the specularities in the chromatic image have a high value (achro-
matic signal) and a low saturation in the HSV colour model. Androutsos et al in [9] 
make a division of the luminance-saturation space (HLS) and they conclude that if the 
saturation is greater than a 20% and the luminance is greater than a 75%, the pixels 
are chromatic, while if the saturation is lower than a 20% and the luminance is greater 
than 75%, the pixels are very luminous or highlights. Our criterion is similar and it is 
based, initially, on the division of the value-saturation space in different homogenous 
regions that segment the chromatic image.  

 

Fig. 1. Identification of highlights in colour image by co-ordinates of VS diagram. (a) Original 
colour image. (b) Grouping of co-ordinates in VS diagram, s1=(1/4)smax, s2=(1/2)smax, 
s3=(3/4)smax, smax=255, v1=(1/4)vmax, v2=(1/2)vmax, v3=(3/4)vmax, vmax=255, (c) Highlights in a 
zone of original colour image. (d) 3D map of value signal in highlighted area. (e) 3D map of 
saturation signal in highlighted area. 
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The hue signal is not used because it is very unstable. The co-ordinates [(v3-
vmax),(0-s1)] of the VS diagram (Figure 1.b) define the exact limits of the region in 
which the highlights of a contrasted colour image (Fig.1.a) are present. Different co-
ordinates within this region will identify from the highest or strong specular reflection 
(central sparkle of brightness) to even soft inter-reflections, which generally represent 
the transition from specular reflectance to diffuse reflectance. Figure 1.c shows a data 
transition (in HSV co-ordinates) for a bright area (yellow balloon) of the original 
image. The great v and smaller s of highlighted area can be seen in Figures 1.d and 
1.e.  

All the highlights will be located in [(v3-vmax),(0-s1)] region of the VS diagram, but 
not all of the co-ordinates in that area will correspond to specularities. The achromatic 
axes zone could be considered to be a highlight. This is partly true, as it only occurs in 
grey-scale images. In the HSV colour space, if value v decreases, the brightness has a 
similar surface colour (diffuse reflection) as the objects on which such highlight 
appears and the saturation s is increased.  

Another important aspect to be taken into consideration is that not all of the images 
will have the same dynamic range and, therefore, the signals of value v and saturation 
s of highlights will not always correspond to the region [(v3-vmax),(0-s1)] of the VS 
diagram, previously presented. In addition, what happens in the case of colored light 
sources (incandescent lamps, A, C)? A new contrast enhancement is the solution. 

3.1   Contrast Enhancement by Colour Morphology 

The previous problems of highlights localization could be solved with a contrast 
enhancement by histogram equalisation. Nevertheless, the histogram equalisation of 
the original image is only feasible in the achromatic signal. Furthermore, this 
operation might well cause an excessive increase in value v, an over-saturation and a 
false detection of brightness.  

The best solution is to apply a new vector-morphological contrast enhancement for 
luminous pixels, which operates in chromatic images by means of a previously 
established lexicographical order olex=v→s→h. Specifically, the vector top-hat 
operator is added to the original image to enhance bright objects [10]. We denote the 
colour-morphological contrast enhancement by: 

' ( )vWTH= +f f f         (4) 

where f’is the new contrasted colour image and WTHv(f) is the vectorial top-hat by 
opening, which is made with a structuring element of size t. The top-hat is defined as 
follows: 

v( ) - ( )vWTH γ=f f f          (5) 

The contrast enhancement achieved with this new operator is visually very good. 
Furthermore, the operation expels the highlights to the limits of the RGB cube. In the 
HSV colour space, the specular reflectance is located in the co-ordinate vmax with 
minimum saturation. As such, all of the specularities are identified along this value, 
from s=0 to a threshold of s, which we shall denominate by ssp, such that ssp<s1. In our 
investigation, after a process of morphological contrast enhancement, we have 
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observed that the v and s signals of the original image have been altered, approaching 
the axis vmax, with the movement flow shown in Figure 2. Such transitions depend on 
relationship between the sizes of the highlighted area (b) and the structuring element 
(t) employed in the vectorial operation of top-hat. When b≤t, all of the highlights 
(strong or weak) are located in the vmax line for any kind of image. In all other cases 
(b>t), the weaker highlights will be located outside of this co-ordinate, as can be seen 
in the graph. In Figure 3 we show the difference between the contrast enhancement by 
histogram equalization and the new morphological contrast operator that does not 
excessively increase the intensity of the image and it is effective in the regions of mild 
specularities. 

The detection of weak specularities stops in all of the images at a threshold of s, 
smaller than s1, (concretely, s=(1/4)s1). We can thus fix the specularities at [vmax, (0-
ssp)], where vmax=255 and ssp=(1/4)s1 or 16. This is similar to the success of detection 
of specularities presented in [11] with other polar colour space.  

 

Fig. 2. Movement flow for value v and saturation s in the [(v3-vmax),(0-s1)] area of the VS 
diagram after the new morphological contrast enhancement. All of the highlights are located in 
the vmax line [vmax, 0] if highlighted area (b) is smaller than the structuring element (t). 

             
     (a)                (b)        (c) 

Fig. 3. Contrast enhancement of color image. (a) Chromatic real scene. (b) Contrast 
enhancement by histogram equalization. (c) Contrast enhancement by top-hat contrast operator. 

4   Highlight Elimination by Inpainting Process 

Digital inpainting, the technique of reconstructing small damaged portions of an 
image, has received considerable attention in recent years. This technique has a wide 
range of applications, including the removal of text, defects or scratches from images. 
Inpainting methods are based on different strategies. Bertalmio et al [12] pioneered a 
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digital image-inpainting algorithm based on partial differential equations (PDEs). Tan 
et al [13] presented a new single-image highlight removal that incorporates 
illumination-based constraints into image inpainting. In this paper, we present an 
inpainting process that is based on colour mathematical morphology, as a traditional 
inpainting which propagates boundary values. 

To eliminate the highlight that was previously detected with the VS diagram, we 
propose the use of geodesic filters of mathematical morphology. Specifically, a 
vectorial opening by reconstruction applied exclusively to the specular areas of the 
image and their surroundings. In this case, a new mask-image h(x,y) represents the 
pixels of f with which we will be operating. The mask-image h is a dilation of size (e) 
of the mask of specularities (pixels with (v,s) ∈ [vmax, (0-ssp)]). Assuming that Dh=Df, 
each pixel (x,y) has a value of h(x,y)={0,1}, where h(x,y)=1 in the new areas of 
interest in the image. The size e of the structural element of the dilation will 
determine the success of the reconstruction and the final cost of the operations, since 
this size defines the area to be processed by the filters. In all the cases, the relation b ≤ 
t ≤ e must to be satisfied.  

In the geodesic filter, f is first eroded. The eroded sets are then used for a 
reconstruction of the original image. The new filter is then defined, taking into 
account the fact that, in this case, the operation will not affect all the pixels (x,y), but 
only those in which h(x,y)=1: 

{ }( ') ( ') ( )( ( )) | ( , ) ( , ) 1n en x y h x yv h v v
γ δ ε= ∀ =f ff, f

             (6) 

where n’ is such that ( ) ( )( ') ( ' 1)( ( )) ( ( ))v v
n ne e

v vδ ε δ ε+=f ff f . The vectorial erosion of 

the opening by reconstruction is also done with a structural element of size e. This 
erosion replaces highlight pixels (high olex) by the surroundings chromatic pixels (low 
olex). The vectorial geodesic dilation (iterated until stability is achieved) then 
reconstructs the colour image without recovering the specularities, as it were 
demonstrated in [14]. This is the same approach successfully used for the attenuation 
of the colour objects in medical images [8], the gaussian noise reduction [15] or the 
filling the holes [16] 

The study is carried out on a set of real chromatic images that are quite 
representative of countless common materials (i.e., plastic, ceramics, fruit, wood, 
etc.). In Figure 4 we present the results obtained from the application of our geodesic 
filter in a representative subset of different real scenes. With the new filter, we avoid 
some of the main inconveniences that arise in geodesic reconstruction: i.e., the high 
cost of processing due to multiple iterations of the reconstruction and the over-
simplification of the image [17]. 

The size e of the structuring element for morphological operations in highlight 
elimination depends on: the sizes b and t of the first step of the algorithm, posterior 
applications and real-time requirements. A low e (1,2) is recommended for visual 
inspection and a high e (6,7…) is better for multimedia and image restoration. The 
new pixel codification of the original highlight is obtained by vectorial inpainting 
process with the use of our geodesic filter.  
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   (a)    (b) 

           
(c)              (d) 

         
 (e)     (f) 

          
  (g)     (h) 

Fig. 4. Vectorial inpainting by geodesic filter for highlight removal in original colour images. 
Over-simplification is not present in the results. (a-b) “Balloons”, (c-d) “Tomatoes”, (e-f) 
“Vases”, (g-h) “Umbrella”. 

The reduction of the value signal v and the recuperation of saturation s in a detailed 
area of specular reflectante of “Balloons” image (Figure 1.c) it is quite significant; the 
indefinite hue for strong highlight also disappears, as can be seen in Figure 5. 

Our new method achieves a reduction in total time cost, for all of the images, of 
between 50% and 70%, with respect to a global filter. The cost of our inpainting is 
linear in relation to the size of the structuring element (e) and iterations (n’) of the 
morphological operations.  

In comparison to other non-morphological inpainting methods, and specifically the 
one presented by Bertalmio et al [12], our method achieves similar visual results in a  
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   (a)          (b)            (c) 

Fig. 5. 2D-maps of inpainting for removing the specular reflectance in highlight area of 
“Balloons”, (e=7, t=7, b=5). Substitution of: value signal (a), saturation signal (b) and hue (c). 

shorter CPU time (1 or 2 seconds versus a few minutes for a relatively small 
inpainting area). An illumination-constrained method presented by Tan et al [13] can 
lead a more accurate results in inpainting. In addition, the surface textures obscured 
by highlights are better recovered. Nevertheless, this method requires significant 
computation. 

It should also be noted that our algorithm eliminates the highlight area, and it 
detects the highlight as well. As in the case of many inpainting methods, the only 
limitation to this technique is the reconstruction of highly textured areas. 

5   Conclusions 

In this paper, we have presented a new method for the elimination of highlights in 
colour images for different applications, such as visual inspection, multimedia or 
restoration. 

The use of a new connected vectorial filter allows us to eliminate the specular 
reflectance previously detected by means an inpainting process. The inpainting is 
made by an extension of the geodesic transformations of the mathematical 
morphology to colour images in HSV colour space. The possibility of eliminating 
highlights in colour images without causing over-simplification has been 
demonstrated. In addition, the elimination of brightness has been achieved within a 
very short processing time with respect to a global geodesic reconstruction or other 
inpainting techniques. 

Based on the success shown by these results, we are now working on an 
improvement of our method for eliminating specularities in real-time environments: 
we work in multi-processor configurations for colour geodesic operations in order to 
reduce the processing time required for these operations as much as possible. 
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Abstract. This paper evaluates whether shape features can be used for
clustering objects in SidecTM Electron Tomography (SET) reconstruc-
tions. SET reconstructions contain a large number of objects, and only
a few of them are of interest. It is desired to limit the analysis to con-
tain as few uninteresting objects as possible. Unsupervised hierarchical
clustering is used to group objects into classes. Experiments are done on
one synthetic data set and two data sets from a SET reconstruction of
a human growth hormone (1hwg) in solution. The experiments indicate
that clustering of objects in SET reconstructions based on shape features
is useful for finding structural classes.

1 Originality and Contribution

Volume images of protein solutions are produced by electron tomography recon-
structions. These each contain a large number of objects where only a few are
of interest. High resolution volume images of this kind are relatively unexplored
and no automatic or semi-automatic classification techniques of the objects have
previously been examined. The objective is to use clustering on the reconstruc-
tions to group all objects representing the protein of interest into one cluster.
All clusters containing uninteresting objects can then be avoided and thereby
speed up the analysis considerably. This paper is an initial evaluation of whether
shape features can be used for clustering objects in this type of volume images.

2 Introduction

SidecTM Technologies AB produce and analyse three dimensional (3D) images
of proteins. They use electron microscopy and a refinement method called con-
strained maximum entropy tomography (COMET) [1] to create digital repre-
sentations of density volumes, and their technique is called SidecTM Electron
Tomography (SET). The reconstructed density volumes are examined visually
to gain structural information about the proteins of interest in the sample [2,3].
The samples examined at Sidec are proteins in solution [2] or in tissue [3]. In
this paper only reconstructions of proteins in solution are considered. The re-
construction results are 3D visualisations of individual molecules of interest at
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Fig. 1. Left: SET reconstruction. Right: Molecule extracted from SET reconstruction.

a resolution of approximately 2 nm (see Fig. 1). Each reconstruction produces
a large number of objects, of which only a few are of interest. The majority of
objects are artefacts from the reconstruction method or uninteresting objects
present in the solution. Since the procedure for examening each object includes
several steps and is time consuming, much of the analysis work is wasted on
uninteresting data. Hence, it is desirable to have as few uninteresting objects as
possible in the analysis without loosing any of the interesting objects.

Three experiments were carried out to test whether hierarchical clustering [4]
with shape features is a feasible method to distinguish the proteins of interest,
or at least reduce the number of objects needing visual examination. The first
experiment was made on volume images created from the Protein Data Bank
(PDB) [5] to examine whether the features work on synthetic volume objects with
sizes similar to objects of interest in SET reconstructions. The second experiment
was made on large objects from a SET reconstruction to examine whether the
features work on real data. The last experiment was made on objects from a
SET reconstruction, where each volume corresponded to the volume of a rather
small protein of interest.

3 Method

To classify the objects in SET volume reconstructions unsupervised hierarchical
clustering was used. Unsupervised techniques are the only option in this case
since we do not know which, or how many, classes exist in the volume. This
means that all minimisation of criteria functions (direct loss minimisation), such
as k-means [4], are ruled out. They need a hint for each class as a prerequisite,
and we cannot create a hint for each class if we do not know how many classes
are present in the volume. Using qualified guesses and estimating the validity of
the result introduces informed interaction and is hence not a good option. Neural
networks [4] are also ruled out since collecting and labelling a large set of sample
patterns for training is too costly and would most likely perform poorly due
to all the noise and randomness in a reconstruction. All statistical classifiers,
such as maximum-likelihood [6], are also ruled out due to the shortage of a
priori information. There is no information about the probability distributions
involved, and there is no information about which, or how many, classes we can



Clustering of Objects in 3D Electron Tomography Reconstructions 379

expect to find in the density volume. We cannot use any form of probability
density estimation or parametric learning [6] since not even the distribution
types of the classes involved are known. This only leaves the option to use a
cluster analysis technique [4].

Hierarchical clustering groups the objects based on a similarity measure de-
rived from a number of feature measures of the objects. Initially each object
is registered to a separate class. In each step the two most similar classes are
merged into one class, and the clustering is complete when all objects belong to
the same class. Similarity is measured in distance defined by a specific distance
metric. The most similar classes are then the classes closest to each other in
feature space. In this paper the mean metric [4] was used when calculating the
class to class distance,

dmean (Di,Dj) = ||μi − μj || , (1)

where Di and Dj are cluster i and j, and μi and μj are their mean vectors
respectively. A mean vector is obtained by adding up all the feature vectors
of a cluster and dividing by the number of objects in the cluster. Hierarchical
clustering can use a dendrogram to illustrate the result of the classification (see
Fig. 2). With a dendrogram we can follow the classification with respect to
the similarity measure. At each point on the similarity scale, the corresponding
classification can be read from the diagram. A long distance without any change
in the dendrogram implies a natural grouping, and this can be used to guess
the number of classes. The dendrogram is also useful to reveal subclusters since
these are the first to become merged.

Selecting the measurements on which to base each component of the feature
vector has a profound influence on the eventual performance of the classification
system [6]. The features used in this paper were easily extracted shape mea-
surements (see Table 1) and the focus of this project was to examine whether
clustering is feasible on objects from SET reconstructions. All features were
normalised by subtracting the mean and dividing by the standard deviation.
Features like volume can have a wide range of possible values and will affect
the classification to a higher degree than other features that are limited to a
very small range of values in comparison. By normalising the features we give
all features an equal weight in the classification process.

Fig. 2. A dendrogram illustrating hierarchical clustering
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Table 1. Object features and dependencies

Feature Dependence

Volume Number of nonzero voxels.
Compactness Number of surface voxels divided by volume.
Length Extension along the first principal axis.
Width Extension along the second principal axis.
Thickness Extension along the third principal axis.
Flatness Thickness divided by length.

4 Data and Experimental Design

For the first experiment, noise free synthetic protein molecules were created
from the proteins’ atom positions available in the PDB [5]. From a PDB entry, a
volume image, where the grey-levels depict density, can be generated by placing a
gauss kernel at each atom position and multiplying by the mass of that atom [7].
The total density in a voxel is then calculated by adding contributions from gauss
kernels in the vicinity of the voxel. In these images we used a σ of 1 leading to
a resolution of 2 nm. The aim of the first experiment was to examine whether
it is possible to classify volume objects with shapes and sizes similar to objects
segmented from SET reconstructions. 33 volume objects of similar volumes, but
with different structures, were created from the PDB and used in the experiment.

In the two other experiments objects from one SET reconstruction containing
a protein solution of human growth hormone (1hwg) was used. The reconstruc-
tion was segmented into separate objects by grey-level thresholding. The first
experiment on the SET data used the 33 largest segmented objects, none of
them being the protein of interest. The aim of this experiment was to examine
the shape grouping capability of the classifier when working on volume objects
from real SET reconstructions.

The second experiment on the SET data used 25 objects of sizes similar to
the protein 1hwg. The protein has a molecular weight of approximately 75 kDa,
and the molecular weights of the classified objects correspond to the interval
[50 kDa, 100 kDa]. In the SET reconstructions we have roughly 9 voxels per
kDa, hence, the sizes of the volume objects range approximately from 500 to
1000 voxels.

In all experiments, the clustering procedure was run until six classes re-
mained. This number was chosen arbitrarily.

5 Results and Interpretation

The clusters resulting from experiment number one are shown in Fig. 3. We
have a few natural shape characteristics represented, such as spheres, rods and
hexagons. Upon visual inspection we see that the classifier has formed classes
based on the shape characteristics of the proteins. We see that the clustering
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Fig. 3. Clustering result of volume objects reconstructed from the PDB

Fig. 4. Clustering result of large SET volumes

Fig. 5. Clustering result of SET volumes of similar size to 1hwg

works and, hence, that the shape features are sufficient to distinguish the struc-
tures in this experiment.

The clusters resulting from experiment number two (see Fig. 4) show that
even though it is harder to find natural groupings of those objects than the
objects in the first experiment, we still see that there is a similarity between the
object structures in each class. Hence, the extracted features seems sufficient to
distinguish the structures in this experiment.

In the clusters resulting from experiment number three (see Fig. 5), it is not
as easy to distinguish the similarities among the objects in each class as in the
previous experiments. According to a scientist working with SET reconstructions
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from the third experiment, class 1 and class 3 to 5 consist of uninteresting objects.
After examining the most probable objects in 3D he concluded that one of the
objects in class 0 could very well be a protein of the sought kind, and one object
in class 2 most certainly was. From that simple visual evaluation we get an
indication that the clustering has worked in the sense that it produced four
clusters of uninteresting objects and two clusters containing objects of interest,
and the extracted features seemed able to distinguish the structures in this case.

6 Conclusions

The experiments indicate that clustering of volume objects from SET recon-
structions is definitely worth further investigation. This initial analysis gives
an indication that simple clustering approaches can decrease the workload for
those working with analysis of electron tomography reconstructions of protein
solutions. This is an important first step towards improved SET reconstruction
analysis techniques. The features used in these experiments only represent shape
and do not use the density information in the objects. To improve the results
more descriptive features, which take the density information into account, are
needed. Future work consists of extracting object features from the medial grey-
level based representation of proteins presented in [8] and decompositions [9]
of objects, and use these along with other, more specialised features. Further
investigations also include using the dendrogram to see if it is possible to guess
how many classes the reconstructions contain. We also need a robust method
for evaluating the experiments. A quantitative and/or statistical analysis is de-
sirable. However, in biological applications it is often hard to define a method
for quantitative analysis, and the validation is referred to subjective visual as-
sessments. In this application domain, where we lack objective information, the
validation problem becomes even more prominent. To achieve robust methods
for evaluation we need SET reconstructions where more a priori information
about the contents is available, preferably many reconstructions containing only
a single type of protein as well as many reconstructions containing multiple
types of proteins. More reconstructions would also enable us to measure the in-
traobserver variability, and more observers would be desirable for measuring the
interobserver variability.
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Abstract. Keeping track of a target by successive detections may not
be feasible, whereas it can be accomplished by using tracking techniques.
Tracking can be addressed by means of particle filtering. We have de-
veloped a new algorithm which aims to deal with some particle-filter
related problems while coping with expected difficulties. In this paper,
we present a novel approach to handling complete occlusions. We focus
also on the target-model update conditions, ensuring proper tracking.
The proposal has been successfully tested in sequences involving multi-
ple targets, whose dynamics are highly non-linear, moving over clutter.

1 Introduction

The increasing number of potential image-based applications is causing an im-
portant development in monitoring techniques. Many applications perform this
task by successive detections, and associating segmented targets between frames.
A detection involves scanning the whole image. However, a target cannot be seg-
mented while it is being occluded by other targets, by static scene objects or if it
is over clutter. Depending on the detection approach, other problems may also
arise: background subtraction usually detects holes when an object is removed
from its place. In addition, when the target is partially over clutter, the target
is often split detected. It also necessitates keeping a background model, which
may not be possible if the background is in motion or if the illumination changes
suddenly. Other approaches, such as optical flow, may present problems in mo-
tion backgrounds. Frame differencing is very sensitive to noise and introduces
holes inside homogeneous regions of the target.

On the other hand, tracking can cope with these issues. Usually, the target’s
state is predicted according to a learned target’s dynamic model and, sub-
sequently, it is corrected in accordance with new measures. However, predicting al-
lows the consideration of other approaches when no evidence can be obtained from
the image. In addition, different hypotheses can be considered simultaneously.

This paper focuses on tracking by means of particle filtering. This approach
has been explored by several previous algorithms, including Condensation [5].
However, most of these algorithms cannot cope with multiple-target tracking
and present several misbehaviours inherited from particle filtering, such as sam-
pling impoverishment [6]. We have developed an algorithm which aims to deal
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with sampling impoverishment while tracking multiple targets, whose dynamics
are highly non-linear, moving through an environment with complex clutter [9].
On the other hand, the main causes of catastrophic failures are erroneous updat-
ing of the appearance model and inappropriate handling of occlusions. In this
paper, we present a novel approach to handling complete occlusions while we
consider the target-model update conditions to ensure proper tracking despite
noisy measures, estimate errors, partial or complete occlusions and changes in
illumination conditions or the camera angle.

The remainder of this paper is organized as follows. Section 2 covers the
probabilistic framework, reviews Condensation and exposes its misbehaviours.
Section 3 describes our algorithm while section 4 develops appearance model up-
dating and occlusion handling. Finally, section 5 shows the experimental results
and section 6 concludes this paper.

2 Probabilistic Tracking Framework

Since tracking requires reasoning over time under uncertainty, a probabilistic
framework is commonly used [10]. The computation of the belief state1 St given
all evidence to date e1:t is called filtering. Under certain assumptions, the pos-
terior pdf P (St | e1:t) can be calculated through recursive estimation:

P (St | e1:t) ∝ P (et | St)︸ ︷︷ ︸
∫

P (St | st−1)︸ ︷︷ ︸ p (st−1 | e1:t−1)︸ ︷︷ ︸ dst−1.

likelihood︸ ︷︷ ︸ trans. model previous post.︸ ︷︷ ︸
updating prediction

(1)

The pdf is projected forward according to the transition model, making a
prediction. Then, it is updated in agreement with the new evidence, et. When
no assumptions are made with respect to the distributions involved, this prob-
lem is overcome by simulating N i.i.d. random samples from the posterior pdf,{
si
t; i = 1 : N

}
. This approach leads to the so-called particle filters [4,1]. Such

methods were first introduced in computer vision by Isard and Blake in the form
of Condensation [5].

The method works as follows: the posterior pdf at time t − 1 is represented
by a weighted set of samples,

{
ŝi
t−1, π

i
t−1; i = 1 : N

}
. The temporal prior

{
ŝi
t

}
is obtained by applying the transition model P (St | st−1) to each sample. The
likelihood P (et | St) is represented by weights πi

t . The set is re-sampled using
normalized weights πi

t as probabilities. This sample set represents the posterior
at time t, p (st | e1:t). Expectations can be approximated as:

1 Notation: bold case denotes vectors and matrices whereas non-bold case denotes
scalars. Matrices are in uppercase. In a probabilistic context, uppercase denotes
probability density functions (pdf) and random variables; lowercase denotes prob-
abilities and variable instances. Xτ1:τ2 denotes a variable set from time t = τ1 to
t = τ2.
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EP (St|e1:t) (St) �
N∑

i=1

πi
tŝ

i
t. (2)

Although particle filters have been widely used in recent years, they have impor-
tant drawbacks [6]. Sampling impoverishment is one of the main ones: samples
are spread around several modes pointing out hypotheses in the state space, but
most of them may be spurious. Unfortunately, there is a non-negligible probabil-
ity of losing modes, a low probability of recovering them and the remaining modes
could be all spurious. Therefore, computed expectations in different runs may
have high variance although computed expectations within the same algorithm
run have low variance making the tracker look stable. In addition, Condensation
was designed to keep multiple-hypotheses, but only for a single target.

This area being as challenging as it is, a great number of improvements have
been introduced in recent years [12,11], but there is still much ground to cover.
Different approaches have been taken in order to overcome these issues. Num-
miaro et al. [8] use a particle filter based on colour histogram cues. Histograms
may, in some cases, be robust to partial occlusions and rotations but no shape
analysis is taken into account. Moreover, no multiple-target tracking is consid-
ered and complete occlusions are not handled. Comaniciu et al.’s [2] approach
relies on gradient-based optimization and colour-based histograms. In this case,
no dynamic model is used; therefore, no occlusion can be predicted. Deutscher
et al. [3] present an interesting approach called annealing particle filter which
aims to reduce the required number of samples, even though pruning hypotheses
with lower likelihood could be inappropriate in a cluttered environment. They
combine edge and intensity measures but they focused on motion analysis, and
thus, no occlusion handling is explored. Some effort have been done in contour
tracking [7] even though it may be inappropriate, if used as the only cue, in
crowded scenarios because of multiple occlusions.

3 An Approach to Robust Tracking

We have proposed an algorithm based on particle filtering [9]. The motion of the
central point of a bounding box is modelled using first-order dynamics in image
coordinates. The l-labelled target’s state is defined as sl

t =
(
xl

t,u
l
t,w

l
t,A

l
t

)T ,
where components are position, speed, bounding-box size and pixel appearance
matrix. A label l associates one specific appearance model to the correspond-
ing samples, allowing multiple-target tracking. Evidence et is given by input
images It.

After the initialization, no sample will be generated using detection algo-
rithms since it would mask tracking misbehaviours. Thus, we will test just track-
ing performances by means of propagating hypotheses and weighting them ac-
cording to evidence. The scene is not explored looking for changes or movement
and only the pixels within the bounding boxes will be evaluated. Of course,
combining this algorithm with detection can do nothing but improve the general
performance, providing the system with error-recovery capabilities.
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3.1 Transition Model

The position, speed and size of each sample are predicted according to:

x̂i,l
t = xi,l

t−1 + ui,l
t−1Δt + ξi

x,

ûi,l
t = ul

t−1 + ξi
u,

ŵi,l
t = wi,l

t−1 + ξi
w. (3)

The random vectors ξi
x, ξi

u, ξi
w provide the system with a diversity of hy-

potheses. Sample likelihoods depend on sample position and size, but they do
not depend on their speeds. Thus, if speeds were propagated considering the pre-
vious speed, they would be in quasi open loop —although there is still a weak
relation (since speeds are used to predict positions, and position errors can be
measured), a considerable delay is introduced. Thus, their values could become
completely different from the true one in a few frames. Targets could be tracked
since we are in a multiple-hypothesis scenario, but an important proportion of
samples would be wasted. In order to avoid this phenomenon, we feed-back the
estimated target speed ul

t−1 at time t− 1 into the prediction of x̂i,l
t .

3.2 Likelihood Function

The likelihood function gives the pdf of image features given the state. The
selected features are pixel-oriented. Thus, the appearance will be given by a
matrix whose elements are the pixel intensity values. Given the predicted position
x̂i,l

t and bounding-box size ŵi,l
t , the corresponding image subregion is denoted by

Ip
t . The model appearance matrix must be scaled according to the sample size.

Let As be the scaled matrix for the model. Considering a smooth process, we
assume that the appearance is constant between frames. Assuming also White
Additive Gaussian Noise (WAGN), the likelihood of every pixel of Ip

t according
to the target’s model can be expressed as:

N (
Ip
t (a, b) ;As

t (a, b) ,σ2
n

)
. (4)

We define the following similarity measure as the mean of pixel likelihoods:
1
M

∑
a,b∈As

t

N (
Ip
t (a, b) ;As

t (a, b) ,σ2
n

)
, (5)

and this value can be used as the sample likelihood:

P (It | St) = P
(
It | xi,l

t ,wi,l
t ,Al

t

)
= P (Ip

t | As
t )

= 1
M

∑
a,b∈As

t

N (
Ip
t (a, b) ;As

t (a, b) ,σ2
n

)
,

(6)

where M is the number of pixels of the appearance model, (a, b) defines a pixel
in the appearance matrix As

t and σ2
n is the estimated camera noise variance.

Thus, samples can be weighted according to:

πi,l
t = p

(
It | ŝi,l

t

)
. (7)
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3.3 Weight Normalization

As has been stated, samples are spread around several modes, which point out
different hypotheses of target states. Two kind of modes can be distinguished:
samples can be clustered because they belong to different targets or because
they are in the same state-space region. Thus, samples with different labels
form different modes, and thereby several targets can be tracked simultaneously;
secondly, samples with the same label could be spread around different modes,
allowing us to keep several hypotheses for a single target which is over clutter.

Multiple-target tracking causes several problems including the fact that the
target with higher likelihood may monopolise the sample set. Those targets
whose samples exhibit lower likelihood have higher probability of being lost,
since the probability of propagating one mode is proportional to the cumulative
weights of its samples. In order to avoid single target modes absorbing other
target samples, genetic drift [6] must be prevented. This fact happens due to the
lack of genetic memory: a memory term, which takes into account the number
of targets being tracked, is therefore included. Hence, weights are normalized
according to:

πi,l
t =

πi,l
t

N∑
i=1,j=l

πi,j
t

1
L

, (8)

where L is the number of targets being tracked. Each weight is normalised ac-
cording to the total weight of the target’s samples. Thus, all targets have the
same probability of being propagated, since the addition of the weights of all
samples for each target sums 1

L . This approach allows multiple-target tracking
using a single particle filter. All targets can be tracked despite the expected
differences between their likelihoods and the genetic drift phenomenon.

3.4 State Estimation

The l-target position and speed are estimated according to:

xl
t =

(
xl

t−1 + ul
t−1Δt

)
(1 − αx) +

(
L
∑N

i=1
πi,l

t x̂i,l
t

)
αx,

ul
t = ul

t−1 (1 − αu) +
xl

t − xl
t−1

Δt
αu, (9)

where αx,αu ∈ [0, 1] denote adaptation rates. Target speeds are not estimated
according to sample speeds and their weights, since significant errors would be
introduced: samples are chosen only because of sample weights, which do not
directly depend on the current speed. This fact could imply a significant amount
of jitter and many samples would be wasted. Therefore we compute targets’
speeds from successive position estimates. Further, we enhance both position
and speed estimates by regularising them according to their histories.
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4 Main Causes of Catastrophic Failures

The target’s size and appearance model must also be updated in order to cope
with illumination changes, different points of view or changes in the shape of
articulated targets. However, updating the appearance model is a sensitive task.
Inaccurate adaptations surely lead to catastrophic failures. It must be ensured
that no updating is done with noisy measures. Thus, during the initialization
stage, the mean over time of the maximum sample likelihoods is computed.
Models are then only updated when two conditions hold: (i) the target is not
occluded and (ii) the likelihood of the estimated target’s state is close to or
higher than this mean. Every time an updating is carried out, the mean over
time of the maximum sample likelihood is also updated:

Meank = Meank−1 +
1
k

(MaxSampleLhoodk −Meank−1) . (10)

The size of each target is estimated according to:

wl
t = wl

t−1 (1 − αw) +

(
L

N∑
i=1

πi,l
t wi,l

t

)
αw, (11)

where αw ∈ [0, 1] denotes the adaptation rate. Subsequently, the resized appear-
ance models are updated following an adaptive approach:

Al
t = Al,s

t−1 (1 − αA) + Il,p
t αA, (12)

where αA ∈ [0, 1] is the learning rate.
Occlusions are also a main cause of catastrophic failures. Partial occlusions

may cause inaccurate position and size updating. Thus, the target’s estimated
position would be shifted and its size adapted up to the area that can be
seen. Moreover, the appearance model may be updated with completely erro-
neous values which would cause target loss in few frames. The situation during
complete occlusion could be even worse: since the likelihood of the occluded
target would be meaningless, the re-sampling phase would propagate random
samples, quickly losing the target. Hence, a proper handling of occlusions is
crucial.

Firstly, occlusions are predicted according to the dynamic models. When
the predicted occlusion exceeds a certain percentage, the situation is pointed
out. Subsequently, by exploring the maximum sample likelihoods and compar-
ing them with recent historical values, we can conclude which target is be-
ing occluded. Once an occlusion is detected, the target state turns into Oc-
cluded and its historical likelihood until then is stored. This status involves
several changes in the normal development of the process. First of all, the
adaptation rates αx,αu are set to zero: the target estimated speed is kept con-
stant and the position is updated only according to its speed. In addition, no
size or appearance adaptation is performed. Finally, those samples belonging
to the occluded target are not re-sampled according to their weights —since
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they are meaningless— but are just propagated. As a result, samples spread
around the target because of the uncertainty predictions terms. The other tar-
get’s samples are normally re-sampled, but they cannot be assigned to the
occluded target since otherwise this one would monopolise the whole sample
set.

When the occlusion is no longer predicted or a sample likelihood exceeds the
value previous to the occlusion, the target’s status turns into NotOccluded,
which immediately implies sample re-sampling, thereby pruning those samples
with lower weights. In addition, position and speed are again updated.

5 Experimental Results

The performance of the algorithm has been tested using two sequences involving
humans. Two targets are tracked simultaneously, despite their being articulated
and elastic objects whose dynamics are highly non-linear, and that move through
an environment with complex clutter.

(a) Frame 4: tracking (b) Frame 24: updating

(c) Frame 80: occluded (d) Frame 140: recovery

Fig. 1. Experiment involving an opposite translation and merging. Image notation:
each target’s estimated position is denoted by a bounding box and tagged accordingly;
the target’s estimated trajectory is drawn and milestones are placed every 20 frames;
each predicted sample is drawn using a dark circle, whereas a re-sampled particle is
drawn in a light one.



Improving Tracking by Handling Occlusions 391

1

Target1: UPDATING

2

Target2: UPDATING

Frame: 12

(a) Frame 12: updating

12

Frame: 38

(b) Frame 38: tracking

1

Target1: OCCLUDED

2

Frame: 50

(b) Frame 50: occluded

1 2

Target2: EXITING

Frame: 102

(c) Frame 102: recovery & exiting

Fig. 2. Experiment involving an overtaking

The first sequence involves an opposite translation and merging. Both targets
start moving from opposite positions and meet near the second actor’s initial
position. The first target’s speed decreases unevenly from five pixels per frame
and the second one from two pixels per frame to nearly zero during the first
part of the sequence. The first target is almost completely still from frames 70
to 130, occluding the second target. The latter crosses at a very low speed while
performing a rotation. Thus, significant speed, size and appearance changes can
be observed. The background intensity levels are so similar to the target ones
that constitute a source of clutter.

The tracker performance is shown in Fig. 1. Both targets’ appearance models
are updated when reliable measures are obtained, see Fig. 1.(b). Occlusion is
correctly detected avoiding re-sampling of samples of the occluded target and
erroneous dynamic and appearance models updating, see Fig. 1.(c). The tracker
successfully recovers from occlusion, see Fig. 1.(d).

The second sequence involves an overtaking. The second target moves faster
than the first one, overtaking her. An almost complete occlusion can be observed
from frame 40 to 60. The street-lamps constitute a source of clutter and cause
partial occlusions to both targets. Fig. 2 shows the target performance.
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6 Conclusions

We have extended the novel approach to particle filtering presented in [9]. One
of Condensation’s great misbehaviours —sampling impoverishment, critical in
a multiple-tracking scenario— is overcome by redefining weight normalisation.
Dynamics updating is set by feed-backing the estimated speed into the predic-
tion stage. The target’s speed is estimated from successive position estimates.
Both position and speed estimates are now regularised. Thus, sample wastage is
significantly reduced and trajectory jitter is considerably attenuated. Both con-
tributions reduce the required number of samples to perform tracking of multiple
targets. Size changes are explored and appearance is adaptively updated, ensur-
ing proper tracking. Occlusions are properly handled by means of prediction and
likelihood measures.

The tracker deals with multiple-target tracking whose dynamics are highly
non-linear, despite using a constant speed approach. They move through an
environment with complex clutter, which mimics the target appearances, and
strong noise. Moreover, their trajectories intersect causing a complete occlusion
of one of the targets. It copes with heavy appearance and shape changes.

The tracker has been successfully tested in experiments despite the fact that
no detection is ever used after initialization. Future research will be focused on
colour-based likelihoods in order to enhance the disambiguation of targets from
clutter.

Acknowledgments. This work has been supported by the Spanish CICYT TIC
2003-08865 and the Generalitat de Catalunya Research Department (DURSI).
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Abstract. As an orthogonal moment, Zernike moment (ZM) is an at-
tractive image feature in a number of application scenarios due to its
distinguishing properties. However, we find that for digital images, the
commonly used Cartesian method for ZM computation has compromised
the advantages of ZMs because of their non-ideal accuracy stemming
from two inherent sources of errors, i.e., the geometric error and the inte-
gral error. There exists considerable errors in image reconstruction using
ZMs calculated with the Cartesian method. In this paper, we propose
a polar coordinate based algorithm for the computation of ZMs, which
avoids the two kinds of errors and greatly improves the accuracy of ZM
computation. We present solutions to the key issues in ZM computation
under polar coordinate system, including the derivation of computation
formulas, the polar pixel arrangement scheme, and the interpolation-
based image conversion etc. As a result, ZM-based image reconstruction
can be performed much more accurately.

1 Introduction

Zernike moment, first introduced for image analysis by Teague [1], is an orthogo-
nal moment based on Zernike polynomials. The Zernike basis is a set of complete
and orthogonal functions on the unit disk D, defined as [2, 3]:

Vnm(x, y) = Rnm(ρ)ejmθ, (1)

where ρ =
√

x2 + y2, θ = tan−1(y/x). Here n is a non-negative integer and m
is an integer such that n − |m| is even and non-negative. Rnm(ρ) is the radial
polynomial:

Rnm(ρ) =
(n−|m|)/2∑

s=0

(−1)s(n − s)!ρn−2s

s!(n+|m|
2 − s)!(n−|m|

2 − s)!
. (2)

Based on Zernike polynomials, the Zernike moment with order n and repetition
m of a continuous function f(x, y) is defined as
� This research is supported by NSERC and TRLabs.
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Anm =
n + 1

π

∫ ∫
D

f(x, y)V ∗
nm(x, y)dxdy, (3)

where * denotes complex conjugate.
Image reconstruction from a finite number of moments, L, can be performed

with the following formula:

f̂(x, y) =
L∑

i=1

[ÂnimiVnimi(x, y) + I(mi 	= 0)Âni,−miVni,−mi(x, y)], (4)

where I(·) is the indicator function.
Due to its distinguishing characteristics such as the magnitude invariance to

image rotation and high efficiency of image representation, Zernike moment is
an attractive image feature playing an important role in various areas. It has
been demonstrated that Zernike moment and pseudo-Zernike moment have the
best overall performance among the commonly used moments [4]. In recent years,
significant efforts and progress have been made in the research of Zernike moment
to explore its properties, computation and applications [2,5,6,7,8,3,9,10,11,12].

However, in practice we find that based on the conventional method for
ZM computation, the superior properties of Zernike moment are not ideal. In
particular, considerable errors exist in image analysis and reconstruction via
Zernike moments, and ZM magnitude invariance to image rotation is not satis-
factory. This issue stems from the inaccuracies in the conventional computation
of ZMs [13,6,7]. In this paper, we take a different approach to the computation
of Zernike moments. We show that if Zernike moments are calculated in polar
coordinate system, the geometric error can be eliminated and numerical error
can be reduced greatly. With the proposed approach, the accuracy of Zernike
moments is significantly improved. As a result, image analysis and reconstruc-
tion can be performed accurately and effectively via Zernike moments with very
high orders.

2 Conventional Approach to the Computation of Zernike
Moment

For a digital image, f(i, j), i = 1, ...,N, j = 1, ...,N , its ZMs cannot be computed
by (3) directly, but rather, the following formula is commonly used to compute
ZMs approximately:

Ânm =
n + 1

π

∑∑
f(i, j)hnm(xi, yj), (5)

where xi = (2i −N − 1)/N , yj = (2j −N − 1)/N , and the double summation is
performed over all (i, j) pairs that satisfy (xi, yj) ∈ D. The factor

hnm(xi, yj) =
∫ ∫

pixel (i,j)
V ∗

nm(x, y)dxdy (6)
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Fig. 1. Illustration of the conventional
Cartesian pixel grid for ZM computation

Fig. 2. Illustration of the proposed polar
pixel grid for ZM computation

is usually approximated by

hnm(i, j) ≈ 4N−2V ∗
nm(xi, yj). (7)

However, as pointed out in [6], the accuracy of Zernike moments computed
via (5) suffers from two sources of errors, namely the geometric approximation
error and the integral approximation error. The former is due to the fact that the
total area covered by all the square pixels involved in the computation of Zernike
moments via (5) is not exactly the unit disk, as illustrated by the ragged border
in Fig. 1. The latter results from the numerical integration via an approximation
formula like (7). Although some techniques can be deployed [6] to alleviate the
inherent accuracy problems, the two kinds of errors can never be eradicated
as long as the computation of Zernike moments is performed under Cartesian
coordinate system.

To see the negative effect of these two kinds of errors on image reconstruction,
let us look at an example. We use (5) and (7) to calculate the ZMs of a 128 × 128
image Lena up to the order of 200. Afterwards these ZMs are used to reconstruct
the image via (4), up to the orders 20, 50, 80, 120, 150, 180 and 200 respectively.
The original image and reconstructed images are shown in Fig. 3. It is evident
that the image reconstruction error due to the inaccuracy of ZMs becomes larger
as the moment order increases, especially along the border of the unit disk.

3 Computing Zernike Moments in Polar Coordinate
System

3.1 Principles

To remove the geometric error and integral error in ZM computation, we need to
take a different approach from the existing Cartesian method. It is intuitive that
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Fig. 3. Image reconstruction via conventional Cartesian ZMs. From upper-left to lower-
right: original Lena, reconstructed Lena with ZMs up to orders 20, 50, 80, 100, 120,
150, 180, and 200 respectively.

geometric error might be avoided by an appropriate design of non-square pixels,
whose areas add up to that of the unit disk (π). On the other hand, we use ana-
lytical method instead of numerical approximation for the pixelwise integration
of basis polynomials, which is accurate and efficient in moment computation [14].
Equation (1) reveals that Zernike polynomials are immediate functions of polar
coordinates ρ and θ, rather than Cartesian coordinates x and y. This prompts
us that adoption of polar coordinates could facilitate the computation of Zernike
moments. For this purpose, we rewrite (3) in its equivalent form based on polar
coordinates

Anm =
n + 1

π

∫ 2π

0

∫ 1

0
f(ρ, θ)Rnm(ρ)e−jmθρdρdθ. (8)

If a digital image is approximated as a piece-wise constant function composed
of constant-intensity sectors, denoted by Ωu,v, which are concentric about the
origin and satisfy
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∪
All (u,v)

Ωu,v = D and Ωu,v ∩ Ωu′,v′ = ∅, ∀(u, v) 	= (u′, v′), (9)

we can get an approximate version of (8) as

Ânm =
n + 1

π

∑
u

∑
v

f̂(ρu, θv)hnm(ρu, θv), (10)

where f̂(ρu, θv) is the estimated image intensity of sector (u, v), centered at
(ρu, θv), and the double summation is performed over all the sectors inside the
unit disk. The factor hnm(ρu, θv) is an integral over Ωu,v:

hnm(ρu, θv) =
∫ ∫

Ωu,v

Rnm(ρ)e−jmθρdρdθ =
∫ ρ(e)

u,v

ρ
(s)
u,v

Rnm(ρ)ρdρ
∫ θ(e)

u,v

θ
(s)
u,v

e−jmθdθ,

(11)

where ρ(s)
u,v and ρ(e)

u,v denote the starting and ending radials of Ωu,v respectively,
while θ(s)u,v and θ

(e)
u,v denote the starting and ending angles of Ωu,v respectively.

(11) is the product of two definitive integrals, whose exact value can be obtained
analytically as follows.

∫ ρ(e)
u,v

ρ
(s)
u,v

Rnm(ρ)ρdρ =
(n−|m|)/2∑

s=0

(−1)s(n − s)![(ρ(e)
u,v)n−2s+2 − (ρ(s)

u,v)n−2s+2]

(n − 2s+ 2)s!(n+|m|
2 − s)!(n−|m|

2 − s)!
. (12)

∫ θ(e)
u,v

θ
(s)
u,v

e−jmθdθ =

{
j
m

[
e−jmθ(e)

u,v − e−jmθ(s)
u,v

]
, m 	= 0

θ
(e)
u,v − θ

(s)
u,v, m = 0

. (13)

Combining (10), (11), (12) and (13), we obtain precisely the Zernike moment
of the function f̂(·, ·), without introducing any geometric error or integral error
in the process.

3.2 A Polar Pixel Structure for ZM Computation

In theory there are numerous schemes satisfying the conditions (9), but a good
design should meet some requirements. Firstly, the sizes of all the sectors (pixels)
should be as close as possible, because the given Cartesian image function has
a uniform pixel size everywhere. Secondly, the number of polar pixels inside the
unit circle should not be smaller than that of the Cartesian pixels inside the unit
circle, so that the necessary image resolution could be maintained without loss of
information contents. Thirdly, the polar pixel structure should be as simple and
regular as possible, in order to facilitate the storage and computation processes.

Following these guidelines, we propose a pixel arrangement scheme illustrated
by Fig. (2). In this structure, the unit disk is uniformly divided along the radial
direction into U sections, with the separating circles located at { k

U , k = 1, ...,U};
the kth ring-shape section is equally divided into V (2k − 1) sectors by rays
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starting from the origin, with angles {(i − 1) 2π
V (2k−1) , i = 1, ...,V (2k − 1)}. V is

the number of sectors contained in the innermost section.
A bigger U or V results in more sectors and thus more accurate image rep-

resentation, but at the cost of more computation workload and more computer
memory for storage. In practice, we recommend setting V = 4 andN/2 ≤ U ≤ N
for an N ×N image.

With this polar pixel arrangement scheme, the formula for ZM computation
(10) can be further rewritten as

Ânm =
n + 1

π

U∑
u=1

V (2u−1)∑
v=1

f̂(ρu, θv)
∫ ∫

Ωu,v

Rnm(ρ)e−jmθρdρdθ. (14)

3.3 Generation of the Polar Image

To use the polar method for ZM computation, we need to convert a given Carte-
sian image into a polar image with a pixel grid like Fig. 2. This issue can be
addressed by image interpolation. There are a number of existing interpolation
techniques [15] we can use to determine polar pixels, such as nearest neighbor
method, bilinear method and bicubic method. Although nearest neighbor and
bilinear methods are easy to implement, they produce considerable interpolation
errors. Here we adopt bicubic interpolation [15] to generate the polar image. The
value of a polar pixel is determined by the 16 neighboring Cartesian pixels. The
1-D kernel function is a cubic spline:

h(x) =

⎧⎪⎨
⎪⎩

1 − 5
2 |x|2 + 3

2 |x|3, |x| ≤ 1
2 − 4|x| + 5

2 |x|2 − 1
2 |x|3, 1 < |x| ≤ 2

0, otherwise.
(15)

Suppose (ρu, θv) is the central point of Sector (u, v). Then the value of Sector
(u, v) can be estimated via convolution of the given Cartesian image function
f(xi, yj) with the above kernel function h(x)

f̂(ρu, θv) =
m+2∑

i=m−1

n+2∑
j=n−1

f(xi, yj)h
(
ρu cos θv − xi

Δ

)
h

(
ρu sin θv − yj

Δ

)
, (16)

where m = �ρu cos θv

Δ � and n = �ρu sin θv

Δ �, and Δ = xi − xi−1 = yj − yj−1 is the
pixel width of the image f(xi, yj).

As a result, a very smooth and accurate polar image can be generated from
the given Cartesian image.

4 Simulation Results

To verify the effectiveness of the proposed polar approach for image reconstruc-
tion, we first repeat the experiments described in Section 2, but with the in-
troduced polar method for the computation of ZMs. We still calculate the ZMs
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Fig. 4. Image reconstruction via proposed polar ZMs. From upper-left to lower-right:
original Lena, reconstructed Lena with ZMs up to orders 20, 50, 80, 100, 120, 150, 180,
and 200 respectively.

of the 128 × 128 image Lena up to the order of 200, and subsequently these
ZMs are used to reconstruct the image via (4), up to the orders 20, 50, 80, 120,
150, 180 and 200 respectively. The original image and reconstructed images are
shown in Fig. 4. Comparing Fig. 3 and Fig. 4, one can see that the rather ob-
trusive reconstruction error resulting from the conventional Cartesian ZM based
approach does not exist in the proposed polar ZM based reconstruction.

To compare more objectively the performances of the two approaches in
terms of image reconstruction, we experimented on more different numbers of
ZMs for image recovery. To be specific, ZMs up to order {n = 2i}100

i=0 were used
to reconstruct the image respectively. The quality of each reconstructed image
is measured by peek signal-to-noise ratio (PSNR), which is define as

PSNR(f, f̂) = 10 log10
f 2
max

σ2
e

, σ2
e =

1
N2

N∑
i=1

N∑
j=1

[f̂(xi, yj) − f(xi, yj)]2, (17)
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Fig. 5. The quality of reconstructed image in terms of PSNR as a function of the order
of Zernike moments, for a comparison of Cartesian and polar moments.

where f is the original image and f̂ is the reconstructed image, both with di-
mensions N×N , fmax is the maximum pixel value of image f , and sigma2

e is the
mean square error. The test results are shown in Fig. 5, in which two important
conclusions can be drawn. First, for small orders of ZMs, approximately n < 20,
the quality of the reconstructed images via polar ZMs is similar to that of the re-
constructed images via Cartesian ZMs. But as n becomes larger, the former gets
better and better than the latter. Second, the quality of polar ZM-reconstructed
images increases monotonically with n. However, in the Cartesian case, as n
increases to a certain point, approximately 40, the image quality reaches its
maximum value, and then as L increases further, the image quality gets worse
and worse. This is because the reconstruction error incurred by geometric error
and numerical error increase with n, and at some point it outweighs the quality
gain from the population increase of ZMs [6].

5 Discussion

Some issues related to the proposed algorithm are worth discussing here.

– Accuracy of ZM Computation. Although the proposed polar algorithm
has avoided the geometric error and integral error inherent in the conven-
tional Cartesian method, the accuracy of Zernike moments is still not perfect.
The image resampling process incurs a slight inaccuracy of ZMs. However,
this inaccuracy is much more smaller than that existing in the Cartesian
algorithm, which can be seen clearly from experimental results.
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– Algorithm Complexity. Comparing to its Cartesian counterpart, the pro-
posed polar algorithm for ZM computation is more complex, because it in-
volves necessarily the process of image interpolation. However, this increase
of complexity is insignificant when the number of moments to be calculated
is large, because image interpolation needs to be performed only once be-
fore ZM computation. For example, on a Pentium 4 1.8GHz computer, the
interpolation takes 0.09 seconds for a 128 × 128 input image and an out-
put polar image with U = 64,V = 4 (equivalently, 16384 pixels), while the
computation of ZMs up to order 50 takes 7.13 seconds with the proposed
polar algorithm. Therefore we can see that the bottleneck of computation
does not lie in the process of image interpolation.

– Algorithm Implementation. Although the implementation of the pro-
posed algorithm is not the focus of this paper, we did employ some techniques
in our experiments for its fast implementation. The measures fall into two
categories. First, we find and compute the common factors in the computa-
tion and store their values in memory, and later use them directly. for exam-
ple, the item e−j2θ is repeatedly used in the calculation of A2,2,A4,2,A6,2, ...,
and thus its value can be stored to save repeated calculation. Second, the
factorials in (12) are time-consuming, and direct computation should be
avoided. They can be implemented efficiently via recursive formulas. The
details of some fast algorithms can be found in literature [8, 3, 16].

– Significance of the Algorithm. The ZM accuracy improvement benefit-
ted from the proposed algorithm brings a number of advantages in applica-
tions. As mentioned above, image reconstruction based on Cartesian ZMs
yields errors along the border of the unit circle, especially when high order
moments are used. A zero-zone around the circle border was used [13] to
circumvent the problem. Nevertheless there are some applications, like im-
age watermarking [10, 11], where a zero-zone is not allowed. The proposed
algorithm provides a solution to the problem. On the other hand, the errors
of traditional Cartesian ZMs compromise the useful property of rotational
invariance, but now the proposed polar algorithm makes the property close
to ideal [11, 12], which is significant in such applications as invariant water-
marking and pattern recognition.

6 Conclusion

We have proposed a novel approach to accurate ZM computation in polar coor-
dinate system, in an effort to improve the performance of image reconstruction
via Zernike moments. In particular, we gave a polar pixel arrangement scheme,
under which the formula for ZM computation was derived. Image conversion
from Cartesian grid to the proposed polar grid is addressed through bicubic in-
terpolation. It was shown that with this polar algorithm, the two kinds of errors
from which the Cartesian method suffers do not exist anymore. The effectiveness
of the proposed polar method was verified by the simulation results.
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Abstract. We present a new approach to detecting defects in random
textures which requires only very few defect free samples for unsuper-
vised training. Each product image is divided into overlapping patches of
various sizes. Then, density mixture models are applied to reduce group-
ings of patches to a number of textural exemplars, referred to here as
texems, characterising the means and covariances of whole sets of image
patches. The texems can be viewed as implicit representations of textural
primitives. A multiscale approach is used to save computational costs.
Finally, we perform novelty detection by applying the lower bound of
normal samples likelihoods on the multiscale defect map of an image to
localise defects.

1 Introduction

Visual inspection has been one of the major applications of computer vision
since the early 1980s. Numerous works have reported on detecting imperfections
on a variety of surfaces [1,2,3], such as textile, ceramics, and wood. Some of the
materials display complex patterns but appear visually regular on a larger scale,
e.g. textile. Some others, such as printed ceramic tiles, may display very complex
patterns that are random in appearance. Detecting subtle local defects on such
surfaces turns out to be rather difficult [3].

A variety of statistical techniques have been investigated for defect detection,
such as graylevel co-occurrence matrices. For those materials that exhibit a high
degree of regularity and periodicity, e.g. textiles, template-based methods and
Fourier-domain analysis have also proved useful for defect detection. Amongst
other filtering-based techniques, Gabor filters have been applied, as shown in [2],
due to their ability to analyse texture by achieving optimal joint localisation in
the spatial and frequency domains. Randen and Husøy [4] present a thorough
comparative review of texture analysis using filtering techniques.

However, the supremacy of filter bank based methods have been challenged
by several authors. For instance, in [5], Varma and Zisserman argued that a
large variety of signals (e.g. textures) can be analysed by just looking at small
neighbourhoods. They used 7 × 7 patches to generate a texton based represen-
tation and achieved better performance than the filtering based methods they
compared against when classifying material images from the Columbia-Utrecht

S. Singh et al. (Eds.): ICAPR 2005, LNCS 3687, pp. 404–413, 2005.
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Fig. 1. Example marble tiles from the same family whose patterns are different but
visually consistent

database. The results demonstrated that textures with global structures can be
discriminated by examining the distribution of local measurements. This is a key
factor in our approach in this paper. In [6], the authors also advocated the use
of local pixel neighbourhood processing in the shape of local binary patterns as
texture descriptors. Other works based on local pixel neighbourhoods are those
that apply Markov Random Field (MRF) models, e.g. [1,7], where the inspec-
tion process was treated as a hypothesis testing problem on the statistics derived
Recently in [8], Jojic et al. defined the epitome as a miniature, condensed ver-
sion of an image containing the constitutive elements of its shape and textural
properties needed to reconstruct the image. The epitome also relies on raw pixel
values to characterise textural and colour properties rather than popular filter-
ing responses. An image is defined by its epitome and a smooth, hidden mapping
from the epitome to image pixels.

Inspired by the success of non-filtering local neighbourhood approaches, in
this paper we propose a new approach to detecting and localising defects on
random (or regular) textured surfaces. In a random texture application such as
ceramic tile production, the images may appear different in textural pattern from
one to another. However, the visual impression of the same product line remains
consistent, e.g. see Figure 1. There exist textural primitives that impose consis-
tency within the product line. Instead of recovering all the variations amongst
images from a relatively large number of samples in a supervised manner for a
traditional classification approach [9], we learn, in unsupervised fashion, textural
primitive information from a very small number of training samples. We name
these representations texture exemplars or texems.

Recently, the authors in [10] proposed novelty detection for classification of
tiles using eigenfilters, but were not able to localise defects, essential when it is
necessary to understand the nature and formation of the defects. Novelty detec-
tion is important from a practical viewpoint, not only because it is difficult to
collect a wide range of defective samples for training for a more traditional classi-
fication based approach, such as neural networks, but also because some defects
are usually unpredictable and occur only during production. To ensure computa-
tional efficiency we also extend the overall method into a multiscale framework.

In section 2, the proposed method is presented, including learning the texems,
the multiscale approach, and the novelty detection stage. Experimental results
are given in section 3. Section 4 concludes the paper.
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2 Proposed Method

We consider that each product image is produced by putting together a certain
number of subimage patches of various sizes, possibly overlapped. As the images
of the same product contain the same textural elements, one product image can
be generated from the patches extracted from other images. Thus, for a few given
samples we can easily obtain a large number of patches of various sizes (which
can in turn generate a large set of new images with the same visual impression).
However, it is computationally prohibitive to perform defect detection based
on such a large number of patches. Also, the patches themselves contain lots
of redundant information. We can reduce the number of patches by learning a
relatively small number of primitive representatives, i.e. texems.

The proposed method is related to the texton model in the sense that both
try to characterise textural images by using micro-structures. Textons were first
introduced by Julesz [11] as the atoms of pre-attentive human visual percep-
tion. An image is considered as a superposition of a number of image bases
selected from an over-complete dictionary. The image bases are generated by a
smaller number of texton elements, selected from a dictionary of textons [12].
Textons have attracted much attention in vision applications, including image
classification and motion modelling. Recently, in [12], Zhu et al. presented gener-
ative models for learning the fundamental image structures from textural images.
However, the proposed method is significantly different from the texton model
in that it relies directly on the subimages instead of using base functions. The
texems are implicit representations of textural primitives, which makes them
more flexible as they come at different sizes, while textons are explicit repre-
sentations. For example, if the texem size reduces to a single pixel, it becomes
histogram analysis. If the texems are the same size as the input images, then
the problem turns into image template analysis. Each texem indeed becomes a
template. In general our texems contain multiple textural primitives which as a
whole describe a family of textures. This implicit representation at various sizes
avoids the difficulties of explicitly finding the best primitive representation, e.g.
the optimum window size as in the case of textons (for example see [5]).

In brief, we break down a defect free image into overlapping paches of various
sizes, and group similar sized patches into a multidimensional space, dependent
on the patch size, and describe the clusters found using a Gaussian mixture
model. The representative texture exemplars are then learned through an EM
algorithm applied on the mixture density parameters. Then, as we are interested
in localising the defective regions, we extract a small patch at each pixel position
of the testing image and classify it using the set of texems obtained at the training
stage.

2.1 Learning Textural Exemplars (Texems)

The texture exemplars, referred to as texems, are image representations at vari-
ous sizes that encapsulate the texture or visual primitives of a given image. For
instance, in the case of an example random texture, the textural primitives are
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consistent from one image to another, hence texems can characterise a family of
images of the random texture. Each texem, denoted as m, is defined by a mean,
μ, and a corresponding covariance matrix, ω, i.e. m = {μ, ω}.

The original image I is broken down into a set of P patches Z = {Zi}P
i=1, each

containing pixels from a subset of image coordinates. The shape of the patches
can be arbitrary, but in this study we used square patches of size d = N × N .
The patches may overlap and can be of various sizes, e.g. as small as 5 × 5
to as large as required (here 20 × 20). We assume that there exist K texems,
M = {mk}K

k=1, K � P , for image I such that each patch in Z can be generated
from a texem with certain added variations. In other words, the original image
I can be reconstructed by the texems with a certain reconstruction error.

To learn these texems the P patches are projected into a set of higher di-
mensional spaces. The number of these spaces is determined by the number of
different patch sizes and their dimensions are defined by the corresponding value
of d. Each pixel position contributes one coordinate of a space. Each point in a
space corresponds to a patch in Z. Then each texem and its covariance matrix
represent a class of patches in the corresponding space. We assume that each
class is a multivariate Gaussian distribution with mean μk and covariance ma-
trix ωk, which corresponds to mk in the spatial domain. Thus, the probability
density function for a particular patch Zi given that it belongs to the kth texem
mk, is:

p(Zi|mk, θ) =
1√

(2π)d|ωk|
exp{−1

2
(Zi − μk)T ω−1

k (Zi − μk)}, (1)

where θ = {αk, μk, ωk}K
k=1 is the parameter set containing αk, which is the

prior probability of kth texem constrained by
∑K

k=1 αk = 1, the mean μk, the
covariance ωk. Since all the texems mk are unknown, the parameter set θ can
be determined first by marginalizing the joint distribution by summing across
the texems, p(Zi|θ), and then optimising the data log-likelihood expression of
the entire set Z, given by

log p(Z|K, θ) = ΣP
i=1 log p(Zi|θ) = ΣP

i=1 log(ΣK
k=1p(Zi|mk, θ)αk). (2)

Hence, the objective is to estimate the parameter θ for a given number of
texems. The Expectation Maximization (EM) technique can be used to find the
maximum likelihood estimate of our mixture density parameters from the given
data set Z. That is to find θ̂ where

θ̂ = arg max log(L(θ|Z)) = arg max log p(Z|K, θ). (3)

Then the two steps of the EM stage are as follows. The E-step involves a
soft-assignment of each patch Zi to texems, M, with an initial guess of the true
parameters, θ. We denote the intermediate parameters as θ(t). The probability
that patch Zi belongs to the kth texem may then be computed using Bayes rule:

p(mk|Zi, θ
(t)) =

p(Zi|mk, θ(t))αk

ΣK
k=1p(Zi|mk, θ(t))αk

. (4)
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The M-step then updates the parameters by maximizing the log-likelihood, re-
sulting in new estimates:

α̂k =
1
P
ΣP

i=1p(mk|Zi, θ
(t)), (5)

μ̂k =
ΣP

i=1Zip(mk|Zi, θ
(t))

ΣP
i=1p(mk|Zi, θ(t))

,

ω̂k =
ΣP

i=1(Zi − μ̂k)(Zi − μ̂k)T p(mk|Zi, θ
(t))

ΣP
i=1p(mk|Zi, θ(t))

.

The E-step and M-step are iterated until the estimations are stabilises. Then, the
texems can be easily obtained by projecting the parameters back to the spatial
domain. Various sizes of texems can be used and they can overlap to ensure they
capture sufficient textural characteristics.

2.2 A Simple Multiscale Approach

In order to capture sufficient textural properties, texems can be from as small
as 3 × 3 to larger sizes such as 20 × 20. However, the dimension of the space
we transform patches Z into will increase dramatically as the dimension of the
patch size d increases. This means that a very large number of samples and high
computational costs are needed in order to accurately estimate the pdf in very
high dimensional spaces, forcing the procurement of a large number of training
samples. Therefore, instead of generating variable-size texems, we learn fixed
size texems in a multiscale. This will result in (multiscale) texems with a very
small size, e.g. 5×5. A simple multiscale approach by using a Gaussian pyramid
is sufficient.

Let us denote I(n) as the nth level image of the pyramid, Z(n) as all the image
patches extracted from I(n), l as the total number of levels, and S↓ as the down-
sampling operator. We then have I(n+1) = S↓Gσ(I(n)), ∀n, n = 1, 2, ..., l − 1,
where Gσ denotes the Gaussian convolution. The finest scale layer is the original
image, I(1) = I. We then extract multiscale texems from the image pyramid us-
ing the method presented in the previous section. Similarly, let m(n) denote the
nth level of multiscale texems and θ(n) the parameters associated at the same
level, which will then be used for novelty detection at the corresponding level of
the pyramid. During the EM process, the stabilised estimation of a coarser level
is used as the initial estimation for the finer level, i.e. θ̂(n,t=0) = θ(n+1), which
helps speed up the convergence and achieve a more accurate estimation.

2.3 Novelty Detection

Once the texems are obtained from a single training image, we then can work
out the minimum bound of normal samples in each resolution level in order
to perform novelty detection. A small set of defect free samples (e.g. 4 or 5
only) are arranged within a multiscale framework, and patches with the same
texem size are extracted. The probability of a patch Z(n)

i belonging to texems in
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the corresponding nth scale is p(Z(n)
i |θ(n)) = ΣK

k=1p(Z(n)
i |m(n)

k , θ(n))α(n)
k . The

minimum probability of a patch Z(n)
i at level n across the training images is

treated as the lower bound of the data likelihood, denoted as Λ(n):

Λ(n) = min(p(Z(n)
i |θ(n))), ∀ Z(n)

i ∈ Z(n). (6)

This completes the training stage in which with only a very few non-defective
images, we determine the texems and an automatic threshold for marking new
image patches as good or defective.

In the testing stage, the image under inspection is again layered into a mul-
tiscale framework and patches at each pixel position (x, y) at each level n are
examined against the learned texems. The probability for each patch is then
calculated, p(Z(n)

i |θ(n)), and compared to the minimum data likelihood, Λ(n),
at the corresponding level. Let Q(n)(x, y) be the probability map at the nth
resolution level. Then, the potential defect map, D(n)(x, y), at level n is:

D(n)(x, y) =
{

0 if Q(n)(x, y) ≥ Λ(n)

Λ(n) −Q(n)(x, y) otherwise.
(7)

We then need to combine the information coming from all the resolution levels to
build the certainty of the defect at position (x, y). We follow a method described
in [2] which combines information from different levels of a multiscale pyramid
and reduces false alarms. It assumes that a defect must appear in at least two
adjacent resolution levels for it to be certified as such. Using a logical AND,
implemented through the geometric mean, of every pair of adjacent levels, we
initially obtain a set of combined maps as:

D(n,n+1)(x, y) = [D(n)(x, y)D(n+1)(x, y)]1/2. (8)

Please note that each D(n+1)(x, y) is scaled up to be the same size as D(n)(x, y).
This operation reduces false alarms and yet preserves most of the defective areas.
Next, the resulting D(1,2)(x, y), D(2,3)(x, y), ..., D(l−1,l)(x, y) are combined in a
logical OR, as the arithmetic mean, to provide a final map for the defects detected
across all the scales:

D(x, y) =
1

l − 1

l−1∑
n=1

D(n,n+1)(x, y), (9)

where D(x, y) contains the joint contribution of all the resolution scales and
marks the defects.

3 Experimental Results

We applied the proposed method to a variety of tile data sets with different
types of defects including physical damage, pin holes, textural imperfections,
pattern mis-registrations, and many more. The test samples, at 512×512 pixels,
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Fig. 2. Localising textural defects - from top left to bottom right: original defective tile
image, detected defective regions at different levels n = 1, 2, ..., 5, the joint contribution
of all resolution levels, and the final defective regions superimposed on the original
image.

Fig. 3. Defect detection - first row: original images, second row: superimposed defective
regions from left - surface defect, small bump, surface defect and a cluster of pin holes,
and missing print.

were appropriately pre-processed to assure homogeneous luminance, spatially
and temporally. In our experiments, only one defect free sample was used to
extract the texems, and only five to generate the lower bound data likelihoods
Λ(n). The number of texems at each level were empirically set to 12, and the
size of each texem was set to 5 × 5 pixels. The number of multiscale levels was
l = 5. These parameters were fixed throughout our experiments on a variety of
random texture tile prints.
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Fig. 4. Detecting defects in regular patterns - first column: original defective image and
superimposed defective regions; second column: closeup views of normal and abnormal
dot patterns from the previous image; third and fourth columns: two defective samples
of a different regular texture with pattern irregularities and superimposed defective
areas.

Figure 2 shows a random texture example, from the same family as in Fig-
ure 1, with a defect in the lower right region introduced by a printing problem.
The detected potential defective regions at each resolution level n, n = 1, 2, ..., 5
are marked on the corresponding images in Figure 2. It can be seen that the
texems show good sensitivity to the defective region at different scales. As the
resolution progresses from coarse to fine, additional evidence for the defective
region is gathered. This evidence is then combined, shown in the bottom-right of
Figure 2, to produce the defect map D. The final image shows the superimposed
defects on the original image. As mentioned earlier, the defect fusion process can
eliminate false alarms, e.g. see the extraneous false defect regions in level n = 5
which disappear after the operations in (8) and (9).

More examples of different textures are shown in Figure 3. In each family
of patterns, the textures are varying but of the same visual impression. In each
case the proposed method could find from very small surface defects to large
variable shaped defects such as the missing print as shown in the last example.

The proposed method can also detect defects in regular patterns. For exam-
ple, the first two images of Figure 4 show three incompletely printed dots at
the top-left corner of the regular pattern. Each dot is composed of one larger,
lighter dot as background and one smaller, darker dot positioned in the centre
(see the closeup view in the second column of the Figure 4). In other two exam-
ples in Figure 4, printing error and smudge defects damaging the local pattern
regularity in a grid-like pattern were correctly detected.

Next, we compare our results with those obtained by using the epitome
[8]. Two example cases are shown in Figure 5. We apply the epitome for tex-
ture segmentation (with software provided by the authors of [8]), however, we
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Fig. 5. Leftmost two images: examples of novelty detection using epitomes which pro-
duced many false positives or failed to locate the true defects. Rightmost two: novelty
detection results using texems which successfully detected all the true defects (a print
defect and three pin holes).

extend it into a similar framework as the proposed method for better compara-
tive analysis. Hence, we generate the multiscale version of an image and at each
scale, we learn an appearance epitome using 5 × 5 image patches at each scale,
resulting in epitomes varying from 7 × 7 to 24× 24. Using these multiscale epit-
omes, we perform novelty detection, similar to the method described in Section
2.3. It involves finding a match in the epitome for an image patch under inspec-
tion. As the epitome is still larger than the patch itself and there are numerous
comparisons across the image, the detection procedure is computationally very
expensive. The results show that our method is less sensitive to false alarms.

As patches are extracted from each pixel position at each resolution level, a
typical training stage involves examining over 0.25 million patches (for a 512×512
image) to learn the texems in multiscale. This takes around 25 minutes on an
AMD Athlon XP Processor (1.4GHz) to obtain the texems and to determine
the thresholds for novelty detection. The testing stage is much faster, requiring
about one minute to inspect one tile image. However, it will cost the epitome
based method several hours to perform training or testing. The computation
time of our method can be greatly reduced by examining every other pixel (or
fewer).

The examples show the ability of texems ability in localising small or large
defects on highly textured surfaces. We evaluated our defect detection rate across
1512 tiles from eight different families of textures and obtained very good results
with 95.87% sensitivity, 89.47% specificity, and 92.67% overall accuracy.

4 Conclusions

We presented an automatic defect detection and localisation algorithm for ran-
dom textures. The proposed method only trained on a very small number of
defect free samples with the aid of novel texems that are implicit representations
of primitive textural information. The texems are at present only applicable to
graylevel images and we intend to extend them to colour analysis. This can be
achieved by modifying the inference procedure that derives them. The computa-
tional needs of the method are somewhat demanding for a real-time inspection.
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We shall investigate various avenues to achieve a rate of around 2-4 surfaces per
second which is an acceptable tile industry norm. While we present this work
with respect to ceramic tiles, the proposed method should be suitable to other
flat textured surfaces, such as textiles and wood.
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Abstract. In this paper, we propose a novel method for cross-media
semantic-based information retrieval, which combines classical text-
based and content-based image retrieval techniques. This semantic-based
approach aims at determining the strong relationships between keywords
(in the caption) and types of visual features associated with its typi-
cal images. These relationships are then used to retrieve images from a
textual query. In particular, the association keyword/visual feature may
allow us to retrieve non-annotated but similar images to those retrieved
by a classical textual query. It can also be used for automatic images
annotation. Our experiments on two different databases show that this
approach is promising for cross-media retrieval.

1 Introduction

In general, a content-based image retrieval (CBIR) system tries to determine
the most similar images to a given query image by using one or a combination
of several low-level visual feature(s) such as color, texture or shape. Depend-
ing on the content of each image, it’s highly difficult to choose the appropriate
feature(s) to use and eventually the manner to combine them. While users are
mostly interested by the high-level (i.e., abstract) concepts presents within an
image query, the most similar images to this latter according to some low-level
visual features can be non-relevant in the sens of semantics. This is known as
the semantic gap. Usually, an annotated-based image retrieval (ABIR) system
is based on a certain model representation of the concepts (words) associated to
each image (document). Given a textual query, a such system scores and ranks
images according to the importance of each word of text query to images. In this
case, the search result is more limited to images that are really annotated by at
least one of the words that form the textual query. In this work, we attempt to
reach the same objective by finding non-annotated, but similar, images to those
retrieved by a classical textual query. To this end, and based on a training set
of several images annotated by the same single word, we propose an unsuper-
vised learning procedure which determine the most representative visual feature
(visual semantic) of this word. Given an image query and the words of its cap-
tion, the user can choose the characterization of a certain word as a new search
criterion.

S. Singh et al. (Eds.): ICAPR 2005, LNCS 3687, pp. 414–423, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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1.1 Related Work

Organizing a set of images into clusters was used by Chen, Wang and Krovetz [1]
in their CBIR system (CLUE ). Instead of sorting images by feature similarities
with respect to a query image, the system retrieves image clusters. Especially,
the user can navigate between queries according to each defined cluster (semantic
clue). After the resemblance between the query image and target images are eval-
uated and sorted, a collection of target images that are “close” to the query image
are selected as the neighborhood of the query image. The set of descriptor vec-
tors of this collection is clustered into a dynamically-defined number of regions.
This approach offers a different manner to present and visualize the most similar
images to a given query image with an interesting interaction with the user.

Among the semantic-based approach, but only image content-based, differ-
ent kinds of methods have already been investigated. We can cite, for example,
the approach used in [2] which consists in grouping images into semantically
meaningful categories. This system was applied on 6931 vacation photographs
to obtain a classification such indoor/outdoor, city/landscape, etc. This classi-
fication is performed by a Bayesian classifier under the constraint that the test
image does belong to one of the classes beforehand established by human sub-
jects. We can also cite the approach used in [3] which clusters the image regions
into 10 clusters (cloud, grass, etc.) and uses a probabilistic approach to define
a semantic codebook of every cluster. Nevertheless, some recent studies [4] have
tried to automatically create associations between visual features and keywords.
The basic idea is to use a set of annotated images as a set of learning examples,
and to extract strong associations between annotation keywords and the visual
features of the images. In particular, a segmentation algorithm, such Blobword
[5] or Normalized-cuts [6] is used to produce segmented regions, then for each
region, feature information (color, texture, position and shape) is computed.
The set of computed features are clustered into regions which are called “blobs”
which define the vocabulary for the set of images. Finally images are annotated
by the means of a cross-media relevance model.

Among the semantic-based approach trying to model the relationships be-
tween image features and associated text, we can cite the interesting work of
Barnard et al. [7]. Their approach searches to provide a statistical joint dis-
tribution for associated words and features of each region of an image (image
segments). After a training step which consists in estimating the parameters of
a mixture of (Gaussian) distributions, a query search consists in computing the
probability of each candidate image of emitting the query items. This method
remains nevertheless highly dependent of the segmentation results and parame-
ters associated to the segmentation (number of classes). Besides it is also highly
dependent of the assumption that the cluster-conditional distribution of index
terms (words or image segments) (i.e., the likelihood of this model) is unimodal
and Gaussian. We can also cite the work of Wang et al. in [8] which try to
address the challenging and -closely related problem- of automatic linguistic in-
dexing of pictures. Association between an image and textual description of a
concept is modeled via a likelihood given by a two-dimensional multi-resolution
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hidden markov model (HMM) whose parameters is learned in a training step.
Once again, a query search consists in computing the likelihood of each candi-
date image for each pre-learned concept. As in applications, where this strategy
is commonly used (e.g., handwritten text and speech recognition), this method
remains highly dependent of the parameter estimation step of the HMM which
is then used for the recognition step. In the case of 2D signal (i.e., image) this
estimation may not to efficiently model all the diversity of the different concepts
and classes of images.

1.2 Our Approach

Instead of using pre-segmented image regions, described by multiple features
(color, texture, shape, etc.), our approach uses the whole image content and
tries to find out the most representative visual feature(s). Compared to [4],
our approach has the advantage of not being dependent of a specific segmenta-
tion and can take into account relationships between regions (e.g., airplane-sky,
animal-grass,boat-sea, etc.). Besides, some (key)words are best represented by
one feature than by considering several features (e.g., sea with texture and cathe-

Fig. 1. For each word, the training data is the set of corresponding annotated images
which yield to three sets of descriptors (vectors) according to each high-level visual
feature. Each set of descriptors is clustered in several regions. The figure shows an
example of clustering in 2 regions for the set associated to the texture feature.
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dral with contours) which can introduce noise in the automatic retrieval model
if they are not relevant. Our approach tries to identify such strong associations
between words and visual features.

Our training data for each word is the set of images annotated by this word.
This dataset is exploited to obtain several sets of descriptor vectors according to
the high-level visual features which will later be associated with the aforemen-
tioned (key)word. Each set of descriptors is then clustered by using several number
of partitions (cf. Fig. 1 showing an example of clustering associated to a feature
with respect to 2 partitions). This clustering allows our system to automatically
estimate or capture the optimal number of partitions associated to the number
of classes of images in the sens of their visual content (e.g., four types of moun-
tains, six types of cars, etc.). Each cluster is then described by some statistical and
spatial characterizations. We also describe the quality and the performance of a
query based on the centroid feature (i.e., a model associated to a virtual image)
of each clusters. According to some criteria on these descriptions, the key-word
is associated with its most representative high-level visual feature, the number of
regions used in the clustering and the corresponding cluster centroid.

This unsupervised learning process also allows to propose a new image re-
trieval method by prompting the user to submit both a query image and a query
key-word. To this end, the centroid of the cluster which contains the descriptor
of the query image (and which can be viewed as the learned semantic concept
of the key-word) can be exploited as a virtual image to perform the query. In
particular, this visual semantic allows to retrieve similar images to the image
query in the sens of the visual semantic of the given key-word.

1.3 Outline of the Paper

The reminder of the paper is organized as follows: In section 2, we will present
the image processing techniques developed for this retrieval system; i.e., the
considered visual features (texture, contours and shape/color) as well as their
corresponding similarity measures. In section 3, we will describe the way that
relationships between keywords and visual features are extracted by the means
of a learning procedure. In section 4, we will present some experimental results
on the annotated ‘St Andrews University Library Photographic Collection’ and
Corel c© databases and we conclude.

2 Image Processing Retrieval Techniques

Edge, texture and shape (including color) informations are important cues for
pattern recognition and retrieval purposes in large image database. In our ap-
proach, we have considered these cues as the three fundamental classes of vi-
sual characteristics, which we will call features in this paper. For each of the
features, we consider a descriptor and an associated discriminant measure of
similarity Sfeature.

Edge Descriptor: Wavelet-based measures have often been used in content-
based image retrieval (CBIR) systems because of their appealing ability to de-
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scribe the local texture and the distribution of the edges of a given image at
multiple scales. We use the Harr wavelet transform on the gray-level compo-
nent of the image . The procedure of image decomposition into wavelets involves
recursive numeric filtering. It is applied to the set of pixels of the digital im-
age which is decomposed with a family of orthogonal basis functions obtained
through translation and dilatation of a special function called mother wavelet.
Three scales of transformation are considered here. For decomposition of each
scale, we compute the mean and the standard deviation (μn and σn) of the
energy distribution in each (of the n = 10) sub-band. This leads to an edge de-
scriptor {μn=1,σn=1, . . . , μn=10,σn=10} of 20 components. For this descriptor,
the similarity measure (Sedge) we use is the weighted-mean-variance distance.

Texture Descriptor: Tamura et al. [9] have proposed to characterize image
texture along the dimensions of contrast, directionality, coarseness, line-likeness,
regularity and roughness. Coarseness refers to the average of the best representa-
tive sizes of the textons (i.e., texture resolution representation). To describe the
texture feature, we use the coarseness and directionality histograms. We make
two adjustments to the well known coarseness algorithm [9]. First, we set some
predefined texture resolutions {2, 8, 14, 20, 26, 32, 38} instead of 2k × 2k with
k = 0, 1, . . . , 6, then, we deal with homogeneous regions bigger than the max-
imum of texture resolutions taken in account. After thresholding, the oriented
edges are quantized into an 8-bin histogram. The similarity measure (Stexture)
used is the Jeffrey divergence [10].

Shape and Color Descriptor: Extraction of shapes contained in an image
remains a difficult task. Following [11], we first estimate a segmented image from
which we extract the contours of different regions. The segmented image defines
a set of connected pixels belonging to a same class. In this procedure, the noise
is taken into consideration, edges are always connected, and the only parameter
adjustment is the number of regions used in the segmentation procedure. Then,
for each edge pixel, we define a direction (horizontal, vertical, first or second di-
agonal) depending on the disposition of its neighboring edge pixels and compute
a 4-bin histogram. We complete this information by computing a 32-bin color
histogram by using the HSV color space. The similarity measure Sshape used for
this 36-bin histogram is the weighted-mean-variance distance.

3 Associating Words with Representative Images and
Features

Given a set of training images with caption, we try to automatically determine
one or several clusters of images representative for each word, together with the
most discriminative feature(s), i.e. texture, edge and shape-color. The principle
is as follows: for each word, we try to group the images associated with it into
several clusters (at different scales) according to each feature. Using one cluster
as a visual query, if we can find many images annotated with the word among
the most similar images according to the associated feature, then the cluster and
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the feature are considered to be characteristic for the word. In this way, each
word can be associated with zero, one or several clusters and features.

More precisely, let us define some notations: let I and Iw be respectively
the set of all images in the training dataset and the set of all images that are
annotated with the keyword w. |.| will designate the cardinal or the number of
elements of a considered set: by applying the three visual features characteriza-
tions to Iw, we obtain three sets of descriptors Dtexture

Iw
, Dedge

Iw
and Dshape

Iw
. We

will use the notation Dfeature
Iw

to refer to each of these descriptors.
For a fixed number of regions (we consider 1, 2,..., 5 regions in our case), we

use the Generalized Loyd [12] algorithm to cluster each set Dfeature
Iw

in R parti-

tions, thus, we obtain several R
c Dfeature

Iw
clusters, where R denote the number of

partitions used in the clustering and c the cth cluster in this R-clustering. The
error-distance used in the clustering of Dfeature

Iw
is the similarity measure of the

feature Sfeature. For each value of R, this clustering allows us to approximate
the distribution of the set of samples Dfeature

Iw
by R spherical distributions with

identical radius. The centers (centroids) of these approximated spherical distri-
butions are then considered as prototype vectors and are denoted by R

c P
feature
Iw

.
Several values of R are used to take in account the fact that a given word may
be associated to many images classes. For example, the word boat may be as-
sociated with images with small shape of boat in sea, or with a closer view of
boat, and so on. For each cluster R

c Dfeature
Iw

, its associated centroid is used as
a descriptor vector of a virtual image representative of the word. The virtual
image will be used to query the whole training database I to get the closest
descriptors (or images) according to the similarity measure associated to the
feature feature. The training process is as follows:

• First, in order to associate each (key-)word w with the most discriminant
class of visual characteristic F eature, we use the following strategy: for each
considered cluster R

c Dfeature
Iw

, we count the number of images annotated by the
word w that are retrieved among the first X (X = 20 in our case) retrieved
images for each F eature. Let topXfeature be this number. We count the sum of
the topXfeature resulting from the query by all corresponding prototype vectors.
We then consider the class of visual feature for which this sum is maximal.

• Second, in order to define a set of prototype vectors associated to the
pre-estimated class of visual feature, we adopt the following strategy: we char-
acterize a given cluster R

c Dfeature
Iw

by three measures: its proportion ρ within Iw

(simply, ρ = |Rc Dfeature
Iw

|/|Iw|), its standard deviation σ (computed according to
the similarity measure of feature), and an empirical measure P which represents
the number of images, not annotated by the word w, for which the distance
between its descriptor vector and the prototype vector R

c P
feature
Iw

is less than the
pre-estimated standard deviation σ, namely

P = |{I /∈ Iw | Sfeature(R
c Dfeature

Iw
, R

c P
feature
Iw

) < σ}|/|I|
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Once one feature or several weighted features are fixed, we choose represen-
tative prototype vectors regarding to P , their proportion and their standard
deviation as follows: we use a first criterion to exclude prototype vectors for
which P > 0.05 and ρ < 0.05. If there is no remaining prototype vector, then
we ignore this criterion. The second criterion is to retain prototype vectors for
which ρ/σ is greater than a threshold. The result of the training process is that
a word may be associated with zero, one or several clusters of representative im-
ages, together with an associated feature to each cluster (i.e., vectors associated
with high peak spherical distribution).

4 Experimental Results and Conclusion

The experimental results are based on the historical image database ‘St Andrews
University Library Photographic Collection’ provided by ImageCLEF 2004 [13].
This database contains 28133 images with caption. The caption text associated
to each image contains around tens of (key)words. Our goal was to improve
textual and multi-words queries by extending words to their associated visual
features but our experiments in this context are extremely difficult due to the
poor quality of the images of this database and also due to the presence of some
(key)words used in the request with an abstract concept. (“Scotland”, “north”,
“tournament”, etc.). For our experiments, we have also considered a set of 20000
images extracted from the Corel c© database where each image is annotated by
a few concrete and significant keywords. To test the relevance of our approach,
we remove each word from the caption of 50% of associated images. We use
these images as references and we try to see how our approach is able to retrieve
these images with a query made of the removed word. We will emphasis on
two aspects of our results: the retrieved reference images and the non-annotated
images retrieved but also related to the word in consideration.

Figure 2 shows some words with the estimated weights for each class of vi-
sual feature. Most associations have a significant meaning: animal is associated
to shape and texture features, ocean is most described by shape (probably due to
the presence of boats or due to the color component included with shape descrip-
tor), tiger is described by texture and contours, zebra is associated to texture,
etc. However, some words have almost the same weights for the three features,
for example water, sky, garden and tree. This may be due to the high number
of learning vectors. The word texture is strangely associated with shapes and
contours. By choosing clusters with high value of P , we can guess to obtain more
images that are not annotated by the word, but which are related to this word. In
other hand, low values of this measure may yield to more images that are really
annotated by the word; this may be useful in the case of queries with multiple
words, so to eventually improve the text retrieval result. Figure 4 shows three
semantic query results for the words flower, canal and grass: the algorithm de-
scribed in 3 was used to produce these results. It shows also a query for word grass
according to its second relevant feature. Even if the reference images were not re-
trieved successfully, we can see that most of images are related to the query word.
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selected feature Number of
database word Feature 1 Feature 2 Feature 3 training

vectors
water contours (74) shape (65) texture (61) 2550
sky contours (66) texture (65) shape (60) 2323
tree texture (85) contours (79) shape (72) 2242

C people contours (76) texture (60) shape (51) 1908
grass contours (35) shape (28) texture (27) 1061
flower shape (61) contours (51) texture (16) 934

O wild contours (17) texture (15) shape (15) 707
bird texture (24) contours (12) shape (9) 595
plant contours (13) shape (10) texture (8) 439

R garden texture (14) contours (14) shape (14) 301
sunset shape (19) contours (15) texture (8) 260
ice contours (8) texture (6) shape (5) 240

E ocean shape (44) contours (26) texture (15) 231
animal shape (11) texture (7) contours (3) 204
ski contours (4) shape (1) texture (0) 153

L texture shape (17) contours (10) texture (8) 126
rural contours (7) texture (3) shape (3) 124
insect contours (10) shape (7) texture (1) 123
tiger texture (14) contours (10) shape (9) 73
zebra texture (13) contours (9) shape (8) 26
street contours (119) shape (101) texture (96) 2348

St- church contours (57) texture (48) shape (48) 2721
boat texture (61) shape (40) contours (37) 1740

AND- golfer texture (18) shape (14) contours (10) 309
canal texture (3) shape (3) contours (2) 178

REW swing texture (8) contours (1) shape (1) 94

Fig. 2. A list of concepts with their discriminative features ranked by the sum of
top20feature over all the clusters of the feature (criterion used to choose the most
discriminative feature or eventually to combine several features)

Corel word top10 top20 top50 top100 ref10 ref20 ref50 ref100 vis20 vis40 vis60
flower (shape) 2 2 3 7 2 3 5 8 9 17 28
animal (shape) 1 1 2 3 0 0 0 0 6 9 16
birds (texture) 1 1 4 5 1 1 3 5 3 7 9
ice (contours) 0 0 0 1 0 0 0 1 0 0 0
grass (contours) 0 0 0 5 0 1 1 4 9 15 26

St-Andrew word top10 top20 top50 top100 vis20 vis40 vis60
canal (texture) 0 1 1 2 10 17 29
street contours) 1 4 14 26 12 26 37
boat (texture) 1 4 8 10 4 9 12

Fig. 3. Some statistics about the top retrieved images for some words. topX is the
number of images annotated by the word among the first X retrieved images. Identi-
cally, refX and visX are related respectively to reference images and visually accepted
images (a subjective judgment).
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flower (shape)

canal (texture)

grass (contours)

grass (shape)

Fig. 4. Semantic query results for concepts flower (shape), canal (texture) and grass
(contours). The last query is made according to the best cluster of feature shape. The
identification number is shown above each image. Annotated images are marked by a
W box. Visually related images to the concept are marked by V box. Reference images
have their identification number in a gray box.
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Abstract. This paper presents an effective texture descriptor invariant
to translation, scaling, and rotation for texture-based image retrieval
applications. The proposed texture descriptor is built taking the Fourier
space of the image. In order to find the best texture descriptor, a quan-
tization scheme based on Lloyd’s technique is proposed. As frequency
descriptors are not invariant to all geometrical transformations as scal-
ing and rotation, the modal analysis is applied to overcome these prob-
lems. Our image database is extracted from Brodatz album as well other
sources. The proposed method is also compared with other content-based
techniques and their performance is evaluated through several experi-
ments. The effectiveness of both methods is measured by the commonly
used retrieval performance measurement - Precision and Recall.

1 Introduction

Analysis, classification and texture retrieval have been, over the last few
years, the target of intense research in Computational Vision and Digital Image
Processing. Such methods are used in different areas as medical image analysis,
geo-processing, military applications, security and personal identification, etc.

Texture retrieval passes through the difficult step of texture representation
or description. What is seen as a relatively easy task to the human observer,
becomes a difficult challenge when the analysis is made by a computational al-
gorithm. How can we copy the human brain in its capability to analyze, classify
and recognize textures? Putting aside these questions about human brain work-
ings, and focusing mainly on the necessity of how to describe a texture from its
content, different approaches and models have been proposed.

Some content-based algorithms (color, texture, spacial information, shape,
etc, [1], [2], [3]), play a crucial role in image retrieval. Texture is widely used
for image classification and retrieval. Because of this, a great amount of tex-
ture analysis methods have been developed and different approaches have been
explored. The most common approaches are statistical and structural. When
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dealing with statistics, texture is described using statistic measurements, like
direction, contrast and coarseness, where probability and inferences are applied
[1,4]. Image statistics methods compute primitive image features and their func-
tions, such as color histograms [5], shape [6,7] and texture measurements [4] and
use them for indexing, matching and segmenting images. Structural models use
a certain amount of the local characteristics derived from the local frequency
domain [8].

Therefore, not different from the employed approach, all models have as their
objective to obtain a canonic texture representation, or, a texture representation
that is invariant to rotation, scale, translation, zoom, brightness and robust in
the presence of noise and other irregularities throughout the texture [9,10].

Shapiro and Brady proposed in [11] a point-feature correspondence model
using a modal analysis of the shapes. As the first step, m image feature-points
are chosen to represent each image. Then, a m × m square proximity matrix H
is created. That matrix has the aim of recording feature distances.

For the final step of the method, the matching of two image patterns is ana-
lyzed by an association matrix Z, which records the Euclidean distance between
the modal matrices.

Following the ideas of Shapiro and Brady [11], Carcassoni et al. [12] proposed
a texture retrieval model based on spectral points, using homogeneous texture
as fabric and wrapping papers. In such a method, for all database images, the
Fourier transform is used to pass from the spatial to the frequency domain, then
the power spectrum is computed with the aim of choosing the N highest peaks,
which will be used to represent the whole texture. For each, query or database
image, as in [13] and [14], a proximity relationship of the peaks is calculated.

As the next step, the modal analysis is applied with the goal of making the
image robust to some transformations, such as rotation. The clusterization [15]
is calculated and once again the proximity relationship and the modal analysis
are applied. Image similarity is measured by comparing the modal matrix that
represents the query image with all the other modal matrices that represent each
database image.

Considering that there may exist two or more different textures having the N
highest power spectrum peaks with the same magnitude, leading to an erroneous
matching, we propose a model where a quantization scheme based on Lloyd’s
technique [16] is used to represent the whole texture.

2 The Feature-Based Correspondence

The modal correspondence method of Shapiro and Brady [11] has the aim of
matching patterns correspondences between two images I1 and I2 using feature-
points correspondence and they also explored the modal approach of an image
based on the spatial distribution of its features by comparing the eigenvectors
of a feature proximity matrix.

According to the authors, the modal representation allows rotations and
translations maintaining the same recognition achieved by the original image.
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The idea of the method is to match points by analyzing their distances be-
tween images. For each image, a number m of feature-points is chosen, with xi,
(i = 1, ..., m), representing each pattern-feature. A relationship between these
points is constructed by a square proximity matrix H , which records feature
distances within the image, as follow:

Hij = e−r2
ij/2σ2

x . (1)

where r2ij = ||xi − xj ||2 which is a Gaussian function that aims to model the
probability of adjacency among features. This function is not a good choice
to control distortion effects because its is fragile when dealing with structural
differences. The interaction among image features in the same image is controlled
by σx, i.e., it controls whether the feature will have global or local knowledge of
its surrounding.

The proximity matrix H is symmetric and its principal diagonal has value 1.
After this H matrix is computed, the modal analysis will be applied, creating
the orthogonal modal matrix V , which has the eigenvectors as its columns V =
(E1|, ..., |Em), where Ei are the eigenvectors of the proximity matrix H and each
row of V is called as a feature vector Fi.

The association matrix Z is computed by the Euclidian distance between
feature vectors:

Zij = ||Fi1 − Fj2||2. (2)

The matching is given by those elements in Z which have the lowest values
in their row and column. A perfect match is given by the 0 value and no match
is indicated for values equal or greater than 2.

3 The Eigenvector Method for Texture Retrieval

The eigenvectors can be used for recognition purposes. Based on this idea, Car-
cassoni, Ribeiro and Hancock in [12] present a retrieval method that uses modal
analysis of spectral peaks for retrieval textures in an image database.

They commence by summarizing the structure of the power spectrum using
the N highest peaks frequency vectors, denoting the frequency vector of the
ith peak of an image Iα by Uα

i = (ui, vi), and concatenating these frequency
vectors according to their order of energy from high to low. Next, as in [13] the
Sigmoidal Weighting Function is used to compute the proximity matrix of the
N first highest peaks:

Hα(i, j)
2

π|Uα
i − Uα

j | log cosh[
π

s
|Uα

i − Uα
j |]. (3)

The modal structure of this domain peak proximity matrix φ is calculated.
The eigenvectors are computed and sorted according to their eigenvalues order
of magnitude, i.e., |λα

1 | > |λα
2 | > ... > |λα

N |, to build the modal matrix N × N ,
φα = (φα

1 |φα
2 |...|φα

N ).
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The cluster centers are calculated by

Cα
n =

∑N
i=1 |φα(i, n)|Uα

i∑N
i=1 |φα(i, n)|

. (4)

The cluster centers are used to compute a cluster center proximity matrix
given by (3), and repeating the procedure above, the modal structure of the clus-
ter center proximity matrix is calculated and used to gauge similarity ([17,18])
of different power spectra and perform texture matching.

The similarity between the query texture and the textured images in the
database is measured by the following equation:

wq = maxα{wα}.

where:

wq =
M∑
l=1

M∑
m=1

exp[−k

M∑
n=1

(ψq(l, n) − ψα(m, n))2]. (5)

where k is a constant and M ≤ N .
It is worth noting that when the modal matrix elements are very different,

there are no significant contributions, made by those elements, to the final result
and when the lines of the matrices are very close, the value of the above sum
will be greater.

4 The Proposed Method

Following the ideas presented in [12] and considering that two different textures
can have the N first power spectrum peaks with almost the same magnitude, and
to avoid the retrieval error caused by ambiguity between textures having similar
power spectra, we propose the use of quantized points to represent the power
spectrum. These points were chosen using a variation of Lloyd’s technique [16].

4.1 The Spectrum Representation

The power spectrum of an image Iα = I(x, y) is defined by the Fourier transform
of its autocorrelation. Details on two-dimensional spectral estimation can be
found in [19] and [20].

For the purpose of recognition, in this paper, a quantity of S values will be
taken from each image in order to represent its spectrum. Here, the representa-
tive elements qi, i = 1, ...,S, will be chosen using a modified Lloyd’s technique
[21] for quantization.

A quantization scheme consists of a set Q = { Q1, Q2,...,QS} and a set of
levels called quanta q = {q1, q2, ..., qS}. Q is defined in such a way so that two
sets {Qi} and {Qj} have an empty intersection and the union of all Qj covers
the entire spectrum of the image I. Also, a set {tk}, k = 1, ...,S+1, denominated
separators, should be chosen in such a way as to satisfy the condition: t1 < q1 <
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t2 < q2 < · · · < qS < tS+1, where S is the number of levels (quanta) that will be
used to represent an image.

In order to construct the quanta and the separator sets, we start by sorting
the peaks into a non-decreasing order according to their magnitude.

Let S1 be an integer number, defined by the user, as the number of quanta
that will be used for grouping the image frequency values. The first step of the
algorithm will create a set of quanta {qk} and a set {tk} of separators following
Lloyd’s technique [16].

After that, the separators tj are defined as: tj = tj−1+A, with j = 2, 3, ...,S1,
where the quantity A is

A =

∫
Ω

dF (s)
S1

, (6)

the image domain is represented by Ω and F (s) is a probability distribution
associated with the image Iα: F (s) = P{|I(x, y)| < s}.

The end points t1 and tS+1 are defined a priori, as the lower and upper limit,
respectively, of the values that represent the frequency domain of an image Iα.
We will take here, qj values as integer numbers between m = min{|Ui|, i =
1, ...,N ×N} and M = max{|Ui|, i = 1, ...,N ×N}.

The goal of the second step is to create a new set of separators {t̄i}, such
that

t̄i = t1 +
i(T − t1)

S2
, (7)

i = 2, ...,S2 − 1, where T = tS1+1 and S2 is an integer constant defined by the
user.

The third step starts with the union of the separators {ti}, i = 1, ...,S1,
obtained in the first step, with the separators {t̄j}, j = 1, ...,S2, obtained in
the second step. A new ordered and renamed separator set {tk}, k = 1, ...,S;
S ≤ S1 + S2 + 1 is created.

After that, the calculus of each quantum qj as the center of mass of the
corresponding Qi is performed:

qj =

∫
Qj
sdF (s)∫

Qj
dF (s)

. (8)

The next step is to establish some correspondence (relationship) among these
values and analyze proximities between images through the proximity between
these correspondence among the frequency values (qj ’s).

4.2 Relationship Building Among the Representative Points of an
Image

Texture retrieval, in this work, is performed through modal analysis of the fre-
quency vectors which were chosen to approach the power spectrum space. To
measure the proximity among the points set of an image, the Sigmoidal Weight-
ing Proximity matrix (3) is used, with qα

i representing the image pattern points,
computed as shown in section 4.1.
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The proximity matrix establishes a relationship among the representative
points of an image Iα [13], and the modal matrix N ×N , φα is obtained in the
same way as described in Section 3, in (3). The eigenvectors are of unit length
and are mutually orthogonal, and hence form an orthonormal basis, making the
method robust to some transformations, as rotation, for example.

4.3 The Matching

Similarity between images is measured by the comparison of the φq matrix query
with all the other φα

i matrices in the database.
For retrieval purposes we use the wq values, defined in (5), in decreasing

order to perform recognition.

5 Experimental Results

The size of the images under study is 256 × 256 pixels in 256 gray-level. Our im-
age database is composed of 800 images. Among them there are homogeneous and
non-homogenous textures. We work with both, synthetic and real images like flow-
ers, landscape, clouds, trees, tissues, architectures, floors, vegetation, etc, as well
as images extracted from the Brodatz digital album [22] and Outex database [23].

We divided our experiments into two distinct groups. In the first one, our image
database is composed of only regular images as those used by the authors in [12].
From this database several experiments were performed using both methods and
their effectiveness was measured by the use of the precision and recall curves, as
shown in section 6. The second group of experiments were performed using all the
images in the database, which means, the homogeneous and non-homogeneous
ones but, using only the proposed method. This procedure was adopted with the
aim of avoiding erroneous conclusions about Carcassoni’s method [12].

To build our regular image database, we extracted from [23], 100 images
in their original size of 746 × 538 pixels and we divided each of them into 5
overlapping subimages, thus creating a database with 500 images. In this case,
the images that should be retrieved by submitting a query, are composed of these
subimages without the need of human evaluation or judgment for choosing the
most similar images to a given query. More details about relevant sets can be
found in section 6.

We use N = 6 as the number of the point patterns and k = 1.2 as the number
of the constant in (5).

In figure 1, we present three experiments using regular textures as query im-
ages: a soil, a plastic and a tissue image. In the three experiments, all the ranking
retrieved by the proposed method is composed of subimages of the query image,
while in Carcassoni’s method [12] this proportion is 66%. One realizes that the
quantization scheme of the proposed method is more robust for choosing the
image representatives, once it reaches better results. The textures are labeled:
(a) for the query image, (b-d) and (e-g) present the most similar images among
the five top ranked images using the proposed method and Carcassoni’s, respec-
tively.
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(a) Query (b) (c) (d) (e) (f) (g)

Fig. 1. Ranking achieved by the proposed method (b-d) in contrast with the one formed
by Carcassoni’s (e-g). Here, each line presents an experiment.

The following experiments show some of the reached results for the second
group of experiments, where we used all the images present in the database and
submitted the queries only in the proposed method. The textures are labeled:
(a) for the query image and (b-d) for the most similar images among the five
top ranked images.

The first experiment, shown in figure 2, the query image represents a land-
scape texture with the sun in its background. The proposed method was able to
capture this kind of pattern in the retrieved textures 2(b) and (c) while in tex-
ture 2(d) we have an image which belongs to the same class of the query image.
Such a result can be considered very satisfactory and sometimes desirable for

(a) Query (b) (c) (d)

Fig. 2. In the first experiment (the four images of the top), one realizes that there
exists the presence of a sun shape in the two first images of the ranking.
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any retrieval system, where the algorithm is able to explore not only the main
pattern of the texture but also some of its components.

In the third experiment in figure 2, a noisy landscape image with 0db
Gaussian noise was used as the query image. Here one can clearly see that the
proposed method is robust in the presence of noise, even though a high noise
level, besides retrieving the noiseless version of the query image, it also retrieved
images that are very similar to the query image.

It is worth registering that in the second group of experiments, the Carcas-
soni’s technique was not able to reach the same good results as the proposed
method.

6 Effectiveness Measurements

The most common measurement technique for retrieval purposes, Precision and
Recall curves [24], was used to evaluate both methods presented in this paper.
The curves compare the effectiveness when dealing with the image database
composed by only homogeneous textures. To apply such a curve we have to
consider the image collection, a set of ranking images (A) retrieved by the system
and also a set of relevant images (R) for each query. As relevant images we
understand, images that we wish to be retrieved for a given query.

Recall is the fraction of the relevant images which have been retrieved:
recall = |R ∩A|/|R| and Precision is the fraction of the retrieved images which
are relevant: precision = |R ∩A|/|A|.

In this framework, the relevant answer set of each query is given by its subim-
ages as described in section 5.
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Fig. 4. Precision vs Recall for both methods using an homogenous database

The effectiveness was measured taking into consideration the results obtained
at the submission of 20 distinct queries for both methods. As we know, the main
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goal of any retrieval system is to obtain the highest recall and precision values
(%) as possible.

The graph plotted in figure 4, shows the performance evaluation comparing
the two techniques here presented. Analyzing the graph, one can see that the
performance of the proposed method is better than the Carcassoni’s, despite
the small difference between the curves. The superiority of the proposed method
can be confirmed along all the curves in the highest precision region, where the
recall ≤ 20 %.

7 Conclusion and Future Directions

In this paper we propose a new technique, inspired on Carcassoni et al. work [12],
to retrieve textures in an image database. The retrieval is achieved by analyzing
the similarity between the relationship among representative points from the
power spectrum of the query image and the database images. A variant of the
Lloyd’s technique [16] is used to obtain the most representative points in the
power spectrum to represent itself.

The experiments proved that the proposed technique has shown itself ro-
bust. This can clearly be seen at the Precision and Recall curve (figure 4). The
proposed technique can be considered an improvement of the Carcassoni’s tech-
nique, as it reached better results even for non-homogeneous textures.

Although better results have been gauged, an investigation about how the
clusterization could offer better texture retrieval in large database, has been
carried out. Another subject under consideration, is the number N of points used
to represent an image, and how this number may affect the retrieval performance.
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Abstract. In this paper, we propose a method for reconstructing the
surfaces of objects from stereo data. The proposed method quantita-
tively defines not only the fitness of the stereo data to surfaces but also
the connectivity and smoothness of the surfaces in the framework of a
three-dimensional (3-D) Markov Random Field (MRF) model. The sur-
face reconstruction is accomplished by searching for the most possible
MRF’s state. Experimental results are shown for artificial and actual
stereo data.

Keywords: Stereo vision, Surface reconstruction, 3-D MRF model,
fitness, connectivity and smoothness.

1 Introduction

Surface reconstruction from depth data is one of the most important issues in
computer vision[1]. It can provide effective clues for solving the problems of
recognizing objects in higher-level recognition processes such as object recog-
nition, scene description[2], and scene interpretation[3]. Hence, extensive works
have been dedicated to surface reconstruction from depth data.

In works[4][5][6], surface models were generated from depth data obtained
from laser scanners. On the other hand, several research groups have focused on
the use of stereo vision. Although the stereo vision is a natural way to obtain
depth data, the data is often noisy and sparse. Therefore, surface reconstruction
obtained by methods[7][8][9] that simply interpolate points in stereo data, are
easily disturbed by noises. For effective surface reconstruction, we have to con-
sider a belief in surface reconstruction itself as well as the fitness of stereo data
to surfaces.

In this paper, we propose a method for reconstructing the surfaces of objects
from stereo data. The proposed method quantitatively defines not only the fitness
of stereo data to surfaces but also the connectivity and smoothness of the surfaces
in the framework of a 3-D MRF model. The surface reconstruction is employed
by searching for the most possible MRF’s state.

S. Singh et al. (Eds.): ICAPR 2005, LNCS 3687, pp. 434–443, 2005.
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Fig. 1 illustrates the outline of our method. First, a stereo camera system ob-
serves a target object (objects) to be recognized such as a box in the illustration,

Stereo camera system

Object

Volume of interest (VOI)

Cells

Solid Hollow Surface
{ } { }
{ }

...

...

...
...

...

Object models
 are generated
  in each cell.

An object model combination is made.

The most possible state of
 the object model combination is

  searched for.

...
...
...

Edges

Fig. 1. The overview of our method

and the 3-D positions of edges, which
correspond to feature points on the
object surfaces, are calculated by ap-
plying an edge-based stereo match-
ing method to stereo images taken
by the stereo camera system. Next,
the method sets a rectangular solid,
namely volume of interest (VOI), that
includes all the edges, and then divides
the VOI into Mx ×My ×Mz rectangu-
lar solids that are enough smaller than
the target object. The smaller rec-
tangular solids are called cells in this
method. In each cell, three types of ob-
ject models are generated: solid, hollow
and surface (the details are described
in Sec.2). The method makes a combi-
nation of these object models, and de-
fines a MRF’s posterior energy func-
tion which represents the possibility
of the appearance of the object model
combination. By changing the parame-
ters of the object models (such as the
positions and directions of the surface
models), the method searches for the
most possible models’ state that min-
imizes the energy function. The optimal state determines the surfaces that are
not only well fitted to the edges, but also connected smoothly with one another.

2 Object Models

The following three types of object models are used:

Solid: A solid model represents that the cell is completely included in space
occupied by a target object.

Hollow: A hollow model represents that the cell is completely excluded from
the object.

Surface: A surface model represents that the cell crosses the surface of the
object. The proposed method assumes that each cell has, at most, one surface
inside, and that the surface can be approximated by a single flat plane patch.
These assumptions would be reasonable because cells are enough smaller
than target objects. Fig. 2 illustrates an example of a surface model. One
side of the surface model corresponds to the inside of the target object, and
the other side corresponds to the outside of it.
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n

Q

Surface cell

Surface of object

Inside of object

Outside of object

Fig. 2. Surface model

Let Ls denote a cell at a site s. A surface model in Ls is represented by a
control point on the surface, Qs = (xs, ys, zs), and its normal vector ns. The
normal vector is set from inside to outside, and is represented by two angles
as follows:

ns = ns(φs,ψs), (1)

where φs and ψs are the azimuthal and zenith angles in the world coordinate
system, respectively.

Let Ps(SL), Ps(HL) and Ps(SF ) denote the probabilities of appearance of
solid, hollow and surface models in Ls, respectively. They satisfy the following
equation: ∑

o∈{SL,HL,SF}
Ps(o) = 1. (2)

3 Evaluation of Interrelationships Between Adjoining
Object Models

Objects – especially artificial objects – often have smooth (or flat) surfaces. To
reconstruct such objects from stereo data as accurately as possible, the connec-
tivity and smoothness of surfaces should be considered. In our method, they are
evaluated using interrelationships between object models that adjoin each other
in a 26 neighborhood system. This neighborhood system provides the six types
of pairs of adjoining object models as shown in Table 1. Some of them are consis-
tent, but the others not. In this section, the consistency of the interrelationships
are defined individually.

Table 1. Six types of pairs of adjoining object models

Solid Hollow Surface
Solid 1 3 4

Hollow 3 2 5
Surface 4 5 6

Let Lt∈N(s) denote an adjoining cell of Ls in the 26 neighborhood system N ,
and h(os, ot) the consistency of two adjoining object models: os ∈ {SL, HL,SF}



Surface Reconstruction from Stereo Data Using 3-D MRF Model 437

in a cell Ls and ot ∈ {SL, HL,SF} in its adjoining cell Lt∈N(s). h(os, ot) is de-
fined to vary in the following range: OK ≤ h(os, ot) ≤ NG, where OK and NG
represent that the pair is consistent and inconsistent with each other, respec-
tively.

3.1 Solid and Solid

This pair is consistent because it means that both the cells are within objects.
Therefore, h(SL,SL) = OK.

3.2 Hollow and Hollow

This pair is also consistent. h(HL, HL) = OK.

3.3 Solid and Hollow

This pair is not consistent because the inside of an object attaches to its outside
without any boundaries (i.e. surfaces). h(SL, HL) = NG.

3.4 Surface and Solid

The consistency of this pair varies depending on the parameters of the surface
model. Fig. 3 shows an example of an inconsistent pair. In this method, the
surface in the surface cell is straightly extended to the solid cell, generating the
dotted region as shown in the figure. The interpolation of the dotted region by
each object model is inconsistent. The consistency of the pair is defined using
the volume of such an inconsistent region as follows:

h(SF,SL) = (1 − rinc) ·OK + rinc ·NG, (3)

where rinc is the ratio of the volume of the inconsistent region to that of the
whole solid cell.

3.5 Surface and Hollow

The consistency of this pair is defined in the same way as Sec. 3.4.

Surface Solid

Outside

Inside

n
Inconsistent

Fig. 3. A pair of adjoining surface and solid models. The interpretation of the dotted
region is inconsistent with each other.
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Surface Surface

ns nt

Qs Qt

Fig. 4. A pair of adjoining surface models

3.6 Surface and Surface

Two adjoining surfaces would prefer to smoothly connect to each other. To
evaluate the connectivity and smoothness of adjoining surfaces, the following
two preliminary evaluation values are introduced (see Fig.4):

hpre
1 =

{
θ(ns, qst) − π

2

}2
+

{
θ(nt, qst) − π

2

}2
, (4)

hpre
2 = {θ(ns × qst, nt × qst)}2 , (5)

where qst is a vector from Qs to Qt, and θ(n1, n2) is an angle between n1 and
n2. The operator ‘×’ generates an outer product of two vectors.

These values vary in the following ranges:

0 ≤ hpre
1 ≤ π2

2
, (6)

0 ≤ hpre
2 ≤ π2. (7)

The more smoothly the surface models connect to each other, the closer these
preliminary values are to zero.

Using the preliminary evaluation values, the consistency of the pair is defined
as follows:

h(SF,SF ) = (1 − rhh) ·OK + rhh ·NG, (8)

where

rhh =
α · hpre

1 + β · hpre
2

α · π2

2 + β · π2
, (9)

α and β are weighting coefficients for the preliminary evaluation values.

4 Observation Model

The degree of the fitness of a point to a surface is often measured by an Euclidean
distance between them. Our method also uses an Euclidean distance to evaluate
the fitness of an edge obtained by stereo vision to a surface model. For the
obtained edges e(i) (i = 1, 2, ..., I), the following fitness function is used:

f(e(i),SF ) = {d(e(i),SF )}2, (10)

where d(e,SF ) is an Euclidean distance from the edge to the surface model.
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In addition, the method should also define the fitness of an edge to solid
and hollow models. An edge might fall into solid and hollow cells when the
determination of the edge position is disturbed by noises. The fitness functions
for edges in solid and hollow cells are simply defined as follow:

f(e(i),SL) = D2
long, (11)

f(e(i), HL) = D2
long, (12)

where Dlong is a constant value, and

d(e(i),SF ) < Dlong. (13)

In this method, all the edges are supposed to be independent of one another
and to be dependent only on the cells in which the edges exist.

5 Formulation of Possibility of Object Model
Combination Using 3-D MRF Model

The MRF models[10] are used to represent the probability distribution of the
values of a set of random variables. Each MRF value depends only on the values
of neighboring random variables. The MRF models are successfully applied to
image segmentation[11], object recognition[4], dynamic image processing[12], or
medical image processing[13], etc. Our method uses the MRF model to compute
the optimal state of the object models in the Mx ×My ×Mz cells.

Let ws be a vector that is composed of the eight parameters of the three
object models in Ls as follows:

ws =
(
Ps(SL), Ps(HL), Ps(SF ), xs, ys, zs,φs,ψs

)
, (14)

and Ws a random variable for ws. w and W are used to denote the sets of ws

and Ws, respectively.
Given a set of the independent edges e = {e(1), e(2), ...}, the most possible

parameters w∗ can be obtained by minimizing the following posterior energy
function:

U(w ∈ W |e) =
∑
c∈C

Vc(w) − λ · L(e|w), (15)

where C is a set of cliques of adjoining variables in the MRF, and Vc(w) measures
the potential (energy) of clique c under parameters w, L(e|w) is a likelihood
which evaluates the possibility that the edges e come from the object models of
the parameters w, and λ is a constant weighting coefficient. w∗ is the maximum a
posteriori (MAP) estimate of w. To search for w∗, the gradient decent method is
used with several initial conditions. For example, the cells facing to the cameras
are supposed to be hollow.

The definitions of clique potentials and edge likelihood are described below.
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5.1 Clique Potential

For efficiency concerns, our method only considers 1-cliques and 2-cliques which
are composed of a single MRF variable and two adjoining MRF variables, re-
spectively (in other words, Vc(w) = 0, c > 2).

A 1-clique consists of a single MRF variable(i.e. c = {os}), and its potential
is defined as follows:

V1(ws) = −
∑

os∈{SL,HL,SF}
Ps(os) log Ps(os). (16)

A 2-clique consists of two adjoining MRF variables (i.e. c = {os, ot∈N(s)}),
and its potential is defined as follows:

V2(ws,wt∈N(s)) =
∑

os,ot∈{SL,HL,SF}
Ps(os) · Pt(ot) · h(os, ot). (17)

5.2 Edge Likelihood

Let e
(i)
s denote an edge existing in Ls(i). The likelihood of the edge is defined

using the fitness function (described in Sec.4) as follows:

L(e|w) = −1
I

∑
i

∑
os(i)∈{SL,HL,SF}

Ps(os(i)) · f(e(i)
s , os(i)). (18)

6 Experimental Results

Three experiments are performed in this paper. One is carried out with artificial
depth data that are generated for quantitatively evaluation of the quality of
reconstructed surfaces. The others are done with range data obtained from actual
scenes.

6.1 Experiment 1

One hundred edges are artificially generated as follows:

(xm, yn, z) = (10m, 10n, 75 +N(σ)) , (19)

where m = 0, 1, ..., 9, n = 0, 1, ..., 9, and N(σ) is a gaussian random value with
mean 0.0 and standard deviation σ. If σ = 0, the edges are on a single plane.
2 × 2 × 2 cells are used for the edges.

Fig.5(a) and (b) show the results of surface reconstruction. The edges are
generated with σ = 5. The circle marks indicate the edges, and plane patches
indicate the reconstructed surfaces. In Fig.5(b), the surfaces are well fitted to
the edges even though the edges are widely distributed.

Fig.5(c) shows relationship between σ and the mean fitting errors, ē, of the
edges to the reconstructed surfaces. These errors can be mostly kept under the
corresponding σs.
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(a) Front view. (b) Top view.

0

8 e
-

10
σ

(c) Relationship.

Fig. 5. The results of surface reconstruction for artificial range data, and relationship
between noises in the range data (σ) and the fitting errors (ē).

6.2 Experiment 2

Fig. 6(a) and (b) show a pair of stereo images of an actual scene including a box,
and Fig. 6(c) shows depth data obtained from the stereo images. 9 × 7 × 7 cells
are used for the scene.

Fig. 6(d), (e) and (f) show the results of surface reconstruction. They are the
front, right and top view of the reconstructed box, respectively. Fig 6(f) confirms
that the two front surfaces of the box are reconstructed by the surface models.
In addition, all the solid and hollow cells are recognized correctly.

(a) Left (b) Right (c) Depth

(d) Front view. (e) Right view. (f) Top view.

Fig. 6. A pair of stereo images, their depth data(the depth is coded in gray values),
and the results of surface reconstruction.
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6.3 Experiment 3

Fig. 7(a) shows a (left) image of another scene that consists of a desk and wall.
Fig. 7(b) and (c) show the front and side view of reconstructed surfaces. Fig 7(c)
confirms that the surfaces of the desk and wall are reconstructed faithfully.

Wall

Desk

(a) Left. (b) Front view. (c) Side view.

Fig. 7. A (left) image of another scene, and the results of reconstruction.

7 Conclusion

This paper has described a novel method for reconstructing the surfaces of ob-
jects from stereo data. The connectivity and smoothness of surfaces and the
fitness of edges to the surfaces are formulated in the framework of the 3-D MRF
model, and the surface reconstruction is employed by searching for the most
possible MRF’s state. Three experimental results are shown.

The applicability of the 3-D MRF model is not limited to surface recon-
struction that is exemplified in this paper. We have also used the 3-D MRF
model for recognizing lung cancers in CT images that are volume data of human
bodies[14][15]. The concept of the 3-D MRF model can be widely applied to
various types of problems in 3-D object recognition.
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Abstract. This contribution shows how unsupervised Markovian seg-
mentation techniques can be accelerated when implemented on graphics
hardware equipped with a Graphics Processing Unit (GPU). Our strat-
egy exploits the intrinsic properties of local interactions between sites of
a Markov Random Field model with the parallel computation ability of
a GPU. This paper explains how classical iterative site-wise-update algo-
rithms commonly used to optimize global Markovian cost functions can
be efficiently implemented in parallel by fragment shaders driven by a
fragment processor. This parallel programming strategy significantly ac-
celerates optimization algorithms such as ICM and simulated annealing.
Good acceleration are also achieved for parameter estimation procedures
such as K-means and ICE. The experiments reported in this paper have
been obtained with a mid-end, affordable graphics card available on the
market.

1 Introduction

Image segmentation is generally understood as a mean of dividing an image into
a set of uniform regions. Here, the concept of uniformity makes reference to
image features such as color or lightness intensity. Among the existing classifi-
cation approaches proposed in the literature, segmentation models can roughly
be divided between feature-space based and image-space based families [1]. Be-
cause image-space based techniques incorporate information from the image to
be segmented and the segmentation map, the results they produce are generally
more precise, although at the cost of heavier computational loads.

Among the image-space based techniques are the Markovian algorithms [2,3]
which incorporate both image and spatial characteristics by using Markov Ran-
dom Fields (MRF) as a priori models. The first contribution in that field came
from Geman et al. [2] who proposed the concept of Maximum a Posteriori (MAP)
as image-space criteria. While some authors proposed ad-hoc MAP energy-based
functions, others used probabilistic functions to model the way the desired (hid-
den) label field is distributed. The shape of these probabilistic functions depends
on parameters that are either supposed to be known (or manually adjusted) or
estimated in a first step of processing. In the latter case, estimation algorithms

S. Singh et al. (Eds.): ICAPR 2005, LNCS 3687, pp. 444–454, 2005.
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such as Expectation Maximization (EM) or its stochastic Markovian extension
called Iterative Conditional Estimation (ICE) [4,5] have demonstrated their ef-
ficiency.

Markovian models are known to be flexible and precise. However, they are
also known to be slow, especially when implemented along with a stochastic
optimizer such as simulated annealing (SA) [6] and/or with a parameter esti-
mation step. Although some deterministic optimization algorithms such as ICM
[3] or HFC [7] dramatically reduce computation times, Markovian algorithms
are still far from being real-time. In this contribution, we show how processing
times of classical unsupervised Markovian segmentation algorithms can be signif-
icantly reduced when implemented on mid-end programmable graphics hardware
equipped with a Graphical Processor Unit (GPU). Although such graphics hard-
ware is built to process vertices, lights and textures in the context of image syn-
thesis, many applications beyond traditional graphics have been demonstrated to
run on GPUs [8,9,10]. Recently, some computer vision tasks, such as anisotropic
diffusion, segmentation by level-set and motion estimation were successfully im-
plemented on a GPU [10]. Parallel implementations of Markovian algorithms
applied to motion detection [11] and picture restoration [12] have been already
proposed in the past. Unfortunately, these methods were build upon dedicated,
expensive and sometimes obsolete architectures.

The rest of the paper is organized as follows. In Section 2, a review of the
Markovian segmentation theory is proposed while Section 3 and 4 present es-
timation and optimization algorithms. Section 5 gives a look to the graphics
hardware architecture and presents how a Markovian segmentation algorithm
can be implemented on such hardware. Finally, Section 6 and 7 show some ex-
perimental results and conclude.

2 Unsupervised Markovian Segmentation

Let X and Y be respectively the label field (the segmentation map to be esti-
mated) and the observation field (the input image to be segmented). Each field
is defined on a rectangular lattice of size N × M, represented by S = {s | 0≤s<
N ×M} where s is a site located at the Cartesian position (i, j). It is common
to represent a realization of a field with a low-case variable such as x or y. For
each site s ∈ S, xs takes a value in Δ = {e1, e2, ..., eN} and ys takes a value
in Γ = {ε1, ε2, ..., εζ} (ε1 = 0 and εζ = 255 for grayscale images and εi is a
3D vector with a value contained between (0, 0, 0) and (255, 255, 255) for color
images).

In the context of the MAP [2], the objective of a segmentation algorithm is to
estimate the best label field x given y or equivalently the optimal solution x̂MAP

which maximizes the posterior probability function P (X = x|Y = x) (written
P (x|y) to simplify notation). In accordance with Bayes theorem, the optimal
label field is obtained when

x̂MAP = argmax
x

P (y|x)P (x)
P (y)

(1)
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where P (y|x) is the likelihood, P (x) the prior and P (y) the evidence. Since P (y)
isn’t related to x, without lost of generality, this equation can be simplified to
x̂MAP = argmaxx P (y|x)P (x).

If X and Y are MRFs, according to the Hammersley-Clifford theorem, the
likelihood and prior probability functions have a Gibbsian shape, respectively,
P (y|x) ∝ exp{−W (x, y)} and P (x) ∝ exp{−V (x)}, where W (x, y) and V (x)
are energy functions. Incorporating these two Equations to the MAP framework
leads to the optimization formulation x̂MAP = argminx{W (x, y) + V (x)}. As-
suming that the noise in the observed image y is uncorrelated, since X and Y
are MRFs, the global energy functions W (x, y) and V (x) can be represented by
a sum of local energy functions

x̂MAP = arg min
x

∑
s∈S

{Ws(xs, ys) + Vηs(xs)} (2)

where ηs stands for the neighborhood around site s (in this contribution, we
use a second-order neighborhood). Vηs is a sum of potential functions of the
form Vηs =

∑
c∈Cs

Vc(xs), where Cs is the set of binary cliques linking s to sites
r ∈ ηs. Here, the Potts model was used to represent Vηs .

In the case of a probabilistic segmentation, input data ys is related to a
class xs according to a distribution P (ys|xs). Consequently, the energy function
Ws(xs, ys) has to be designed according to that distribution, namelyWs(xs, ys) ∝
− lnP (ys|xs). A very popular function used to model P (ys|xs) is the multidi-
mensional Gaussian distribution

P (ys|xs)=
1√

(2π)d|Σxs |
exp {−1

2
(ys−μxs)Σ

−1
xs

(ys−μxs)
T}

where d is the dimensionality of ys (d = 3 for color images and d = 1 for gray-
scale images) and (μxs ,Σxs) are the mean and variance-covariance of class xs.
Thus, the energy function of Eq. (2) can be written as

∑
s∈S

{1
2
(ln |Σxs | + (ys − μxs)Σ

−1
xs

(ys − μxs)
T)︸ ︷︷ ︸

Ws(xs,ys)

+Vηs(xs)
}
.

In the case of unsupervised segmentation, the Gaussian parameters Φ =
{(μi,σi) | 1≤ i<N} has to be estimated conjointly with x or preliminary to the
segmentation step. Many parameter estimation algorithms are available among
which EM, K-means and ICE [5] are the most popular.

3 Parameter Estimation

The two parameter estimation algorithms we have implemented are K-means
and ICE [5]. K-means is an iterative clustering method [4] that assumes in-
put data {ys} are distributed within K spherical clusters of equal volume. At
each iteration, every site s are assigned to the nearest cluster before a second
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Table 1. K-means and ICE algorithms. Here n, m ∈ [1, d]

1 μi ← random initialization , ∀μi ∈ Φμ

2 For each site s ∈ S
2a∗ xs ← arg minei∈Γ ||ys − μei ||2
3 μi ← 1

Ni xs=ei
ys , ∀μi ∈ Φμ

4 Repeat steps 2-3 until each mean μi no longer moves
5 Σnm

i ← 1
Ni xs=ei

(yn
s − μn

ei
)(ym

s − μm
ei

)∀Σi ∈ ΦΣ

1 Φ ← K-means
2 For each site s ∈ S
2a∗ P (ei|ys)= 1

Zs
exp {(W (ei, ys) + Vηs(ei))} ∀ei ∈ Γ

2b∗ xs ← according to P (xs|ys), randomly select ei ∈ Γ
3a μi ← 1

Ni xs=ei
ys ∀μi ∈ Φμ

3b Σnm
i ← 1

Ni xs=ei
(yn

s − μn
ei

)(ym
s − μm

ei
)∀Σi ∈ ΦΣ

5 Repeat steps 2-3 until Φ no longer changes

step re-estimates the center of mass of every cluster. The resulting K-means
clustering minimizes the sum-of-square error function

∑N
i=1

∑
xs=ei

||ys − μi||2
[4]. The variance-covariance of each cluster is estimated once the algorithm has
converged.

Because K-means is a deterministic algorithm, it is sensitive to noise and
is likely to converge toward local minima. Furthermore, its assumption that
all clusters are spherical with equal volume is simplistic an often unsuited to
some observed images. Thus, many authors suggest to refine Φ with a more
realistic model, less sensitive to noise and local minima such as the stochastic
ICE estimation algorithm. Details of this algorithm are presented in [5] while
Table 1 presents a version adapted to this paper.

4 Optimization Procedures

Because Eq. (2) has no analytical solution, it has to be solved with an optimiza-
tion algorithm such as simulated annealing (SA) [2] or ICM [3]. SA is a stochastic
algorithm built upon a temperature variable that slowly decreases toward zero
with time. If the cooling rate is small enough, this annealing schedule theoreti-
cally guarantees the convergence to the global MAP. The ICM algorithm is a hill
climbing deterministic algorithm that isn’t guarantied to converge toward global
minima. However, it is drastically faster than SA and generates fairly good re-
sults when properly initialized. As Besag mentioned [3], it can be understood as
an instantaneous freezing in SA. Both algorithms are presented in Table 2.

5 Graphics Hardware Architecture

Graphics hardware is highly optimized to solve traditional computer graphics
problems. Nowadays, graphics hardware is most of the time embedded on a
graphics card which can receive/send data from/to the CPU or the main mem-
ory via the system bus, be it PCI, AGP or PCIe. Most graphics hardware are
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Table 2. Simulated annealing and ICM algorithms

1 T ← TMAX

2 For each site s ∈ S
2a∗ P (ei|ys)= 1

Zs
exp 1

T
(W (ei, ys) + Vηs(ei)) , ∀ei ∈ Γ

2b∗ xs ← according to P (xs|ys), randomly select ei ∈ Γ
3 T ← T∗coolingRate
5 Repeat steps 2-3 until T ≤ TMIN

1 Initialize x (with ICE and/or K-means)
2 For each site s ∈ S
2a∗ xs = arg minei∈Γ (W (ei, ys) + Vηs(ei))
3 Repeat steps 2 until x stabilizes

designed to fit the so-called graphics processing pipeline [13,14]. This pipeline is
made of various stages which sequentially transform images and geometric input
data into an output image stored in a section of graphics memory called the
framebuffer. Part of the framebuffer (the front buffer) is meant to be visible on
the display device.

During the past few years, the major breakthrough came when the vertex
processing and fragment processing stages have been made programmable. These
two stages can now be programmed using C-like languages to process vertex and
fragments in parallel. Let us mention that a fragment is a per-pixel data structure
created at the rasterization stage and containing data such as color, texture
coordinates and depth. A fragment is meant to update a unique location in the
framebuffer. Because the GPU is a streaming processor (i.e. a processor with
inherent parallel processing abilities) mapping general computation problems to
its unique architecture becomes very interesting [10].

A fragment processor is designed to load and execute in parallel a program
(also called a shader) on each fragment generated during the rasterization stage
[13,15]. Thus, a fragment shader is executed whenever a graphics primitive such
as a polygon or a line is rendered. To be effective though, the shader must be
initially loaded, compiled and linked on the GPU. This is illustrated by the two
C/C++ programs of Table 31. The first algorithm represents an ICM program
whereas the second one represents a K-means program. The first section of these
programs (line 1 to 7 and line 1 to 10) is written in C/C++ and runs on the CPU.
This section essentially compiles, links and loads the shader, renders a graphics
primitive and manipulates texture memory. Its crucial to understand that the
shader (as opposed to traditional CPU programs) is loaded, compiled, linked
and executed during the runtime execution of the C/C++ program. The shader
(second section of Table 3) is launched on every fragment when the primitive
–here a rectangle polygon– is rendered (line 4 and 5). After the primitive has
been rendered, the results returned by the shaders is located in the framebuffer.
This buffer can be copied in another section of the graphics memory (line 6 of
the ICM code) or transfered back into central memory (line 7 of ICM code and

1 Although other CPU programming languages such as JAVA could be used, C and
C++ are by far the most widely utilized at the moment.
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Table 3. High level representation of ICM and K-means hardware programs. The
upper sections (line 1 to 7 and 1 to 10) are C/C++ CPU programs used to load the
shader, render the scene and manage textures. The lower sections (line 1-2) are the
fragment shaders launched on every fragment (pixel) when the scene is rendered (line
4 and 5).

1 Copy the input image y into texture memory.
2 Compile, link and load the ICM shader on the GPU.
3 Specify shader parameters (N, N , M, Φ for example).
4 Render a rectangle covering a window of size N × M
5 Copy the framebuffer into texture memory
6 Repeat steps 4 and 5 until convergence
7 Copy the framebuffer into a C/C++ array

if needed
1 x̂s ← arg minei∈Γ W (ei, ys) + Vηs(ei)
2 framebuffers ← x̂s

1 Copy the input image y into texture memory.
2 Compile, link and load the K-means shader on the GPU.
3 Φ ← Init Gaussian parameters.
4 Specify shader parameters (N, N , M and Φμ).
5 Render a rectangle covering a window of size N × M
6 E ← Copy the framebuffer into a C/C++ array.
7 μi ← 1

Ni Es=ei
ys, ∀μi ∈ Φμ

8 Repeat steps 4 to 7 until convergence.
9 Σnm

i ← Es=ei
(yn

s − μn
ei

)(ym
s − μm

ei
), ∀Σi ∈ ΦΣ

10 Copy the framebuffer into a C/C++ array if needed
1 xs ← arg minei∈Γ ||ys − μei ||2
2 framebuffers ← xs

lines 6 and 10 of K-means code). This last operation involves data traffic on the
system bus and thus induces significant latency.

5.1 General-Purpose Computation on the GPU

The fragment processor is better suited for image processing problems than the
vertex processor, simply because it is the only part of the graphics pipeline
that has access to both input memory (texture memory) and output memory
(the framebuffer). Although fragment shaders can be written in C-like languages
[13,15], they have some specificities as compared to ordinary C/C++ programs.
The most important ones are the following:

1. a fragment shader is made to process every fragment in parallel;
2. the only memory in which a fragment shader can write into is the write-only

framebuffer and depthbuffer;
3. the only data a fragment shader can read is contained in the texture memory,

in built-in variables or in user-defined variables. As such, it cannot read the
content of the framebuffer or the depthbuffer;
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4. since fragments are processed in parallel, fragment shaders cannot exchange
information. GPUs do not provide its shaders with access to general-purpose
memory.

With such specificities, minimizing a global Markovian energy function such
as Eq. (2) can be tricky. In fact, three main problems have to be overcome. The
first problem is to make sure the rasterization stage generates one fragment for
each pixel of the input image y. Such one-to-one mapping from the input pixels
to the output buffer is achieved by rendering a screen-aligned rectangle covering
a window with exactly the same size than the input image (see line 4 and 5 of
Table 3). In this way, the rasterization stage generates N × M fragments, one
for each input pixel ys.

The second problem comes from the fourth limitation. Since GPUs provide
no general-purpose memory, one might wonder how can the prior energy func-
tion Vηs have access to the labels xt contained in the (write-only) framebuffer.
This situation is handled by coping the framebuffer (i.e. the section of texture
memory containing the label field x computed after an iteration) into texture
memory (line 5 of ICM, Table 3). In this way, at the next iteration, the texture
memory (which can be read by the fragment shader) will contain the label field
x computed during the previous iteration. Thus, Vηs is computed with labels it-
eratively updated and not sequentially updated as it is generally the case. Such
strategy was already proposed by Besag [3]. As observed by some authors [11],
the difference between these two updating schemes is very narrow, although the
former might infer some small energy oscillations.

The last problem with shaders comes with their inability to generate ran-
dom numbers such as needed by the stochastic algorithms SA and ICE. As a
workaround, we generate an image containing random values at the beginning
of the CPU application. This random image is then copied in texture memory
where the shader can access it. Although this strategy isn’t as efficient as a
good random number generator, the results generated are very close to the ones
obtained with standard CPU programs.

5.2 ICM and SA on Graphics Hardware

As shown in Table 3, y is first copied into texture memory. A fragment program
is then launched on every pixel in order to solve Eq. (2) (line 4 of ICM, Table
3). The output labels are then copied in the framebuffer. Because the next ICM
iteration needs the newly computed label field to proceed, the framebuffer con-
tent is copied back to the texture containing the label field information. This
operation is extremely efficient because no data needs to be transmitted between
the GPU and the CPU. The SA method is implemented in a manner very similar
to the ICM algorithm, the only difference being that it requires a random func-
tion inside the fragment program. This situation is handled with the workaround
presented in the previous Section. Notice that because fragment programs can
only write in the framebuffer during a rendering pass, multiple rendering passes
are used to simulate ICM/SA iterations.
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5.3 K-Means and ICE on Graphics Hardware

Unlike the optimization methods, K-means and ICE are not perfectly suited
to a mapping to the GPU. While the first step of these algorithms (assigning
the best label xs to each image pixel, line 2a and 2a, 2b of Table 1) is perfectly
implementable in parallel, the second step (Gaussian parameters computation,
line 3 and 3a, 3b of Table 1) is not. As such, we have to take a simple hybrid
approach: execute line 2 on the GPU (parallel processing) and line 3 on the CPU
(sequential processing).

To do so, the input image y is first copied in texture memory so it is acces-
sible by the fragment processor. A fragment program is then activated for each
pixel that determines in parallel the best class ei for that pixel. The result is
then outputted in the framebuffer. Once every pixel have been assigned a label
(line 2), the Gaussian parameters for every class now need to be recomputed
(line 3). Because this operation can’t be parallelized, the framebuffer image con-
taining the current class of each pixel is read back to CPU memory, where the
computation takes place. Once the parameters are re-estimated, they are passed
back to the GPU after which a new iteration can begin. This hybrid approach
is illustrated by the K-means algorithm of Table 3.

6 Experimental Results

We first implemented the four algorithms presented in Section 3 and 4 in C++.
Then, we adapted these programs to the graphics hardware architecture by re-
placing with Cg code2 the instructions identified with a star (∗) in Table 1 and 2.
We used OpenGL to render the polygon and manage texture memory, and used
the Cg Runtime Library [15] to load, compile and link the fragment shader.
The software and hardware version of these programs run in the same C++
environment and thus, can be fairly compared.

The performances of each implementation was evaluated by varying the num-
ber of segmentation classes and the size of the images to be segmented. Process-
ing times have been obtained by averaging results obtained after segmenting
several grayscale and color images. The acceleration factor between the software
and hardware version of the programs is presented in Fig. 1. In the leftmost
graphics, the programs were launch over images of size ranging from 64 × 64
to 1024 × 1024 with a number of classes set to 4. In the other graphics, results
were obtained after segmenting images of size 256 × 256 with different number
of classes.

The SA parameters TMAX, TMIN and the cooling rate were respectively set
to 10.0, 0.05 and 0.99. This setting corresponds to a total of 500 iterations as
opposed to 10 iterations for K-means, ICE, and ICM. Let us note that the
number of iterations for the software and hardware implementations is exactly
the same. The results were obtained on a computer equipped with AMD Athlon
64 Processor 3200+ and an NVIDIA GeForce 6800 GT graphics card.
2 Cg is a C-like hardware language program developed by NVIDIA.
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Notice that the speedup factor between hardware and software version of
ICM and SA (between 20 and 120) is more important than the one for K-means
and ICE (between 2 and 8). This can be explained by the fact that bothK-means
and ICE algorithms have to exchange information (for the Gaussian parameter
estimation) with the CPU which is major bottleneck for such hardware programs.
Also, the speedup factor for K-means is larger than for ICE because ICE has
to estimate and invert the variance-covariance matrix which isn’t required for
K-means. This extra load on the CPU makes ICE less efficient than K-means.
Similarly, the speedup factor for SA and ICM is more important on color images
than on grayscale images. This is explained by the fact that the global energy
function of Eq. (2) is more expensive to compute for color images than for
grayscale images. Thus, parallelizing this costly CPU operation leads to a more
important acceleration factor. Notice that the acceleration factor is larger when
segmenting large images and/or segmenting images with many classes.

With our actual hardware implementation, a color image of size 128 × 128
is segmented in 4 classes at a rate of 76 fps for ICM, 1.4 fps for SA, 2.5 fps for
ICE and 14 fps for K-means. These frame rates do not however include the time
needed to load, compile and link the shaders which vary between 0.1 second and
5 seconds. Although this might seem prohibitive, the initialization step is done
only once at the beginning of the program. In this way, when segmenting more
than one image (or segmenting an image of size larger than 128 × 128), this
initialization time soon gets negligible as compared to the acceleration factor.
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Fig. 1. Acceleration factor for K-means, ICE, SA and ICM obtained on grayscale and
color images.
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7 Conclusion

This paper exposed how Markovian algorithms devoted to image segmentation
can be significantly accelerated when implemented on programmable graphics
hardware. Even if GPUs were built to process traditional graphics primitives, we
demonstrated how fragment programs can be adapted to the context of Markov-
ian estimation and optimization algorithms such as K-means, ICE, ICM and
SA. The acceleration factor between software and hardware implementation was
more impressive for the optimization algorithms (between 20 and 120) than the
estimation ones (between 2 and 8). Results have shown that remarkably fast
optimization was achievable, especially over large images and/or with a large
number of classes.

As future work, we plan to implement on graphics hardware energy-based
computer vision tasks such as motion estimation, motion segmentation and stere-
ovision. Because these tasks can be defined on a Markovian framework similar
to the one presented in this paper, we have good reasons to believe that the
hardware version of these algorithms will be more efficient that its software
counterpart. We also look forward to implement and compare the most popular
optical flow techniques on graphics hardware (Horn and Schunck, Lucas Kanade,
Anandan, etc.[16]).
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Abstract. Many applications such as image compression, pre-proces-
sing or segmentation require some information from the regions compos-
ing an image. The main objective of this paper is to define a methodology
to extract some local information from an image. Each region is charac-
terized in terms of homogeneity (region composed with the same grey-
level or a single texture) and its type (textured or uniform). The decision
criterion is based on the use of classical texture attributes (cooccurrence
matrix and grey-levels moments) and a support vector machine in order
to realize the fusion of the different attributes. We then characterize each
region considering its type by appropriate features.

1 Introduction

Many images such as outdoor scenes or satellite images contain textured regions.
In many domains of image processing (adaptive compression, identification of the
blur degradation or adaptive segmentation), the knowledge of the global nature
of an image, the localization and the characterization of the regions (textured or
uniform) can contribute to the development of some adaptive processing meth-
ods [11].

Many methods have been proposed to detect textured and uniform regions
in an image [15]. This is usually achieved by considering the standard deviation
of the grey levels. This approach has the major drawback of not taking into
account the grey level distribution of the image and for this reason some errors
might occur. Many texture attributes can participate in the characterization of
the textured areas of an image [14], [2], [6], [16], such as for example statistical
moments, local histograms [9] and grey level cooccurrence parameters [4]. An
evaluation of texture measures was made in [1] for ground cover identification
and logical operators could be used for texture classification [8], [13].

In order to extract some a posteriori information (homogeneous or inhomo-
geneous region) and to adapt some image processing algorithms, we propose an
approach for the localization and characterization of textured and uniform areas
in an image. Each region is described in terms of homogeneity and type of prim-
itive. The fusion of different texture attributes improves the characterization of
a region. This paper offers the possibility to obtain a complete image or region
characterization. This paper is organized as follows. Section 2 presents the local
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characterization method. Section 3 gives some experimental results on a large
image database. Finally, some conclusions about this work are given in section 4.

2 Developed Method

The determination of the type of a region in an image is a very important step
for image analysis. A region is then described using appropriate features (see
Figure 1).

Fig. 1. Local image analysis

2.1 Image Database

We used two image databases. The first one was composed of 1.950 homogeneous
images of size 128× 128 pixels containing one region (with stationary statistics)
: 100 textures with low and high contrast [3] , 50 textures at different orien-
tations [3], 500 textures extracted from Oulu’s University texture database1,
100 textures extracted from the MeasTex’s database 2, 100 uniform images with
grey level between 0 and 255, 100 uniform images with impulse noise between
0 and 100%, 500 uniform images with white Gaussian additive noise with dif-
ferent values of the standard deviation {5, 10, 20, 30, 40, 50, 60, 70, 80, 90}, 500
uniform images with white Gaussian multiplicative noise with different values
of the standard deviation {5, 10, 20, 30, 40, 50, 60, 70, 80, 90}. The second data-
base contained 300 inhomogeneous images with 2 to 5 regions of different types:
textured [3] and uniform with Gaussian noise.

2.2 Texture Attributes

We use different classical texture attributes from the literature. Two kinds of
features were tested, 15 derived from the cooccurrence matrix [7] and 4 grey
level moments [10] (see Table 1).

1 http://www.outex.oulu.fi/
2 http://www.cssip.uq.edu.au/meastex/www/for images.html
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Table 1. Texture attributes

A1 Angular Second Moment A11 Difference Entropy
A2 Contrast A12 Information Measures of Correlation 1
A3 Correlation A13 Information Measures of Correlation 2
A4 Sum of Squares : Variance A14 Information homogeneity
A5 Inverse Difference Moment U Trace of the cooccurrence matrix
A6 Sum Average M1 Average grey level
A7 Sum Variance M2 Standard deviation
A8 Sum Entropy M3 Dissimilarity
A9 Entropy M4 Kurtosis
A10 Difference Variance

In order to identify the ability of these texture attributes to define the type
of a region, we studied the evolution of these attributes on each image database.
First of all, we tried to answer the following question: can we distinguish a texture
from a uniform region? In this case, we worked on the first image database
composed of homogeneous images. The second question was as follows: can we
quantify how much texture an in-homogeneous image has?

2.3 Case 1: Homogeneous Image

The homogeneous image database was composed of 1950 images. A few examples
of this database are given in figure 2. The goal of this study is to determine the
type of each image namely textured or uniform. For each attribute, we compute
the correlation factor with a ground truth which contained the value 0 in the
case of a uniform image and the value 1 in the case of a texture. The closer the
absolute value of the correlation factor is to 1, the more relevant is the attribute
for texture detection. Some results are presented in table 2.

Fig. 2. Examples of homogeneous images

Table 2 highlights the correct behavior of an attribute to detect texture : A03
and A13 (the A13 attribute uses the computation of A03). The A03 attribute
corresponds to the computation of the grey-levels correlation in the image. Fig-
ure 3 shows the values of the A03 attribute on the homogeneous image database.
First 750 images are textured and the following ones are uniform or noisy. As
we can see in this case, noisy uniform and textured images can be easily distin-
guished by a threshold for example of 0.1.
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Table 2. Correlation factor of the various texture attributes compared to a ground
truth in the homogeneous case

A01 A02 A03 A04 A05 A06 A07 A08 A09 A10
-0,2329 -0,2016 0,9649 0,0954 -0,0556 0,3436 0,2798 0,3719 0,2139 -0,1776

A11 A12 A13 A14 U M1 M2 M3 M4
-0,0138 -0,8265 0,8981 -0,1594 -0,1594 0,0126 -0,1057 0,0047 -0,1472

Fig. 3. Value of the A03 attribute on the homogeneous image database

2.4 Case 2: Inhomogeneous Image

The inhomogeneous image database (composed of 2 or more regions) was made
up of 4 sets of 300 images from 2 to 5 regions. Each of these sets contained three
images subsets: 100 images with uniform noisy regions only, 100 images with
textured and uniform noisy regions, 100 images with textured regions only. A
few examples of this image database are given in figure 4. The tested attributes
are the same as in the previous section (A0 to A14, U and M1 to M4). The
comparison was also carried out by the correlation factor compared to a ground
truth which contained the value 0 in the case of uniform images, 1 in the case
of mixed images and 2 in the case of textured images.

Table 3 highlights the correct behavior of two criteria to recognize the nature
of an image : A05 and U. The A05 attribute corresponds to a calculation of the
transition of the grey levels and U is the percentage of transitions of the same
grey levels.

Figure 5 shows the values of the attributes A05 and U for the inhomogeneous
image database. The 2-region images are presented from 1 to 300, the 3-region
images from 301 to 600, the 4-region images from 601 to 900 and the 5-region
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Fig. 4. Examples of inhomogeneous images

Table 3. Correlation factor of the various attributes compared to a ground truth in
the inhomogeneous case

A01 A02 A03 A04 A05 A06 A07 A08 A09 A10
0.1929 -0.1150 0.2032 0.1438 0.5457 -0.1528 0.1534 0.2933 -0.0209 0.0726

A11 A12 A13 A14 U M1 M2 M3 M4
-0.2773 -0.3840 0.4307 0.5390 0.5390 -0.4341 -0.0478 0.1748 0.0114

Fig. 5. Value of the A05 and U attributes on the inhomogeneous image database

images from 901 to 1200 . The first 100 images of each database correspond
to uniform images, the next 100 correspond to mixed images, and the last 100
correspond to textured images.

As we can see in Figure 5, these data are nearly separated, but it seems
difficult to have a 100% correct separation for this image database. In order to
achieve this goal, we suggest using a support vector machine for the recognition
of the different types of images.
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2.5 Recognition by a Support Vector Machine

Let us suppose we have a training set {xi,yi} where xi is the texture attributes
vector describing a region or an image represented by its type yi in the learn-
ing database. The goal of supervised classification is to identify the type of a
local image area. For two classes problems, yi ∈ {−1, 1}, the Support Vector
Machines implements the following algorithm. First of all, the training points
{xi}, are projected in a space H (of possibly infinite dimension) by means of a
function Φ(·). Then, the goal is to find an optimal decision hyperplane in this
space, in the sense of a criterion that we will define shortly. Note that for the
same training set, different transformations Φ(·) lead to different decision func-
tions. A transformation is achieved in an implicit manner using a kernel K(·, ·).
Consequently, the decision function can be defined as :

f(x) = 〈w,Φ(x)〉 + b =
�∑

i=1

α∗
i yiK(xi,x) + b (1)

with α∗
i ∈ R. The values w and b are the parameters that define the linear

decision hyperplane. In the proposed system, we used a polynomial kernel of
order 2. In SVMs, the optimality criterion to maximize is the margin, that is the
distance between the hyperplane and the nearest point Φ(xi) of the training set.
The α∗

i allowing to optimize this criterion can be defined by solving the following
problem: ⎧⎪⎪⎨

⎪⎪⎩
maxαi

∑�
i=1 αi − 1

2

∑�
i,j=1 αiαjyiK(xi,xjyj)

with constraints,
0 ≤ αi ≤ C ,∑�

i=1 αiyi = 0 .

(2)

where C is a penalization coefficient for data points located in or beyond the
margin and provides a compromise between their numbers and the width of
the margin. Originally, SVMs have essentially been developed for two classes
problems (yi ∈ {−1, 1}). However, several approaches can be used for extending
SVMs to multiclass problems. The method we used in this communication, is
called one against one. Instead of learning N decision functions, each class is dis-
criminated here from another one. Thus, N(N−1)

2 decision functions are learned
and each of them makes a vote for the affectation of a new point x. The class of
this point x becomes then the majority class after the vote.

3 Experimental Results

In order to be able to classify an area according to its characteristics, the 19
attributes (previously defined) were calculated on a database of 3.450 images.
To evaluate the performances of characterization of an image, 5 classes of images
were first defined: homogeneous uniform, homogeneous textured, inhomogeneous
uniform, inhomogeneous textured and inhomogeneous with uniform and textured
regions. The global image database has been cut out in a training database and
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(a)

(b)

Fig. 6. Correct classification rate for a (a) coarse and (b) precise image characterization

a test one. The images of the training database were selected randomly among
the 3.450 images and the remainder made up the test database. We present in
Figure 6 (a) the correct classification rate according to the size of the training
database. In this case, with a training database composed of only 300 images, we
obtained a correct classification rate of 90%. If we now consider a more precise
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characterization, we use 14 classes instead of 5. In this case an image with 2
regions is distinguished from an image with 3 regions. The obtained results are
presented in Figure 6 (b). Figure 6 shows, with a training database of 300 images,
we already have a correct classification rate equal to 85%. If we increase the size
of the training database, the efficiency is about 90% to end with a 94% correct
classification rate if we use the complete training database.

4 Conclusions

We propose in this paper a methodology for image characterization. We com-
bined the classical texture attributes and a support vector machine to identify
the type of a region or an image. The experimental results on a large and signif-
icant image database show good results. We have a 100% correct classification
rate to detect texture in a homogeneous image. In the case of an inhomogeneous
image, we have a 94 to 98% correct classification rate depending on the desired
precision.

Prospects for this work concern the application of the proposed approach
to adaptive segmentation and compression. When the region is recognized as
uniform or noisy, we would compute the average and the standard deviation of
the grey levels. As for textured regions, we can compute a texture model [12]
for the description of the type of texture (deterministic or stochastic) and its
granularity (macroscopic or microscopic).
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Abstract. The goal of this work is to propose a criterion for the evalu-
ation of ultrasound image compression. We want to measure the image
quality as easily as with a statistical criterion, and with the same re-
liability as the medical assessment. An initial psychovisual experiment
is proposed to medical experts, and represents our reference value for
the comparison of the evaluation criteria. Several statistical criteria are
selected from the literature. We define a cumulative absolute similarity
measure as a distance between the criterion to evaluate and the reference
value. A fusion method by a genetic algorithm is proposed to improve
the results obtained by each criterion separately. We show the benefit of
fusion through some experimental results.

1 Introduction

The European project OTELO (mObile Tele-Echography using an ultra-Light
rObot) allows an ultrasound expert to perform an echography examination on
a remotely located patient with a teleoperated probe-holder robot. For such an
emergency telemedicine application, a low bandwidth and real time examination
are the main technical constraints of the system. Due to the reduced available
bandwidth of some communication links, an image compression is needed to
deliver, from the patient’s station to the expert’s station, ultrasound images
of ’acceptable’ quality and in real time. In the framework of a robotized tele-
echography, ultrasound images are compressed at the patient station and sent to
the specialist. These received images are the only feedback information available
to the medical expert to remotely control the distant robotized system [1]. The
diagnosis made by the specialist strongly depends on the quality of these images.
This work has been realized in the framework of the European project OTELO
where we had to choose an image compression technique and an evaluation
method of the global performances of this compression technique.

There are several methods to evaluate the quality of an image. In the image
processing literature, the most frequently used measures are the mean square
error (MSE) and the peak signal to noise ratio (PSNR)[2]. They are part of
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the pixel difference-based distortion measures set, and they are very popular
due to their mathematical facility. Others criteria can also be found such as
statistical measures: Linfoot, based on the power spectral density [3] or the
Moran-I statistics [4]. The important drawback of this kind of criterion is the
fact that it does not always correspond to the human visual system (HVS), which
corresponds to an observer’s visual perception.

Image quality, especially in medical specialty, is traditionally evaluated with
a visual test where experts examine a large set of images and score each one on
its quality (contrast, details) and its distortion. The most common psychovisual
study is the Receiver Operating Characteristics Curves method (ROC method)
[5] [6]. Such tests are time and human consuming and they need a large database
of images to test. These qualitative and subjective evaluations may depend on
the medical speciality. Psychovisual tests require a strict protocol which is very
difficult to implement.

If the mathematical criteria can easily offer a tool to evaluate the quality of a
compressed image with respect to the original ultrasound image, the evaluation
of a medical image echography diagnosis remains dependent on the specialist’s
ability to detect potential pathologies in one given image. This subjective element
in the clinical diagnosis has led us to define a psychovisual test whose results
are our absolute reference. The goal of this work is to study the behavior of
several statistical criteria compared to a clinical evaluation. Statistical measures
are easy to use but are not always as reliable as the expert’s judgement. The
idea is to determine if a combination of these criteria allows an improvement of
the evaluation quality.

Section 2 presents the evaluation of compressed ultrasound images firstly by
a psychovisual test. In section 3, we analyse the ability of 21 statistical criteria to
reproduce the expert’s judgment. Section 4 shows the definition of a new criterion
by combining the best criteria in order to improve the evaluation quality. The
conclusion is discussed in section 5.

2 The Psychovisual Evaluation: The Expert Reference

We performed a study to evaluate the quality of ultrasound image compression
according to psychovisual measures. The survey was performed on 15 ultrasound
images, each one was compressed with 5 different techniques. We then have a
database composed of 75 compression results. The goal of this work is not to
compare the performance of these compression methods, but to quantify the
specialist’s perception of the image quality.

The test was held following a rigorous protocol regarding the lighting condi-
tions around the examinee:

• the intensity of light falling on the video monitor and on the examinee’s face
is measured using an incident type exposure meter and set to 8.5 + / − 0.5
and 10 + /− 0.5, respectively.

• we use a single monitor for all the examinees, its contrast is fixed, its reso-
lution is set to 1024x768 at 32 bits/pixel.
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Fig. 1. Test interface presented to the medical expert

The whole test is composed of a sequence of 15 different screens. Each screen
presents, for one particular image, the original image and 5 compression results.
An illustration of such a screen is presented in figure 1.

The experts have to compare and sort from worst to best the compressed
ultrasound images with respect to the original one. A score ranging from 1 to 5
is given from worst to best quality, respectively. The test campaign was held in
October 2004 and involved 13 medical experts (10 practiced the complete test),
all specialized in ultrasonography. For each compression result, we measured the
score average value given by the experts. We also analysed for the whole data 15
sorting results, which is a permutation of {1, 2, 3, 4, 5}. The standard deviation
of the expert’s scores for one compression result is a value between 0 (case when
all the experts give the same score) and 2 (case when 5 experts select rank 1 and
the 5 others score 5). The average standard deviation measured on these results
is equal to 0.67. The 0.67 value shows that most of the experts agreed on the
quality of a given image; their answers were homogeneous and the results were
consistent.

3 Statistical Quality Criteria

The advantage of a psychovisual method, such as the one developed in the pre-
vious section, is that the results are closely related to the medical expertise.
However, this is a very time and manpower consuming approach. We studied
some statistical criteria and compared them with respect to the results of the
previous psychovisual test. We selected different types of criteria: distance mea-
sures, denoted Dx ; correlation measures Cx ; spectral measures Sx ; PSNR
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Table 1. Statistical criteria chosen for the study

D1 Minkowsky - Mean absolute error S3 Block spectral magnitude error
D2 Minkowsky - Mean square error S4 Block spectral phase error
D3 Minkowsky - Modified infinity norm S5 Block spectral phase-magnitude error
D4 Neighborhood error - 8 neighbours S6 Block spectral error
D5 Neighborhood error - 24 neighbours P1 Peak signal to noise ratio
D6 Multiresolution error T1 Contrast measure
C1 Normalized cross correlation H1 Absolute norm Human Visual System
C2 Image fidelity H2 L2 norm Human Visual System
C3 Czekonowski correlation H3 similarity
S1 Spectral phase error H4 DCTune error
S2 Spectral phase-magnitude error

measure P1 ; contrast measure T1 ; human visual system based measures Hx.
These criteria are real valued and have different ranges [7] (see table 1).

As we have relative measures, we can compare the quality of different com-
pression results. The criteria are sorted according to their own variation (e.g. the
PSNR values are ranked from their highest to their lowest values, the Minkowski
errors are ranked from their lowest to their highest values). For each screen of
the psychovisual study, the 5 compression results are sorted according to the
average score given by the medical experts. Given this sorting, we can extract
10 comparisons results for each pair of compression results given by the medical
experts and by using an evaluation criterion.

In order to define the similarity between each criterion and our reference
given by the experts’ scores, an absolute difference is measured between the
criterion comparison and the expert’s one. We define the cumulative similarity
of correct comparison (SCC):

SCC =
15∑

k=1

10∑
i=1

|A(i, k) − B(i, k)| (1)

where A(i, k) and B(i, k) are respectively the expert and the criterion results
for the ith comparison of page k. A comparison result is a value in {−1, 1}. If
a compression result is better than another one, the comparison value is set to
1 otherwise it equals -1. In order to more easily compare this error measure, we
also define the similarity rate of correct comparison (SRCC), which represents
the absolute similarity of comparison referenced to the maximal value :

SRCC = (1 − SCC

SCCmax
) ∗ 100 (2)

where SCCmax corresponds to the biggest difference of the 150 comparison re-
sults. In our case, SCCmax = 150 ∗ 2 = 300.

Figure 2 presents the value of SRCC for each evaluation criterion. We can
distinguish that the four best criteria are D5, T1, S2 and S1. We can reach in
this case a maximal value of 65.3%. That means that this criterion is able to
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Fig. 2. Efficiency of each evaluation criterion to reproduce the expert’s judgment

reproduce the ability of a medical expert to compare two compression results in
65.3% cases. One can notice that the PSNR criterion that is very often used for
the comparison of compression results is only ranked at the 9th place.

We will now try to fuse different criteria in order to improve these results.

4 Fusion of Criteria

A possible method consists in combining linearly the best criteria. When com-
bining N criteria, the goal is then to determine the optimal values (ai, i = 1..N)
of a linear combination of the criteria values giving the closest behavior to the
medical assessment. The new criterion Cr is defined as:

Cr =
N∑

i=1

ai.Cri (3)

where Cri is the ith criterion defined in the previous section. We propose here
to use again the similarity rate of correct comparison computed on the 75 com-
pression results. The optimization method we use is a genetic algorithm.

Genetic algorithms determine solutions of functions by simulating the evo-
lution of a population until the survival of the best fitted individuals [8]. The
survivors are individuals obtained by crossing-over, mutation and selection of
individuals from the previous generation. A genetic algorithm is defined by con-
sidering five essential data:

1. Genotype: a set of characteristics of an individual such as its size. A vector
of linear coefficients (a, b, c, d) is considered as an individual (in the case of
four criteria to fuse).

2. Initial population: a set of individuals characterized by their genotypes. It is
composed of a set of random values of parameters.
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3. Fitness function: this function quantifies the fitness of an individual to the
environment by considering its genotype. We take a similarity rate of cor-
rect comparison (SRCC) with the expert’s evaluation on the 75 compression
results.

4. Operators on genotypes: they define alterations on genotypes in order to eval-
uate the population during generations. There are three types of operators:

– Selection of an individual: individuals that are not adapted to the envi-
ronment do not outlive to the next generation. We used the normalized
geometric ranking selection method which defines a probability Pi for
each individual i to be selected:

Pi =
q(1 − q)r − 1
1 − (1 − q)n

(4)

where
q : the selection probability of the best individual
r : the rank of the individual, where 1 is the best
n : the population size

(5)

– Individual mutation: the genes of an individual are modified in order
to better adapt to the environment. We use the Non-Uniform mutation
process which randomly selects one chromosome j, and sets it equal to a
non-uniform random number:

x′i =
{
xi + (bi − xi)f(G) if r1 < 0.5
xi − (xi + ai)f(G) if r1 ≥ 0.5 (6)

where

f(G) = (r2(1 − G
Gmax

))b

r1, r2 : uniform random numbers in[0, 1]
ai, bi : minimal and maximal values of the chromosome xi

G : the current generation
Gmax : the maximum number of generations
b : a shape parameter

(7)

– Crossing-over: two individuals can reproduce by combining their genes.
We use the arithmetic crossover which produces two complementary lin-
ear combinations of the parents:

X ′ = rX + (1 − r)Y
Y ′ = (1 − r)X + rY

(8)

where

X,Y : genotype of the parents
r : a uniform random number in[0, 1]
X ′,Y ′ : genotype of the linear combination of the parents.

(9)

The crossing-over is tested during x tries. If after x tries, none child is
better if considering the fitness function, the parents X and Y stay to
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the next generation. Otherwise, the crossing-over creates two children
X ′ and Y ′ and the parents do not survive. The number of individuals in
the population is still constant.

5. Stopping criterion : this criterion allows to stop the evolution of the popu-
lation. We choose to consider the stability of the standard deviation of the
evaluation criterion of the population.

Given these five information, the execution of the genetic algorithm is realized
in four steps:

1. definition of the initial population and computation of the fitness function
of each individual,

2. selection and crossing-over of individuals of the population,
3. evaluation of individuals in the population,
4. back to step 2 if the stopping criterion is not satisfied.

5 Experimental Results

We used a population of size 20.000 and 1000 iterations. The mutation proba-
bility is set to 0.05 (that is to say that 5% of the 20.000 individuals will mute at
each generation), the selection probability is set to 0.08 (8% of the individuals
are selected to survive at the next generation) and the crossing-over is tested
during 20 tries.

Figure 3 (a) presents the evolution of the similarity rate of comparison by
merging different criteria. Given a number N of criteria to fusion, we take the
N best criteria derived from the previous analysis. For example, by merging the
three best criteria , we obtain a similarity rate of comparison equal to 72%. The
envelop curve corresponds to a minimum value we should have obtained. It is
built, for each number of criteria merged, as the maximum obtained with the
current criteria and with all the last ones. Indeed, the evolution of the similarity
rate should necessarily increase. If we have defined the optimal value with N
criteria, the optimal value with N + 1 criteria should be as high as with N
criteria because we can take for the N + 1 linear coefficient criteria the value 0.
We can explain this difference with the expected behavior by the fact that we
did not use enough individuals in the population or iterations. In this case, the
global optimal value is not reached.

Figure 3 (b) shows the results of the fusion when using the criterion selec-
tion. In this case, instead of only determining the N linear coefficients, we also
determine the best criteria to use. For N criteria to fusion, we have to determine
2.N values by using the previous genetic algorithm. In this case, we obtain a
higher value of the similarity rate of correct comparison (75.3%).

We used the toolbox GAOT [8] in c©Matlab as implementation of the genetic
algorithm. The determination of the linear coefficients and the criteria given a
number of criteria takes about 4 minutes (training phase) on a PC c©Pentium 4
(2 Ghz).
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Fig. 3. Fusion results: (a) without criterion selection, (b) with criterion selection

6 Conclusions

We expose in this paper a comparison of some evaluation criteria to quantify the
quality of image compression. We implemented a psychovisual study involving
10 medical experts to identify the statistical criteria having the best behavior
compared to the medical assessment. This study allows us to select three cri-
teria among the 21 tested ones : neighborhood error (24 neighbors), contrast
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measure and spectral phase-magnitude error. The best similarity rate obtained
with a single criterion is 65.3%. A genetic algorithm performs the criteria fu-
sion in order to improve, with a significant effect, the evaluation efficiency. The
proposed criterion provides a higher value of the similarity rate of correct com-
parison (75.3%) improving significantly the possibility to evaluate the quality
of compression results. A prospect for this study is to use this criterion for the
comparison of ultrasound image compression best fitted for a mobile robotized
tele-echography system.
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Abstract. In this paper, we propose a method for 3D model indexing
based on 2D views, named AVC (Adaptive Views Clustering). The goal
of this method is to provide an optimal selection of 2D views from a 3D
model, and a probabilistic Bayesian method for 3D model retrieval from
these views. The characteristic views selection algorithm is based on an
adaptive clustering algorithm and using statistical model distribution
scores to select the optimal number of views. Starting from the fact
that all views do not contain the same amount of information, we also
introduce a novel Bayesian approach to improve the retrieval. We finally
present our results and compare our method to some state of the art 3D
retrieval descriptors on the Princeton 3D Shape Benchmark database.

1 Introduction

The use of three-dimensional image and model databases throughout the Internet
is growing both in number and size. The development of modeling tools, 3D
scanners, 3D graphic accelerated hardware, Web3D and so on, is enabling access
to three-dimensional materials of high quality. In recent years, many systems
have been proposed for efficient information retrieval from digital collections of
images and videos. However, the solutions proposed so far to support retrieval of
such data are not always effective in application contexts where the information is
intrinsically three-dimensional. A similarity metric has to be defined to compute
a visual similarity between two 3D models, given their descriptions.

For example, Kazhdan et al. [1] describe a general approach based on spheri-
cal harmonics. From the collection of spherical functions calculated on the voxel
grid of the 3D object, they compute a rotation invariant descriptor by decom-
posing the function into its spherical harmonics and summing the harmonics
within each frequency. Then, they compute the L2-norm for each component.
The result is a 2D histogram indexed by radius and frequency.

In 3D retrieval using 2D views, the main idea is that two 3D models are
similar, if they look similar from all viewing angles. Funkhouser et al. [2] apply

S. Singh et al. (Eds.): ICAPR 2005, LNCS 3687, pp. 473–483, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



474 T.F. Ansary, M. Daoudi, and J.-P. Vandeborre

view based similarity to implement a 2D sketch query interface. In the prepro-
cessing stage, a descriptor of 3D model is obtained by 13 thumbnail images of
boundary contour as seen from 13 view directions. Using aspect graphs, Cyr
and Kimia [3] specify a query by a view of 3D objects. A descriptor of 3D model
consists in a number of views of the 3D models. The number of views is kept
small by clustering views and by representing each cluster with one view, which
is represented by a shock graph. Schiffenbauer [4] presents a complete survey of
aspect graphs methods. Using shock matching, Macrine et al. [5] apply indexing
using topological signatures vectors to implement view based similarity match-
ing more efficiently. Recently, Chen et al. [6] defend the intuitive idea that two
3D models are similar if they also look similar from different angles. Therefore
they use 100 orthogonal projections of an object and encode them by Zernike
moments and Fourier descriptors. They also point out that they obtain better
results than other well-known descriptors. Tangelder and Veltkamp [7] present
a complete survey on 3D shape retrieval.

In this paper, we propose a method for 3D model indexing based on 2D views,
named AVC (Adaptive Views Clustering). The goal of this method is to provide
an optimal selection of 2D views from a 3D model, and a probabilistic Bayesian
method for 3D models indexing from these views. This paper is organised in the
following way. In section 2, we present the main principles of our method for
characteristic views selection. In section 3, we present the Bayesian Information
Criteria (BIC). In section 4, our probabilistic 3D models indexing is presented.
Finally, the results obtained from a collection of 3D models are presented showing
the performances of our method. We compare our method to some state of the
art 3D retrieval descriptors on the Princeton 3D Shape Benchmark database.

2 Selection of Characteristic Views

Let Db = {M1,M2, . . . ,MN} be a collection of N three-dimensional models. We
wish to represent each 3D model Mi by a set of 2D views that best represent
it. To achieve this goal, we first generate an initial set of views from the 3D
model, then we reduce it to the only views that best characterise the 3D model.
This idea comes from the fact that all the views of 3D model do not have equal
importance: there are views that contain more information than others.

In this paragraph, we present our algorithm for characteristic views selection
from a three-dimensional model.

2.1 Generating the Initial Set of Views

To generate the initial set of views for a model Mi of the collection, we create
2D views (projections) from multiple viewpoints. These viewpoints are equally
spaced on the unit sphere. In our current implementation, there are 320 views.
The views are silhouettes only, which enhance the efficiency and the robustness of
image metric. Orthogonal projection is applied in order to speed up the retrieval
process and reduce the size of the used features. To represent each of these 2D
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views, we use 49 coefficients of Zernike moment descriptor [8]. Consequently to
the use of Zernike moments, the approach is robust against translation, rotation
and scaling.

2.2 Characteristic Views Selection

As every 2D view is represented by 49 Zernike moment coefficients, choosing
a set of characteristic views that best caraterise the 3D models (320 views), is
equivalent to choose a subset of points that represent a set of 320 points in
49 dimensions space. The problem of choosing X characteristic views that best
represent a set of N = 320 views, is well known as clustering problem.

Data clustering is a well known problem in the Mathematical and Computer-
Science communities. The literature in this domain is huge. One of the widely
used method is K-means [9]. Its attractiveness lies in its simplicity and in its
local-minimum convergence properties. However, it has one main shortcomming:
the number of clusters K has to be supplied by the user.

As we want from our method to adapt the number of characteristic views to
the geometrical complexity of the 3D model, using K-means is not suited. To
avoid this problem, we use a method derivative from K-means. Instead of a fixed
number of clusters, we propose to use a range in which we will choose the best
number of clusters. In our case the range will be [1, . . . , 40]. In this paper, we
assume that the maximum number of characteristic views is 40. This number of
views is a good compromise between speed, descriptor size and representation.

We proceed now to demonstrate how to select the characteristic views set and
also how to select the best K within the given range. In essence, the algorithm
starts with K equal to 1 and continue to add characteristic views where they
are needed until the upper bound is reached. During this process, for each K,
we save the characteristic views set.

To add new characteristic views we used the idea presented in X-means clus-
tering method by Dan Pelleg [10]. In a first step, in every cluster of views rep-
resented by a characteristic view, we select two views that have the maximum
distance in this cluster. Next, in each cluster of views, we run a local K-means
(with K = 2) for each pair of selected views. By local we mean that only the
views that are in the cluster are used in this local clustering.

At this point, a question arises: ”are the two new views giving more in-
formation on the region than the original characteristic view?”. To answer this
question, we use Bayesian Information Criteria (BIC) [11], that scores how likely
the representation model (using one or two characteristic views) is fitting the
data. Other criteria like Akaike Information Criteria (AIC) [12] could also be
used. It appears to be some debate on the relative merits of AIC versus BIC,
but this discussion is far behind the scope of this paper. Estimating the BIC
score will be discussed in the next section.

According to the outcome of the test, the model with the higher score is
selected. These clusters of the views which are not represented well by the current
centroids will receive more attention by increasing the number of centroids in
them.
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We continue alternating between global K-means and K-means on clusters
owned by characteristic views until the upper bound for characteristic views
number is attained. Then we compare the BIC score of each characteristic views
set. Finally, the best characteristic views set will be the one that gets the highest
BIC score on all the views. Algorithm 1 gives an overview of the characteristic
views selection algorithm.

Algorithm 1. Characteristic views selection algorithm
Number of characteristic views = 1
while Number of characteristic views < Maximum number characteristic views do

Make global K-means on all the views (The start centers are the characteristic
views).
Save the characteristic views set and it’s BIC Score.
for all cluster of views do

Make K-means (with K=2) on the cluster.
Choose the representation with the higher BIC score. The original characteristic
view or the two new characteristic views
Update the number of characteristic views.

end for
end while
Select the K and the characteristic view set with the higher BIC score.

3 Bayesian Information Criteria

To calculate the BIC score for a representation model Modj having the cluster
of views V , we use the formula introduced by Schwarz [11]:

BIC(Modj) = l̂j(V ) − Pj

2
log N . (1)

With Pj the number of parameters in Modj . This is also know as the Schwarz
criterion [11]. l̂j(V ) is the log-likehood of the data according to the j-th model
and taken at the maximum likelihood point. N is the number of views in the
cluster N = |V |. In our case the models are all spherical Gaussians which is
the type assumed by K-means. The Maximum Likehood Estimate (MLE) for
variance is:

θ̂2 =
1

N −K

∑
i
(Dist(Vi,V ci)2) . (2)

With Dist(Vi,V ci) the Euclidean distance between the Zernike moments of
the respective views Vi and V ci, the characteristic view associated with the view
Vi. The log-likehood of the data is:

l̂j(V ) =
∑

i
(

1√
2πθ̂49

− 1

2θ̂2
‖ Dist(Vi,V ci)‖2 + log

N(i)

N
) . (3)

Figure 1 shows the evolution of the BIC score with the number of views.
Theses curves show that an optimal number of views exists where the BIC score
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Fig. 1. Two models from the database and their corresponding BIC Score curves

is maximised. For the aeroplane model in figure 1(a), the number of optimal
views is 29. For the car model in figure 1(c), only 17 views are needed as the 3D
model is less complex then the first one. This is comming from the fact that the
more the 3D model is geometrically complex, the more its 2D views are different.
This leads to a higher number of views to best represent it.

4 Probabilistic Approach for 3D Indexing

Each model of the collection Db is represented by a set of characteristic views
V = {V1,V2, . . . ,VC}, with C the number of characteristic views. To each char-
acteristic view corresponds a set of represented views called Vr. Considering a
3D request model Q, we wish to find the model Mi ∈ Db which is the closest
to the request model Q. This model is the one that has the highest probability
P (Mi/Q). Knowing that each model is represented by its characteristic views,
P (Mi/Q) can be written:

P (Mi|Q) =
∑C

k=1
P (Mi|V k

Q)P (V k
Q |Q) . (4)

With C the number of characteristic views of the model Q. Let H be the set
of all the possible hypotheses of correspondence between the request view V k

Q

and a model Mi, H = {hk
1 ∨hk

2 ∨ . . .∨hk
N}. A hypothesis hk

p means that the view
p of the model is the view request V k

Q . The sign ∨ represents logic or operator.
Let us note that if an hypothesis hk

p is true, all the other hypotheses are false.
P (Mi|V k

Q) can be expressed by P (Mi|Hk). We have:

P (Mi|Hk) =
∑N

j=1
P (Mi,V

j
Mi

|hk
j ) . (5)

The sum
∑N

j=1P (Mi,V
j
Mi

|hk
j ) can be reduced to the only true hypothesis

P (Mi,V c
j
Mi

|Hk
j ). In fact, a characteristic view from the request model Q can

match only one characteristic view from the model Mi. We choose the charac-
teristic view with the maximum probability.

P (Mi|Q) =
∑K

k=1
Maxj(P (Mi,V

j
Mi

|hk
j ))P (V k

Q |Q) . (6)
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Using the Bayes theorem we obtain:

P (Mi|Q) =
K∑

k=1

Maxj(
P (hk

j |V j
Mi

,Mi)P (V j
Mi

|Mi)P (Mi)∑N
i=1

∑K
k=1 P (hk

j |V j
Mi

,Mi)P (V j
Mi

|Mi)P (Mi)
)P (V k

Q |Q) .

(7)
With P (M) the probability to observe the model M .

P (Mi) = αe(−α.|Mi|)/
∑ i=1

i=N |Mi|) . (8)

Where |Mi| is the number of characteristic views of the model Mi. α is a
parameter to hold the effect of the probability P (Mi). The algorithm conception
makes that, the more complex is the geometry of the 3D model, the greater is
the number of its characteristic views. Indeed, simple object (e.g. a cube) are
more frequent and got more probability of appearance then complex ones. This
kind of object can be at the root of more complex objects.

On the other hand:

P (V j
Mi

|Mi) = 1 − βe(−β.N(V rj
Mi

)/320) . (9)

WhereN(V rj
Mi

) is the number of views represented by the characteristic view
j of the model M . The greater is the number of represented views N(V rj

Mi
),

the more the characteristic view V j
Mi

is important and the best it represents
the three-dimensional model. The β coefficient is introduced to reduce the effect
of the view probability. We use the values α = β = 1/100 which give the best
results during our experiments.

The value P (hk
j |V j

Mi
,Mi) is the probability that, knowing that we observe

the characteristic view j of the model Mi, this view is the k view of the 3D query
model Q:

P (hk
j |V j

Mi
,Mi) = 1 −D(Qk,h

V
j
Mi

) . (10)

With Dhq,h
V

j
Mi

the Euclidean distance between the 2D Zernike descriptors

of the view k of the request model Q and V j
Mi

the characteristic view j of the
three-dimensional model Mi.

In this section, we have presented our Bayesian retrieval framework, which
takes into account the number of characteristic views of the model and the
importance (amount of information) of its views. In the following section we
present the results of experiments made by our method on Princeton 3D Shape
Benchmark database [13].

5 Experiments and Results

We implemented the algorithms, described in the previous sections, using C++
and the TGS OpenInventor libraries. The system consists in an off-line charac-
teristic views extraction and an on-line retrieval process. In the off-line process,
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the characteristic views selection takes about 18 seconds per model on PC with a
Pentium IV 2.4 GHZ CPU. In the on-line process, the comparison takes less then
1 second for 1814 3D models. To measure the performance, we used a standard
benchmark database: the Princeton 3D Shape Benchmark [13]. The database
contain 1814 models manually classified into 161 classes. Figure 2 shows a

Fig. 2. Screenshot of the 3D models retrieval system

request using our 3D retrieval system. On the left side, the request 3D model
is presented. The right side shows the 3D models which have the higher proba-
bilities of matching the 3D request model. We use several different performance
measures to objectively evaluate our method: the First Tier (FT), Second Tier
(ST), Nearest Neighbour (NN), E-Measure, Discounted Cumulative Gain (DCG)
and Normalised Discounted Cumulative Gain (N-DCG) match percentages, as
well as the recall-precision plot [13]. As mentioned in the introduction, we com-
pared our method to state of the art descriptors, Spherical Harmonics [1], Ra-
dialized Spherical Extent Function(REXT) [14], Gaussian Euclidean Distance
Transform (GEDT) [1] and Light Field Descriptor (LFD) [6].

In our experiment, we use each of the five shape matching algorithms to
compute distances between all pairs of models in the test and analyse them with
the Princeton 3D Shape Benchmark evaluation tools to quantify the matching
performance with respect to the classification.

Every model was normalised for size by isotropically rescalling it so that the
average distance from points on its surface to the center of mass is 0.5. Then, all
the models was normalised for translation by moving its center of mass to the
origin.

Figure 3 shows the recall precision plots for our method AVC and the other
shape descriptors. Table 1 shows micro averages storage requierement (for our
method, we used 23 views that is the average number of views for all the database
models) and retrieval statistics for each algorithm. Storage size is given in bytes.
We found that micro and macro-average results gave consistent results, and we
decided to present micro-averaged statistics.
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We find that the shape descriptors based on 2D views (LFD and our method)
provides the best retrieval precision in this experiment. We might expect shape
descriptors that capture 3D geometric relationships would be more discriminat-
ing than the ones based solely on 2D projections, the opposite is true. However,
our method and the LFD takes more time to compare than the other descriptors,
since it requires searching over multiple possible image correspondances.

We can notice that our method provides more accurate results with the use
of Bayesian probabilistic indexing. The experiment shows that our method gives
better performances then 3D harmonics, Radialized Spherical Extent Function
and Gaussian Euclidean Distance Transform on the Princeton 3D Shape Bench-
mark database. Light Field Descriptor gives better results than our method but
uses 100 views, does not adapt the number of views to the geometrical complexity
and uses two descriptors for each view (Zernike moments and Fourier descrip-
tor), which make it slower and more memory consuming descriptor compared to
the method we presented.

Overall, we can conclude that our method gives a good compromise between
quality (relevance) / cost (memory and online comparaison time) between the
shape descriptors we compared to.
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Fig. 3. Recall Precision on Princeton 3D Shape Benchmark database

In order to assess the robustness of our method, we apply the following
transformations for all classified 3D models. Each transformed 3D model is then
used to query the test database.

The average recall and precision of all the 1814 classified models are used for
the evaluation (figure 5). The robustness is evaluated by the following transfor-
mation:

1. noise: each vertex of 3D model is applied three random number to x-, y- and
z-axis translation (±15% times of the length of the model’s bounding box).
Figure 4(b) shows a typical example of the noise effect;

2. decimation: for each 3D model, randomly select 20% polygons to be deleted.
Figure 4(c) shows a typical example of the effect.
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Table 1. Retrieval performances

Methods Discrimination
Storage size NN FT ST E-Measure DCG N-DCG

LFD 4,700 65.7% 38.0% 48.7% 28.0% 64.3% 21.3%
AVC with proba 1,113 60.6% 33.2%44.3% 25.5% 60.2%13.48%

REXT 17,416 60.2% 32.7% 43.2% 25.4% 60.1% 13.3%
GEDT 32,776 60.3% 31.3% 40.7% 23.7% 58.4% 10.2%

AVC without proba 1,113 58.2%31.1%42.7% 25.1% 59.9% 11,8%
Spherical Harmonics 2,184 55.6% 30.9% 41.1% 24.1% 58.4% 10.2%

(a) orginal 3D model (b) noise (c) decimation

Fig. 4. Robustness evaluation of noise and decimation from a 3D model
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Experimental results of the robustness evaluation is shown in Figure 5. These
experimental results prove that our approach is robust against noise and deci-
mation.

6 Conclusion

In this paper, we propose a 3D model retrieval system based on characteristic
views similarity called AVC (Adaptive Views Clustering). Starting from the fact
that the more the 3D model is geometrically complex, the more its 2D views are
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different, we propose a characteristic views selection algorithm that corresponds
the number of views to its geometrical complexity. Our approach is based on
alternating global k-means and adding new characteristic views where needed.
The characteristic views set with the higher BIC score is choosed to represent
the 3D model. The number of views varies from 1 to 40. We also propose a new
probabilistic retrieval approach that takes into account that not all the views of
3D models have the same importance, and also the fact that geometrically simple
models have more probability to be relevant than more complex ones. Based on
some standard measures, experiments and comparaison to some state of the art
methods on Princeton 3D Shape Benchmark database, show the accurate results
of our approach. The AVC method we proposed gives a good quality/cost com-
promise compared to other well-known methods. Our method is robust against
noise and model degeneracy. It can be suitable against topologically ill-defined
3D models. A practical 3D models retrieval system based on our approach will
be soon available on the web for on-line tests.

Acknowledgments

This work is supported by the French Research Ministry and the RNRT (Réseau
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Abstract. A fast and robust type of unsupervised multispectral tex-
ture segmentation method with unknown number of classes is presented.
Single decorrelated monospectral texture factors are represented by four
local autoregressive random field models recursively evaluated for each
pixel and for each spectral band. The segmentation algorithm is based
on the underlying Gaussian mixture model and starts with an over seg-
mented initial estimation which is adaptively modified until the optimal
number of homogeneous texture segments is reached. The performance of
the presented method is extensively tested on the Prague segmentation
benchmark using nineteen most frequented segmentation criteria.

1 Introduction

Segmentation is a fundamental process affecting the overall performance of an
automated image analysis system. Image regions, homogeneous with respect to
some usually textural measure, which result from a segmentation algorithm are
analysed in subsequent interpretation steps. Texture-based image segmentation
is area of intense research activity in recent years and many algorithms were
published in consequence of all this effort. These methods are usually catego-
rized [1] as region-based, boundary-based, or as a hybrid of the two. Different
published methods are difficult to compare because of lack of a comprehensive
analysis together with accessible experimental data, however available results
indicate that the texture segmentation problem is still far from being solved.
Spatial interaction models and especially Markov random fields-based models
are increasingly popular for texture representation [2], [1], [3], etc. Several re-
searchers dealt with the difficult problem of unsupervised segmentation using
these models see for example [4], [5], [6], [7] or [8], which is also addressed in this
paper.

2 Texture Representation

Static smooth multispectral textures require three dimensional models for ad-
equate representation. However if we slightly compromise spatial-spectral cor-
relations description these textures can be represented by a set of simpler 2D

S. Singh et al. (Eds.): ICAPR 2005, LNCS 3687, pp. 484–491, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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data models with fewer parameters per model. Natural texture data space can
be decorrelated only approximately thus the independent spectral component
representation suffers with some loss of image information. Because the segmen-
tation is less demanding application than texture synthesis, it is sufficient if
such a representation maintains discriminative power of the full model even if
its visual modelling strength is imperceptibly compromised.

Spectral factorization using the Karhunen-Loeve expansion transforms the
original centered data space θ indexed on the rectangular M ×N finite lattice
I into a new data space with K-L coordinate axes Ȳ . This new basis vectors
are the eigenvectors of the second-order statistical moments matrix

Φ = E{ỸrỸ
T
r }

where the multiindex r has two components r = [r1, r2], the first component
is row and the second one column index, respectively. Components of the trans-
formed vector Ȳr are mutually uncorrelated. If we assume further on Gaussian
distribution of vectors Ȳr then they are also independent, i.e.,

p(Ȳr) =
n∏

k=1

p(Ȳr,k)

and single monospectral random fields can be represented independently.

2.1 Texture Factor Model

We assume that single monospectral texture factors (Yr = Ȳr,k) can be modelled
using a causal autoregressive random field model (CAR). The 2D CAR model can
be expressed as a stationary causal uncorrelated noise driven 2D autoregressive
process [9]:

Yr = γXr + er , (1)

where γ = [a1, . . . , aη] is the parameter vector, Ic
r is a causal neighborhood

index set with η = card(Ic
r ) and er is a white Gaussian noise with zero mean

and a constant but unknown variance σ2, Xr is a corresponding vector of the
contextual neighbours Yr−s and r, r− 1, . . . is a chosen direction of movement
on the image index lattice I.

The selection of an appropriate CAR model support (Ic
r ) is important to

obtain good texture representation. An optimal neighbourhood can be found
analytically using the Bayesian approach ([9]). The Bayesian parameters esti-
mation of a CAR model can be found analytically also under few additional
and acceptable assumptions. The recursive Bayesian parameter estimation of
the causal AR model with the normal-gamma parameter prior which maximize
the posterior density is [9]:

γ̂T
r−1 = γ̂T

r−2 +
V −1

x(r−2)Xr−1(Yr−1 − γ̂r−2Xr−1)T

(1 + XT
r−1V

−1
x(r−2)Xr−1)

, (2)
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where

Vx(r−1) =
r−1∑
k=1

XkXT
k + Vx(0) .

Local texture for each pixel is represented by four parametric vectors per spectral
band (r3 = 1, 2, . . . , n, for colour textures n = 3). Each parameter vector con-
tains local estimations of CAR model parameters. These models have identical
contextual neighbourhood Ic

r but they differ in their major movement direction
(top-down, bottom-up, rightward, leftward), i.e.,

γ̃T
r,r3

= {γ̃t
r,r3

, γ̃b
r,r3

, γ̃r
r,r3

, γ̃l
r,r3

}T .

The parametric space Θ̃ is subsequently smooth out and its dimensionality is
reduced using the Karhunen-Loeve feature extraction (analogously to the spec-
tral space decorrelation). Finally we add the average local spectral values ζr,i

to the resulting feature vector (Θr).

3 Mixture Model Based Segmentation

Multi-spectral texture segmentation is done by clustering in the CAR parameter
space Θ defined on the lattice I where

Θr = [γr,1, ζr,1, γr,2, ζr,2, . . . γr,n, ζr,n]T .

γr,i is the parameter vector (2) computed for the i-th transformed spectral
band for the lattice location r. We assume that this parametric space can be
represented using the Gaussian mixture model (GM) with diagonal covariance
matrices due to the CAR parametric space decorrelation. The Gaussian mixture
model for CAR parametric representation is as follows:

p(Θr) =
K∑

i=1

pi p(Θr | νi,Σi) , (3)

p(Θr | νi,Σi) =
|Σi|− 1

2

(2π)
d
2

e − (Θr −νi)
T Σ

−1
i

(Θr−νi)
2 . (4)

The mixture model equations (3),(4) are solved using a modified EM algorithm.
The algorithm is initialized using νi,Σi statistics estimated from the corre-
sponding rectangular subimages obtained by regular division of the input texture
mosaic. An alternative initialization can be random choice of these statistics. For
each possible couple of rectangles the Kullback Leibler divergence

D (p(Θr | νi,Σi) || p(Θr | νj ,Σj)) =
∫

Ω

p(Θr | νi,Σi) log
(

p(Θr | νi,Σi)
p(Θr | νj ,Σj)

)
dΘr

(5)
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is evaluated and the most similar rectangles, i.e.,

{i, j} = argmin
k,l

D (p(Θr | νl,Σl) || p(Θr | νk,Σk))

are merged together in each step. This initialization results in Kini subimages
and recomputed statistics νi,Σi . Kini > K where K is the optimal number
of textured segments to be found by the algorithm. Two steps of the EM al-
gorithm are repeating after initialization. The components with smaller weights
than a fixed threshold (pj <

0.1
Kini

) are eliminated. For every pair of compo-
nents we estimate their Kullback Leibler divergence (5). From the most similar
couple, the component with the weight smaller than the threshold is merged to
its stronger partner and all statistics are actualized using the EM algorithm.
The algorithm stops when either the likelihood function has negligible increase
(Lt − Lt−1 < 0.05) or the maximum iteration number threshold is reached.

The parametric vectors representing texture mosaic pixels are assigned to
the clusters according to the highest component probabilities, i.e., Yr is assigned
to the cluster ωj if

πr,j = maxj

∑
s∈Ir

ws p(Θr−s | νj ,Σj) ,

where ws are fixed distance-based weights, Ir is a rectangular neighbourhood
and πr,j > πthre (otherwise the pixel is unclassified). The area of single cluster
blobs is evaluated in the post-processing thematic map filtration step. Thematic
map blobs with area smaller than a given threshold are attached to its neighbour
with the highest similarity value. If there is no similar neighbour the blob is
eliminated.

4 Experimental Results

The algorithm was tested on natural colour textures mosaics from the Prague
Texture Segmentation Data-Generator and Benchmark [10]. The benchmark test
mosaics layouts and each cell texture membership are randomly generated and
filled with colour textures from our large (more than 1000 high resolution colour
textures) colour texture database. The benchmark ranks segmentation algo-
rithms according to a chosen criterion. We have implemented three groups of
criteria – region-based [11], pixel-wise [12], [13] and consistency measures [14].
The region-based [11] performance criteria mutually compare ground truth (GT)
image regions with the corresponding machine segmented regions (MS). They
are the correct, oversegmentation, undersegmentation, missed and noise crite-
ria, i.e., correct > 75% GT (ground truth) region pixels are correctly assigned,
oversegmentation > 75% GT pixels are assigned to a union of regions, underseg-
mentation > 75% pixels from a classified region belong to a union of GT regions,
missed (GT in none of the previous categories) and noise (MS in none of the
previous categories). Our pixel-wise criteria group contains the most frequented
classification criteria such as the omission and commision errors, class accuracy,
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Table 1. Benchmark criteria: CS = correct segmentation; OS = over-segmentation;
US = under-segmentation; ME = missed error; NE = noise error; O = omission error;
C = commision error; CA = class accuracy; CO = recall – correct assignment; CC =
precision – object accuracy; I. = type I error; II. = type II error; EA = mean class
accuracy estimate; OA = overall accuracy; MS = mapping score; RM = root mean
square proportion estimation error; CI = comparison index; GCE = Global Consistency
Error; LCE = Local Consistency Error.

Prague Segmentation Benchmark – Colour
presented method GMRF method [8] Blobworld [15] EDISON [16]

CS 46.24 32.43 15.73 12.68
OS 76.21 50.76 1.16 86.93
US 3.81 14.23 10.25 0.00
ME 7.66 13.19 67.95 2.48
NE 9.59 16.19 71.58 4.65

O 7.03 8.76 9.36 14.83
C 0.83 3.22 7.03 0.17
CA 27.04 23.87 21.10 16.05
CO 68.54 62.23 54.00 31.55
CC 96.05 87.47 70.64 98.09

I. 31.46 37.77 46.00 68.44
II. 1.11 4.38 9.69 0.24
EA 76.10 66.10 56.29 41.29
OA 68.54 62.23 54.00 31.55
MS 66.07 54.91 35.37 31.13
RM 3.56 5.45 8.17 3.21
CI 78.83 69.64 59.00 50.29

GCE 8.52 16.56 38.29 3.54
LCE 5.55 8.69 27.28 3.43

recall, precision, etc. Finally the last criteria set incorporates the global and local
consistency errors [14].

Tab. 1 compares the overall benchmark performance of the proposed algo-
rithm (segmentaton time 11 min/img on the Athlon 2GHz processor) with the
Blobworld [15] (30 min/img), Edison [16] (10 s/img) and our previously pub-
lished method [8] (55 min/img), respectively. These results demonstrate very
good pixel-wise, correct region segmentation and low undersegmentation prop-
erties of our method while the oversegmentation results are only average. For all
the pixel-wise criteria or the consistency measures our method is either the best
one or the next best with marginal difference from the best one.

Fig. 1 shows four selected 512×512 experimental benchmark mosaics created
from five to eleven natural colour textures. The last three columns demonstrate
comparative results from three alternative algorithms. Hard natural textures
were chosen rather than synthesized (for example using Markov random field
models) ones because they are expected to be more difficult for the underlying
segmentation model. The second column demonstrates robust behaviour of our
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algorithm but also infrequent algorithm failures producing an oversegmented
thematic map for some textures. Such failures can be corrected by more elaborate
postprocessing step. The Blobworld [15] and Edison [16] algorithms on these data
performed steadily worse as can be seen in the last two columns of Fig. 1, some
areas are undersegmented while other parts of the mosaics are oversegmented.
Resulting segmentation results are promising however comparison with other
algorithms is difficult because of lack of sound experimental evaluation results
in the field of texture segmentation algorithms. The overall accuracy of pixel-
wise correct segmentation for this example is 69%. This result can be further
improved by an appropriate postprocessing.

Fig. 1. Selected experimental texture mosaics from the benchmark, our segmentation
results (2. column), GMRF method [8] (3.column), Blobworld [15] (4. column), and
Edison [16] segmentation results (rightmost column), respectively.

5 Conclusions

We proposed novel efficient and robust method for unsupervised texture seg-
mentation with unknown number of classes based on the underlying CAR and
GM texture models. Although the algorithm uses the random field type model it
is extremely fast because it uses efficient recursive parameter estimation of the
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model and therefore is much faster than the usual Markov chain Monte Carlo
estimation approach. Usual handicap of segmentation methods is their lot of
application dependent parameters to be experimentally estimated. Our method
requires only a contextual neighbourhood selection and two additional thresh-
olds. The algorithm’s performance is demonstrated on the extensive benchmark
tests on natural texture mosaics. It performs favorably compared with three al-
ternative segmentation algorithms and it is faster than our previously published
GMRF method. These test results are encouraging and we proceed with more
elaborate postprocessing and some alternative texture representation models
such as an alternative 3D CAR random field model.
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Abstract. A new object-based image retrieval (OBIR) scheme is introduced.
The images are analyzed using the recently developed, human-based 11 colors
quantization scheme and the color correlogram. Their output served as input for
the image segmentation algorithm: agglomerative merging, which is extended to
color images. From the resulting coarse segments, boundaries are extracted by
pixelwise classification, which are smoothed by erosion and dilation operators.
The resulting features of the extracted shapes, completed the data for a <color,
texture, shape>-vector. Combined with the intersection distance measure, this
vector is used for OBIR, as are its components. Although shape matching by it-
self provides good results, the complete vector outperforms its components, with
up to 80% precision. Hence, a unique, excellently performing, fast, on human
perception based, OBIR scheme is achieved.

1 Introduction

More and more, the world wide web (www), databases, and private collections are
searched for audio, video, and image material. Subsequently, As a consequence, there
is a pressing need for efficient, user-friendly, multimedia retrieval and indexing tech-
niques. However, where speech and handwriting recognition algorithms are generally
applicable, image and video retrieval systems are only successful in a closed domain.
These techniques have in common they are computational expensive and their results
are judged as non-intuitive by its users.

In this paper, these drawbacks are tackled, for the field to content-based image re-
trieval (CBIR). An object-based approach on CBIR is employed: object-based image
retrieval (OBIR), inspired by the findings of Schomaker, Vuurpijl, and De Leau [1],
who showed that 72% of the people are interested in objects when searching images.

S. Singh et al. (Eds.): ICAPR 2005, LNCS 3687, pp. 492–501, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Moreover, a human-centered approach is chosen, based on the 11 color categories used
by humans in color processing, as described in Section 2. These 11 color categories are
also utilized for texture analysis, as discussed in Section 2.1, and for image segmenta-
tion, done by agglomerative merging (see Section 3.1). From the resulting, coarse image
segments, the shape of the object is derived using pixelwise classification (Section 3.2).
Next, erosion and dilation operations are applied on the boundary in order to smooth it,
as described in Section 3.3. Section 3 introduces the shape matching algorithm. OBIR
is conducted using four query schemes (see Section 5): two of them are based on color
and texture, one on the object boundaries, and one on their combination. The results are
presented in Section 6 followed by a discussion in Section 7.

2 Color and Texture in 11 Categories

As mentioned by Forsyth and Ponse [2]: “It is surprisingly difficult to predict what
colors a human will see in a complex scene.” However, it is known that humans use
11 color categories (red, green, blue, yellow, orange, brown, pink, purple, black, white,
and gray) when processing color. These 11 color categories are considered universal and
optimal [3,4]. These categories should, therefore, be: (i) generic, (ii) computationally
cheap, and (iii) can be expected to yield results that are intuitive for users. Then these
advantages support the aim of tackling the computational burden of CBIR (cf. QBIC
uses a scheme with 4096 colors [5]) and to provide intuitive results for the users [6].
Therefore, we adopted the 11 color quantization scheme [7]: a unique color space seg-
mentation, based on data gathered through experiments in which subjects categorized
colors into the 11 color categories. So, the color distribution of images is characterized
by a color vector with 11 color values.

Besides color, texture is an important feature for the human visual system [8]. Tex-
ture analysis can be done based on intensity differences, but nevertheless, color is im-
portant in texture recognition of color image material. With respect to color represen-
tation, Fujii, Sugo, and Ando [8] stated that “considering the effective computational
strategy in our visual system, it is quite possible that not all the information carried
out by the high-dimensional sensory representation is preserved for rapid judgments of
natural textures.” Taken this into account, the 11 color category quantization scheme
should perfectly fit the job, and is, therefore, applied to color-based texture analysis.

For the analysis of texture, various methods are available, such as: statistical meth-
ods (e.g., co-occurrence matrices and autocorrelation features), geometrical methods
(e.g., Voronoi tessellation features and structural methods), model based methods (e.g.,
random field models and fractals), and signal processing methods (e.g., spatial domain
filters, Fourier domain filtering, Gabor models, and Wavelet models). Originally, they
were developed for gray-value images but some of them have recently been adapted to
fit texture analysis on color images.

2.1 The Color Correlogram

For the current research, one of the most intuitive texture analysis methods is applied:
the color correlogram, as suggested by Huang, Kumar, Mitra, Zhu, and Zabih [9], which
is constructed from an image by estimating the pairwise statistics of pixel color. In order
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to (i) provide perceptual intuitive results and (ii) reduce the computational cost, the 11
color scheme for quantization of color is chosen.

The color correlogram Cd̄(i, j) counts the co-occurrence of pixels with colors i
and j at a given distance d̄. The distance d̄ is defined in polar coordinates (d,α), with
discrete length and orientation. In practice, α takes the values 0◦, 45◦, 90◦, 135◦, 180◦,
225◦, 270◦, and 315◦. The color correlogram Cd̄(i, j) can now be defined as follows:

Cd̄(i, j) = Pr(I(p1) = i ∧ I(p2) = j | |p1 − p2| = d̄), (1)

where Pr is probability and p1 and p2 are positions in the color image I. Let N be the
number of colors in the image, then the dimension of the color correlogram Cd̄(i, j)
will be N × N , which is in our scheme 11 × 11. This algorithm yields a symmetric
matrix. Hence, only angles up to 180◦ need to be considered. A direction insensitive
color correlogram can be defined for each distance (d) by averaging the four color
correlograms of the different angles (i.e., 0◦, 45◦, 90◦, and 135◦).

From the color correlogram, a large number of textural features can be derived, such
as: energy, entropy, correlation, inverse difference moment, inertia, Haralick’s correla-
tion, cluster shade, and cluster prominence, which characterize the content of the im-
age. Based on previous research [10], the combination of entropy, inverse difference
moment, cluster prominence, and Haralick’s correlation, with distance d = 1 is used,
resulting in a vector of four texture features.

3 Shape Extraction

The shape extraction phase is divided in three stages: (i) coarse image segmentation,
(ii) pixelwise classification, and (iii) smoothing. The coarse image segmentation uses
only texture information to segment the image in texture regions. In the pixelwise clas-
sification phase, only color information is used because the regions are too small for
our texture descriptor to be informative. The complete process of shape extraction is
illustrated in Figure 1.

3.1 Segmentation by Agglomerative Merging

Segmentation is applied by agglomerative merging, as described by Ojala and
Pietikäinen [11]. Their algorithm was introduced for gray-scale images but is extended
to color images, using a color texture descriptor. The algorithm is applied using the
color correlogram as texture descriptor based on the 11 color quantization scheme.

At the initial state of the agglomerative merging algorithm, the images are divided
in sub blocks of size 16 × 16 pixels. At each stage of the merging phase, the pair of
blocks with the lowest merger importance (MI) is merged. This merger importance is
defined by the distance measure MI [9]. For two images I and I ′, the MI distance
measure is defined as follows:

MI = |I − I ′| =
m−1∑
i,j=0

|Cd̄(i, j) − C ′̄
d(i, j)|, (2)

where m is the number of bins used and Cd̄(i, j) and Cd̄(i, j) are the average color
correlograms of images I and I ′ (see Equation 1), and d̄ is set to 1 (see Section 2.1).
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(a) (b) (c)

(d) (e) (f)

Fig. 1. (a) The original image (b) The coarse segmentation (c) The object after pixelwise classifi-
cation (d) The object after erosion (e) The object after dilation (f) The final shape.

The closerMI is to zero, the more similar the texture regions are. When two regions are
merged, theMI-values between this region and all adjacent regions are computed. The
agglomerative merging phase continues until the experimentally determined stopping
criterion (Y ), given in Equation 3 is met:

MIstop =
MIcur

MImax
< Y, (3)

whereMIcur is the merger importance for the current best merge,MImax is the largest
merger importance of all preceding merges. For the current dataset, Y is determined to
be 0.700. When the coarse segmentation phase is complete, the center segment of the
image is selected to be the object of interest for OBIR.

3.2 Pixelwise Classification Based on the 11 Colors

After the center object has been identified in the coarse segmentation phase, pixelwise
classification [11] is applied to improve localization of the boundaries of the object. In
pixelwise classification, each pixel on the boundary of the center object is examined. A
disk with radius r is placed over the pixel and the 11 color histogram is calculated for
this disk and all adjacent segments. Next, the distance between the disk and the adjacent
segments is calculated, using the intersection distance measure [7] based on the 11 color
histogram. The pixel is relabeled if the label of the nearest segment is different from the
current label of the pixel. This process is repeated as long as there are pixels that are
being relabeled.

The radius r of the disk determines how smooth the resulting boundaries are: a small
radius will produce ragged regions, a larger radius will produce smoother boundaries
but may fail in locating the boundaries accurately. In order to tackle these problems we
used a two-step approach: In the first iterations, a relatively small radius of 5 is used,
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marker
histogram

object histogr

background
histogram

Fig. 2. The process of pixelwise classification illustrated. A pixel at the boundary is selected and
a marker is placed over it. Next, the color histogram over this marker is calculated as well as the
histograms of the center segment and the background. The histogram over the marker is compared
to the other histograms and the pixel is assigned to the area with the most similar histogram (of
the background or the object).

in order to locate the boundaries correctly. Secondly, a radius of 11 is used to produce
more stable segments.

3.3 Smoothing

Although the pixelwise classification phase produces correct object boundaries, the
shapes are smoothed to optimize for the shape matching phase. Smoothing is done
using two fundamental operations: dilation and erosion.

Given two sets A and B in Z
2 , the dilation of A by B is defined as:

A ⊕ B = {x | (B)x ∩ A 	= ∅}, (4)

where (B)x denotes the translation of B by x = (x1, x2) defined as:

(B)x = {c | c = b + x, for some b ∈ B} (5)

Thus, A ⊕ B expands A if the origin is contained in B , as is usually the case.
The erosion of A by B , denoted A $ B, is the set of all x such that B translated

by x , is completely contained in A , defined as

A $ B = {x | (B)x ⊆ A} (6)

Thus, A $ B decreases A .
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The smoothing starts with two iterations of erosion with a square erosion marker
(B) of size 3 × 3 pixels. Next, two iterations of dilation are applied with the same
marker.

4 Shape Matching

Shape matching has been approached in various ways. A few of the frequently ap-
plied techniques are: tree pruning, the generalized Hough transform, geometric hash-
ing, the alignment method, various statistics, deformable templates, relaxation labeling,
Fourier and wavelet transforms, curvature scale space, and classifiers such as neural
networks [12].

Recently, Andreou and Sgouros [12] discussed their: “turning function difference”,
as a part of their G Computer Vision library. It is an efficient and effective shape match-
ing method. However, Schomaker et al. [1] introcuded a similar approach five years
before. In the current research, the latter, original approach is adopted. This “outline
pattern recognition”, as the authors call it, is based on three feature vectors containing:
(i) x and y coordinates, normalized using the center of gravity of the shape and the
standard deviation of all radii, (ii) the running angle (θ) along the edge of the segment
(cos(θ), sin(θ)), which contains more information on the local changes of direction,
and (iii) the histogram of angles in the shape: the probability distribution p(θ) [1].

The algorithm proved to be translation, scale, and rotation invariant. Based on this
algorithm, the outline-based image retrieval system Vind(X) was developed and has
been used successfully since then. Vind(X) relies on outline-outline matching: the user
draws an outline, which is the query. This outline is matched against the outlines of
objects on images, present in its database. Subsequently, the images containing the best
matching outlines are retrieved and shown to the user.

The Vind(X) system provides excellent retrieval results. However, in order to make
its techniques generally applicable, automatic shape extraction techniques had to be
developed. Moreover, these techniques had to be computationally cheap in order to
preserve its fast retrieval, as much as possible. The latter was already achieved by the
techniques as described in the previous sections. In combination with the matching
algorithm of Vind(X), unsupervised OBIR was applied.

5 Method

In Sections 2 and 3, color, texture, and shape features are defined. They are combined
and used in four distinct query schemes for object matching, using four vectors:

1. color and texture, for object versus complete images
2. color and texture
3. shape
4. color, texture, and shape combined

Feature-based and shape-based image retrieval was employed by two separate re-
trieval engines, connected to the same database, both using the intersection distance
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Fig. 3. Sample images from the database used

measure for ranking their results. For both engines, the number of retrieved images (n)
could be chosen by the user. All query schemes performed an object - object compar-
ison, except scheme 1 for which object features are matched with the features of the
complete images in the database. For query scheme 4, for each image its ranks on both
engines are summed and divided by two.

In total, the database used, consists of 1000 images gathered from the Corel image
database, a reference database for CBIR applications, and from the collection of Fei-
Fei [13]. Since we are interested in objects, the six categories chosen represent objects:
cats, leaves, revolvers, motorbikes, pyramids, and dinosaurs.

Adopted from the field of Information Retrieval, the performance of CBIR systems
can be determined by the measures recall and precision. Recall signifies the proportion
of relevant images retrieved from the database in response to the query. Precision is the
proportion of retrieved images that is relevant to the query.

6 Retrieval Results

Recall and precision are calculated for each of the four different query schemes, as
defined in Section 5, using a variable number of images retrieved. The precision of
the retrieval results for the four schemes are plotted in Figure 4(a), for 5–25 images
retrieved. The recall of the retrieval results for the four schemes are plotted in Figure
4(b), for the complete dataset.

All four schemes performed well, as shown in Figure 4(a) and 4(b). However, note
that with the combined approach, four of the top five images are relevant; i.e., an aver-
age precision of 80% was achieved. Moreover, the recall achieved with the combined
approach converges much faster to 100% than with the other approaches.
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(a)

(b)

Fig. 4. Average precision (a) and recall (b) of retrieval, with global and local color&texture fea-
tures, outline of extracted objects from images, and their combination.
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7 Discussion

The rationale of the CBIR approach presented in this paper is that it be human centered.
This is founded on two principles: (i) CBIR should be object-based and (ii) it should
utilize the 11 color categories, as used by humans in color processing [7]. Both princi-
ples contribute to efficient CBIR, providing intuitive results for users. It was shown that
the 11 color categories work well for describing color distributions, for the extraction
of texture descriptors [10], and for object segmentation, as illustrated by the recall and
precision of the retrieval results.

The success of matching the 2D shapes of segmented objects with each other is
striking. This can, at least partly, be explained by the fact that “photographers generate
a limited number of ‘canonical views’ on objects, according to perceptual and artistic
rules” [1]. Moreover, even in the most recent research still (computationally expensive)
gray-scale techniques are applied [14]. In contrast, we are able to extract shapes from
color images. This is very important, since most of the image material available on the
www and in databases is color.

In contrast with the reality on the www, the images in our database all contain im-
ages of objects against a rather uniform background, as illustrated in Figure 3. With our
database, a first step is made toward processing real world images, where in compara-
ble, recent work [15], object images are used that lack a background.

Despite the success of the current approach on real world images, it also has some
drawbacks. First, it should be noted that the number of categories and its members
were limited and follow-up research should be conducted with a larger database, in-
corporating a large number of categories. Second, in further developing the engine, the
segmentation parameter should be set dynamically; i.e., setting the parameter to a mini-
mum value and resetting it dynamically during the merging phase, based on the texture
differences between the remaining blocks. This would obviate the current dependency
on a good pre-defined parameter setting. Third, the ultimate goal would be to identify
all objects in an image, instead of one, as is currently the case. Fourth, we expect that the
use of artificial classifiers can improve the results, compared to the distance measures,
used in the current research. When these drawbacks have been overcome, the resulting
CBIR engine can be applied to real-world images instead of only to object-classes.

In this paper, a highly efficient scheme for the extraction of color, texture, and shape
features is introduced. Combined with the intersection distance measure, it forms the
basis of a unique, excellently performing, fast object-based CBIR (OBIR) engine, which
provides results intuitive for its users.
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Abstract. Applying the divergence operator on the gradient vector field
is known as a robust method for computing the local creaseness, defined
as the level set extrinsic curvature. Based on this measure, we present a
multi-scale method to extract continuous midlines of elongated objects of
various widths simultaneously. The scale-space is not built on the input
image, but on the gradient vector field. During the iterative construction
of the scale-space the current solution keeps thin objects even when they
are located near more dominant structures. The representation of the
midlines is realised as curves in the image plane, consisting of equidistant
sample points. At each sample point the tangential direction of the curve
is computed directly with the smoothed gradient vector field.

1 Introduction

In this paper we address the problem of extracting a continuous midline of
elongated objects of various widths. There are various applications of mid-
line extraction in the field of image analysis, for instance vessel detection (see
Figure 1), analysis of heart fibres (see Section 3), description of characters, plant
root detection [1], analysis of aerial images [8] and finger print analysis. The
constraint on the objects of interest is a relatively homogeneous color and an
elongated shape. In all these applications, the midlines give us a natural repre-
sentation of the underlying structures.

Our method is based on a scale-space analysis. Such a multi-scale approach
offers the advantage to process images or other objects with various parameter
adjustments simultaneously. This leads to different results, which have to be
finally combined to a single solution. Therefore, the most challenging task of
multi-scale approaches is a consistent combination scheme. Compared to other
approaches, the proposed operator minimises the effect of erasing the inferior
structure at crossings, bifurcations and neighbouring objects. Furthermore, we
directly provide the tangential direction of the midline at the sample points.

In the literature, several definitions of valley and ridge-lines can be found.
The theoretical framework of our method is based on differential geometry [3].
Considering the graph G of an d dimensional grey-scale image function L (ξ)
(with ξ = (ξ1, . . . ξd)) as a hyper-surface (in an (d+1)-dimensional space), one
can define ridge and valley points using local characteristics of this hyper-surface.
More precisely, we analyse the image gradient ∇L on the boundary of a small

S. Singh et al. (Eds.): ICAPR 2005, LNCS 3687, pp. 502–511, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Multi-scale Midline Extraction Using Creaseness 503

Fig. 1. Retinal angiography

neighbourhood in G surrounding the point (ξ,L (ξ)). This can be done by choos-
ing the eigenvectors of the Hessian matrix of L as the local coordinate system.
Maintz et. al. [6] formulate a class of ridge measure based on the isophote curva-
ture, which are the curves on G featuring the same level of grey-scale. Since these
measures show a poor performance at saddle zones in discrete domains [5], López
et. al. have developed a different discretisation, namely κ = −div (∇L/‖∇L‖).
Their measure is the fundament of our method, extended by a scheme to combine
single solutions.

We have found other works on multi-scale operators for midline extraction
[2], [4], [8]. The commonness of these approaches is the design of the scale-spaces,
which is built directly on the input image L. Typically, these approaches result
in fragmentary midlines, due to the fact that we have a loss of spatial precision,
when smoothing in the image space. In contrast, we are smoothing the gradient
tensor field ∇L · ∇L t component-wise using different Gaussians convolution
kernels. This offers the advantage of a more robust localization of the midlines
due to the fact that even for thin objects, the gradients at the borders are
present in large scales. In the case of applying large Gaussian masks directly on
L, thin objects are razed. Furthermore, combining midlines of different image
scales could lead to points of discontinuity, when there is an erratic change in
the width of the object.

2 Scale-Space Approach

Our approach can be divided into the subtasks: computation of the structural
tensor (Section 2.1), iterative construction of the scale-space (Section 2.2), ap-
plication of the divergence operator on the combined vector field (Section 2.3)
and finally the extraction of the midlines (Section 2.4). At the end of this sec-
tion we discuss the choice of the parameters (Section 2.5). Since we use second
order derivation to compute κ, we need an idealised gradient vector field. The
cross-profile of the elongated structures, which we want to analyse, are frequently
bar-like. Since the gradients of such an object could be very small or even vanish
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near the midline, we wish to propagate the meaningful gradients at the edges
towards the midline. Smoothing the image has known side-effects, which we want
to avoid.

The main idea is to construct the scale-space not on the image, but on the
image gradient ∇L (x, y). We present a method for smoothing the vector field
such that the meaningful gradients at the edges are propagated towards the
midlines. The computation of the image gradient in a specific scale is realised by
an analysis of a component-wise smoothed structured tensor, which is computed
as ∇L · ∇L t. For each image location we compute the local structure tensor
and convolve the components of this matrices along the image plane. During the
iteration we keep up the vector field, which contains the currently best gradient
vectors.

2.1 Structural Tensor

Initially, we compute the image gradient vector field at the pixel grid with the
Sobel operator. The used Gaussian mask should be chosen relatively small,
since edges introduced by noise are automatically erased in the further pro-
cess. The edge magnitude is normalised into the interval [0, 1]. To compensate
local differences in contrast we boost the edge magnitude s by the function
btinfl(s) = 1 − exp

(
− s2

2·t2infl

)
. Let tconf denotes the value of btinfl at its inflection

point tinfl, which is an external parameter. Gradients holding a magnitude of
greater than tconf are considered as confident and will be treated more carefully.

Following the approach of López et. al. [5] we apply the component-wise
smoothing of the structured tensor and compute the gradient at each image
position as the eigenvector to the greatest eigenvector of the smoothed structured
tensor field. The motivation of this approach is, that the structured tensor is a
symmetrical matrix of the form:

ST (x, y) =
(

Lx(x, y)2 Lx(x, y) · Ly(x, y)
Lx(x, y) · Ly(x, y) Ly(x, y)2

)
,

with the eigenvector ∇L to the eigenvalue

λ = s2 = L2
x + L2

y. (1)

We utilise this property to compute the gradient magnitudes of the different
scales.

2.2 Forming the Scale-Space

After computing ST (x, y) for each grid position we construct the scale-space
on this structural tensor. For each scale we compute the gradient vector field,
which consists of the eigenvector gk (x, y) to the greatest eigenvector λk(x, y) of
the component-wise smoothed version of ST (x, y). Depending on λk we compute
the new gradient magnitude. Since the sign of gk (x, y) is not clear, we have to
reconstruct it by some additional considerations.
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During the iterative construction of the scale-space we keep vopt(x, y), the
optimal gradient vector field computed so far, with sopt := ‖vopt‖ denoting
its magnitude. The scale-space is built by component-wise convolution of the
structural tensor repeatedly with the same Gaussian mask Gσ with standard
deviation σ. Due to the fact, that the family of Gaussian distributions build a
half-group under the convolution operator �, the standard deviation during the
k-th iteration is σk = σ

√
k, i.e. (Gσ)�k = Gσk

.
In the following we explain one iteration step k at a fix grid point (x0, y0).

Smoothing the structural tensor ST (x, y) results in a matrix of the form(
mxx mxy

mxy myy

)
:=

(
(Gσ)�k

�

(
L2

x LxLy

LxLy L2
y

) )
(x0, y0)

with greatest eigenvalue λk = 0.5·(s2
k + pk

)
, where s2

k = mxx+myy is equal to the

square of smoothed vector magnitudes and pk =
√

(mxx −myy)
2 + 4m2

xy can
be viewed as a measure of parallelism. If the considered neighourhood surround
(x0, y0) consists of parallel gradients, pk takes the maximum value s2

k. On the
other hand pk = 0 at locations where two orthogonal gradient directions occur
(equally weighted). As mentioned above, the gradient vector vk is computed as
the eigenvector to the eigenvalue λk. The new magnitude is determined by taking
two numbers into account, namely λk and the quotient pk

s2
k

∈ [0, 1]. Taking the
eigenvalue as magnitude is a consistent extension of the property (1). On the
other hand the term pk

s2
k

is a measure of parallelism and furthermore independent
of the edge magnitudes in the neighbourhood. We choose the geometrical mean
of these values as the new squared edge magnitude

s2
new =

√
0.5 · (s2

k + pk) · pk

s2
k

. (2)

In image regions with no preferred gradient orientations the magnitude are
pruned by this combination, due to the fact that pk is low. On the other hand
the gradients are boosted in image regions with a clear major orientation even
when there is a low base level of gradient magnitudes.

If snew > sopt we further process in updating the actual vector vopt, otherwise
we leave vopt unchanged. An open problem not discussed yet is the unknown sign
of the eigenvector vk. López et. al. [5] propose an alignment into the half-space
to which the original gradient points. This could lead to opposed islands of
gradients at regions with relative homogeneous grey values. Another side effect
is a possible erasement of the gradients introduced by small objects lying in the
neighbourhood of dominant structures. Due to this unwanted behaviour we make
a consensus decision based on the image gradient gk introduced by the smoothed
version of the original image Gσ

√
k � L and the actual vector vopt. With respect

to the iterative smoothing process and equation (2) we compute two thresholds
(in case of k > 1):

tlow := σ−1
k · √0.5 · tconf and thigh :=

√
0.5 · tconf
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Let cosgrad denote the cosine of the angle between vk and gk, cosk denote the
cosine of the angle between vk and vopt. The decision rule for the sign of vk is
based on

sgn :=

⎧⎪⎪⎨
⎪⎪⎩

cosgrad ifλk < tlow or sopt < tlow or k = 1
cosk if λk ≥ thigh and sopt ≥ tlow
(λk − tlow) · cosgrad
+ (thigh − λk) · cosk

otherwise.

If sgn is negative the orientation of vk is reversed by multiplying vk with −1.
This case differentiation is motivated by the consideration that we want to keep
informations of consistent gradients. For small values of sopt or λk the orienta-
tion of gopt is possibly uncertain (first case), so that the decision on the sign
should only depend on the smoothed gradient gk. On the other side, when λk

and sopt are sufficiently great, we take only the orientation of the currently op-
timal gradient gopt into account (second case). The third case is a fuzzy-like
compromise between the exclusive decisions. Finally, we replace vopt by vk with
the magnitude snew.

2.3 Computing the Creaseness Measure κ

Since the combination of the different scales could introduce boundary effects,
we apply the same smoothing procedure on the resulted gradient vector field,
but only with a single iteration. The divergence operator computes κ under the
constraint that the norm of each vector is 0 or 1. A normalisation of all gradient
vectors, which have a positive norm, causes unwanted effects at homogeneous
image regions, since the vectors at the propagation hold no confident orienta-
tion. To avoid this problem we apply the boosting function b0.33 on the vector
magnitudes instead of the normalisation.

The divergence operator is based on deviations. Since the vector field has
been smoothed already, we implement deviations by the mean of finite forward
difference and finite backwards difference with an increment of one pixel. The
result is a scalar field, which holds the values −κ (x, y).

An additional smoothing of the scalar field κ leads to the extraction of less
erratic midlines, but could cause misbehaviour in regions with undefined gradient
vectors. In that case we produce vectors, which have no direction, but a positive
norm. Due to this problem the smoothing of κ should be used with care. We
choose triangular convolution kernels of size three in both image dimensions. This
kernel reduces the occurrence of unwanted side-effects, but achieves continuous
midlines. The remaining vectors are denoted as the idealised gradient vectors.

2.4 Extraction of the Midlines

In the following we explain the extraction process for dark elongated structures.
Firstly we apply a non maximum suppression (non minimum suppression for light
objects). This results in a set of potential midline points, denoted as candidates.
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Each candidate features an orientation, which is computed as the perpendicular
to the idealised gradient vector at this location.

Afterwards we link the candidates together forming midline segments. Thereby
two neighboured candidates are only linked, if several conditions are valid. Seg-
ments with less than three points are selected.

Finally, the segments are resampled by equidistant sample points, since on a
diagonal oriented segment one can obtain more candidate points than on horizon-
tal or vertical segments. The resampling of a segment seg is done by traversing
it from its starting point and keeping the distance, which is covered so far. We
compute the tangential direction of seg for all locations with an integral distance
to the starting point. This can be done by a linear interpolation of the orthogo-
nal vectors on the smoothed gradient direction at the nearest pixel locations on
the segment.

2.5 Parameter Adjustment

The presented method can be adjusted by four numerical parameters, namely
σSobel, tinfl, σiter and niter. The influence of the standard deviation σSobel of the
Gaussian mask for the construction of the gradient vector field has been dis-
cussed in various works. The parameter tinfl offers the possibility to control the
inflection point of the boosting function b(s). A low value results in the con-
sideration of low contrast edges of the input image. The choice of the standard
deviation σiter defines the smallest structures which are preserved during the it-
eration. Since the Gaussian of the iteration k has a standard deviation σiter

√
k,

the decreasing of σiter causes more iterations to achieve the same blurring effect.
Obviously, this correlation behaves quadratically. The parameter niter defines
the maximal width of the elongated objects, for which the midlines are correctly
computed. The increase of niter has primarily effects on regions with an actual

Fig. 2. Result on helix function of Maintz
et. al. [6] (σSobel = 0.0, tinfl = 0.05, σiter =
1.5, niter = 100)

Fig. 3. Top row: Result on primitive ob-
jects (σSobel = 1.0, tinfl = 0.1, σiter = 1.5,
niter = 50); Bottom row: niter = 100
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low response, but there could occur unwanted side-effects. It is not possible to
avoid these side-effects generally, due to semantical ambiguity. For example, the
dominant structure of a horizontal line, which is an arrangement of vertical dark
bars, depends on the context. This gap cannot be closed by a multi-scale ap-
proach. Experiments have shown, that σSobel = 1.5, tinfl = 0.2, σiter = 1.5 and
niter = 5 are suitable default values. The manual adjustment of these parameter
is easy and mainly depends on the particular application (for instance the range
of object widths and the quality of the image). In addition to these numerical pa-
rameters we offer the possibility to exclude the additional smoothing before and
after the application of the divergence operator, due to the discussed problems.

3 Results

We have tested our method on artifical data and on real applications. In the
following we discuss the results on some problematic situations. The figures show
the extracted midlines overlayed on the original image. A vertical direction is
coloured with red and a horizontal with turquoise.

Maintz et.al. [6] present the function f(r, ϕ) = α r (1 − r) φ as an example,
where their ridge seeking approach fails. Figure 2 depicts that our approach
does a fine job for this smooth function. We choose the parameter settings
σSobel = 0.0, tinfl = 0.05, σiter = 1.5 and niter = 100 to achieve this result.
Decreasing the number of iterations results in a less complete extraction at the
lighter regions. The extreme poor contrast in this regions leads to some gaps of
1 pixel in the extracted midlines, which could be closed easily by an additional
post-processing step. The misbehaviour at the darkest regions is caused by the
dominant horizontal edge. This effect cannot be avoided, since this edge holds

Fig. 4. Result on test function of López et.
al. [5] (σSobel = 1.0, tinfl = 0.2, σiter = 1.5
and niter = 5)

Fig. 5. Top row: Result on triangle
(σSobel = 1.5, tinfl = 0.2, σiter = 1.5,
niter = 50); Bottom row: CLSEC approach
[5] on triangle
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the clearest contrast. Our method yields an exact placements of the midline at
the pixels with distance 1/2 to the center.

In contrast to the smooth function f(r, ϕ), the second example image holds
a collection of very simple objects. This arrangement aims to test our method
in situations where the width and the orientation of the dark objects changes
rapidly. The result, which is presented in Figure 3, shows a continuous midline
as far as the object branches at the right ending. The produced gaps are fairly
small and should be closeable by a post-processing step. The small white circle
at the top of the object pushes the midline downwards. Increasing the number
of iterations reduce this effect (bottom image niter=100), so that the midlines
course in the middle of the dominant dark object. In fact it is hard to define
where the correct midline should course in such situations. It is remarkable that
the thin, light grey line under the dominant structure is recognised correctly.

The third example image is presented by López et. al. [5] as an example that
the divergence operator causes the extraction of continuous midlines. Due to
the fact, that our method also utilises the divergence operator as a creaseness
measure, the result (see Figure 4) is comparable with the performance reached by
López et. al. with their method (denoted by CLSEC), which is not a multiscale
approach.

Figure 5 depicts the advantage of our scale-space approach in contrast to
CLSEC [5]. While our operator completely extracts the midlines of the triangle
and of the small lines, CLSEC is not adjustable to extract both structures.

Additional to this visual inspections, we have tested the robustness of our
method with respect to the computed tangential direction. We have produced
a gradient vector field of an idealised torus with inner radius of 160 pixels and
outer radius of 220 pixels. The ground truth is given, since we know the correct
locations and local directions of the midline. The local displacement is of subpixel
level and the maximal recognised deviation of the tangential direction is about
0.001o.

We have applied our method on two types of real images. Figure 6 depicts
the result on a retinal angiography for the purpose of vessel extraction. In Figure
8 the extraction of myocyte strings in a slices (see Figure 7) of heart fibres is

Fig. 6. Result on a retinal angiography for vessel extraction
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Fig. 7. Slice of heart fibres Fig. 8. Result on a slice showing heart
fibre

shown. The task of this application is the analysis of the myocyte orientation
and the architecture of the heart [7]. Medical experts have reviewed the quality
of the extraction results as positive and consistent. Furthermore, we analyse the
distribution of the myocyte orientations utilising a statistical model. The result
is the major orientation of the myocytes and its variance [7].

4 Discussion

In this paper we have proposed a method for midline extraction of elongated ob-
jects. All earlier multi-scale approaches to extracting ridges and valleys smooth
the input image directly. To our knowledge the current work is the first one based
on smoothing the gradient vector field. The advantage of this approach are the
extraction of continuous midlines and the preservation of thin structures. Addi-
tionally we compute the tangential direction of the midlines in a unified frame-
work together with the localisation of the midlines. Our test results on both
artifical and real data have demonstrated the robustness and broad applicability
of our method.
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Abstract. In this paper we discuss about the applicability of text classification 
techniques for automatic content recognition of the scenes from news videos. In 
particular, the news scenes are classified according to a predefined set of six 
categories (National Politics, National News, World, Finance, Society & 
Culture and Sports) by applying text classification techniques on the 
transcription of the anchorman speech. The transcription is obtained using a 
commercial tool for speech to text. The application of text classification 
techniques for the automatic indexing of news videos is not new in the scientific 
literature, but, to the best of our knowledge, no paper reports a detailed 
experimentation. In our experimentations we considered different issues 
concerning the application of text categorization and speech recognition for 
news story classification: in fact, we calculated the overall performance 
obtained by using text categorization on the ideal transcription, as it could be 
obtained by employing a perfect speech recognition engine, and the 
transcription provided by a commercial speech recognition tool; furthermore, in 
our experimentation we were also interested to characterize the performance in 
terms of the portion of the news story by which the transcription is obtained. 
The experimentations have been carried out on a database of Italian news 
videos. This experimental validation represents the main contribution of this 
paper. 

1   Introduction 

Among all the different sources of video material nowadays available, news videos 
received great attention by the scientific community. This is mainly due to the fact 
that broadcasters are interested in building large digital databases of their resources, 
so to allow reuse, after a suitable indexing procedure, of the archived material for 
other TV programs. 

In the recent past, research efforts have been concentrated mostly on the problem 
of the news video segmentation in stories by using video information [1], [2] or by 
combining audio and video information [3]. An important step towards an effective 
indexing of the news videos is the classification of the detected news stories within a 
certain set of categories (national politics, national news, world news, sports, weather, 
advertising, etc…). 
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In the scientific literature, only few authors have faced the problem of the 
classification of the news stories [4], [5]. In particular in [4], the authors propose to 
employ a two-level multi-modal framework that firstly classifies shots according to a 
wide set of categories (intro, single anchor, two anchors, advertising, weather, sport, 
… shot); then, the detection and classification of the stories is obtained through an 
HMM approach according to a very simple and fixed taxonomy (generic news, sport, 
...). In [5], the authors propose to employ a multi-level probabilistic framework based 
on the Hidden Markov Models and the Bayesian Networks paradigms for the news 
stories segmentation and the classification, respectively. The classification is 
performed applying a Text Classification technique [6] on the ideal transcription of 
the audio track. The classification of the text is done through a two levels Bayesian 
Network, where the nodes of the first level are related to the outputs of a set of 
sensors that process the transcription of the audio track. These sensors extract 
semantic information on the news story on the basis of the presence of some specific 
keywords.  

Text Classification is a quite mature research topic; today, Text Classification 
techniques are widely used for automating several processes in the field of 
Information Retrieval, web filtering, textual document indexing. Even if the 
application of the text classification to the video indexing is not new, at the moment 
there is no paper reporting a detailed experimental validation of this idea. 

The use of text classification techniques for the automatic indexing of news videos 
is very promising. For this reason in this paper we investigate about the effectiveness 
of text classification applied on the transcription of the audio track for news stories 
topic recognition. For our experimentations we built-up a news video database 
consisting of about eight hours with 143 news stories from the main Italian public 
network (namely, RAI 1) and the main Italian private network (namely, CANALE 5). 
In our experimentations we considered different issues concerning the application of 
text categorization and speech recognition for news story classification: in fact, we 
calculated the overall performance obtained by using text categorization on the ideal 
transcription, as it could be obtained by employing a perfect speech recognition 
engine, and the transcription provided by a commercial speech recognition tool; 
furthermore, in our experimentation we were also interested to characterize the 
performance in terms of the portion of the news story by which the transcription is 
obtained. This experimental validation represents the main contribution of this paper. 

The organization of the paper is the following: in section 2, it is described the 
method for news story classification based on the use of text classification and speech 
recognition. In section 3, the database used is reported together with the tests carried 
out in order to assess the performance of the method. Finally, in section 4, some 
conclusions are drawn. 

2   The Method for News Story Classification 

Most news videos are constituted by three parts, as depicted in Figure 1: the opening 
titles, a sequence of N news stories and, finally, the Closing titles. Each news story is 
composed by two parts: a first shot with the anchorman that introduces the news, 
followed by the news report, i.e. a sequence of i shots (i  0) where the news is 
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commented in details by a reporter. In order to classify the news stories, firstly, it is 
necessary to segment the video in news stories [1], [2], [3], [4], [5]. Then, the 
classification of the news stories can be performed by a text categorization algorithm 
applied on the transcription of the speech. The latter can be obtained using a “speech 
to text” tool.  

 

Fig. 1. The typical structure of a news video: the opening titles, a sequence of N news stories 
and the closing titles. 

The system architecture of the news story classification method proposed and 
tested in this paper is constituted by two modules: the speech to text and the text 
classification modules, as depicted in Figure 2. 

 

Fig. 2. System architecture of the news story classification method tested in this paper 

The problem of text classification is a widely debated issue in the scientific 
literature. Text categorization can be formulated as the problem of assigning a text 
document dj to a class ci∈{c1,c2,…,cn} by using some features extracted from dj. 
There are different methods for features extraction from textual documents. The 
typical solution, adopted also in this paper, finds the most discriminant features on the 
basis of a statistical approach: to each term tk is assigned a weight wk related to the 
occurrences of the term tk in the document. One of the most commonly used methods 
for calculating wk consists in computing the function tfidf (Term Frequency-Inverse 
Document Frequency) [7], defined as: 

( ) ( ) ( ), # , log
#k j k j

k

Tr
tfidf t d t d

Tr t
= ⋅  (1) 

where #(tk, dj) represents the occurrences of tk within dj, #Tr(tk) is the document 
frequency of the term tk, i.e. the number of documents of the training set Tr where the 
term tk occurs. 
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Since the length can vary significantly among different documents, the weight 
associated to the term tk is usually calculated by normalizing the tfidf: 
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Generally, some preprocessing is carried out before features extraction, as the 
removal of the tags (for instance the HTML tags) and of the stop words (i.e. 
pronouns, prepositions, …), the stemming operation that allows to reduce the 
dimension of the representation space of the document by grouping under the same 
term the words sharing the same morphological radix (for instance the words walk, 
walker, walked, walking, …). 

Finally, in the scientific literature several classification techniques have been 
proposed for text classification as bayesian classifiers, support vector machines, 
Rocchio algorithm, classifiers based on tree representation. For our experimentations 
we implemented the Naïve Bayes classifier that is used by most probabilistic methods 
of text classification [8], [9], [10], [11]. In fact, the Naïve Bayes classifier is 
characterized by an optimal value of the recognition rate/computational complexity 
ratio and can be trained very easily. 

3   Experimental Results 

In the recent past some efforts have been spent by other researchers in building video 
databases for benchmarking purposes [12, 13]. Unfortunately, these data can not be 
used for our experimentations since in most cases they are not publicly available [12], 
while in other cases they are not adequate for our aims [13]. Hence, in order to assess 
the performance of the proposed system we had to build a new video database. In 
particular, the test database used in this paper (about eight hours) is composed by 
eight news videos from the main Italian public network (namely, RAI 1) and eight 
videos from the main Italian private network (namely, CANALE 5). Then, the tests 
were carried out on the two TV-networks, separately. All the news videos of our 
dataset are presented by a single speaker; moreover, all the eight videos of RAI 1 
(CANALE5) are presented by the same anchorman (anchorwoman). We built a larger 
dataset for training the text classification module. This dataset was realized by 
collecting the flash news from the ANSA website (http://www.ansa.it - ANSA is the 
main Italian agency for the collection, publication and distribution of journalistic 
information).  

In order to define the ground truth, all the news of the training and of the test 
datasets were categorized according to the following six classes: National Politics, 
National News, World, Finance, Society & Culture and Sports. The composition of 
the dataset of the two TV-networks and of the ANSA dataset are reported in Table 1 
and 2, respectively. In particular, the true class of the ANSA news were already 
available on the website, while the RAI1 and CANALE5 dataset were manually 
labeled. 
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The proposed system was implemented and tested by using the MALLET [14], an 
open source tool for text classification, and the Dragon Naturally Speaking [15], a 
commercial speech to text module. 

Table 1. Composition of the video dataset used for testing the text classification algorithm 

 
NATIONAL 
POLITICS 

NATIONAL 
NEWS 

WORLD FINANCE 
SOCIETY 

and 
CULTURE 

SPORT TOTAL 

RAI 1 9 21 14 8 9 5 66 

CANALE5 5 29 12 12 16 3 77 

As already stated in the introduction, in this paper we are interested to 
quantitatively evaluate the applicability of text classification and speech recognition 
techniques for automatic content recognition of the scenes from news videos. For the 
sake of readability the overall experimental procedure is sketched in Figure 3. In 
particular, in our experimentations we considered different issues concerning the 
application of text categorization and speech recognition for news story classification: 
in fact, we calculated the overall performance obtained by using text categorization on 
the ideal transcription, as it could be obtained by employing a perfect speech 
recognition engine, and the transcription provided by a commercial speech 
recognition tool; furthermore, in our experimentation we were also interested to 
characterize the performance in terms of the portion of the news story by which the 
transcription is obtained. 

3.1   Experimentation: 1st Phase 

As a first step of our experimentation we tested the text classification technique 
described in the previous section on the ANSA dataset. In particular, we performed a 
ten fold cross validation. This method was used to obtain a more realistic estimate of 
the performance of the method. Therefore, we divided the database in ten subsets. 
Then, we performed ten tests: in each one, nine subsets were used as training set and 
the remaining for testing (leave one out validation). Finally, the overall performance 
was obtained as the average performance on the ten folds. The recognition rate was 
88,8%. 

Table 2. Composition of the ANSA dataset used for training the text classification algorithm 

 NATIONAL 
POLITICS 

NATIONAL 
NEWS 

WORLD FINANCE 
SOCIETY 

and 
CULTURE 

SPORT TOTAL 

ANSA 196 279 439 396 486 404 2200 
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Fig. 3. Experimental procedure employed in this paper to test the system 

3.2   Experimentation: 2nd Phase 

The second step of our experimentation was aimed at assessing the performance of 
the text classification algorithm on the video news without considering the errors due 
to the speech recognition module. In order to carry out this test, the ideal 
transcriptions were manually obtained. Furthermore, in our experimentation we were 
also interested to characterize the performance of the text classification algorithm in 
terms of the used portion of the news story. In fact, as described in the previous 
section, a news story is typically constituted by two parts: the anchor shot and the 
sequence of news report shots. For this reason, for each TV network we carried out 

TEXT-TO-SPEECH  module 
trained on the standard 
vocabulary 

TESTS ON THE ANSA DATASET 
(ten fold cross validation) 

TEST SET: ONLY ANCHOR

TEST SET: ONLY NEWS REPORT

TEST SET: WHOLE NEWS STORY

   ANSA 
   DATASET 

TESTS ON THE TV NEWS
using ideal transcriptions 

TEXT CLASSIFICATION module trained on the ANSA dataset 
        RAI1         CANALE5 

TESTS ON THE TV NEWS
using transcriptions from TEXT-TO-SPEECH module 

TEXT CLASSIFICATION module trained on the ANSA dataset 

TEST SET: ONLY ANCHOR         RAI1         CANALE5 

TEXT-TO-SPEECH  module 
trained on the extended 
vocabulary 

TEST SET: ONLY ANCHOR         RAI1         CANALE5 

1st Phase

2nd Phase

3rd Phase
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three different tests using the ideal transcription of 1) the whole news story, 2) only 
the anchor part of the news story, 3) only the news report part of the news story. In 
particular, we are interested to evaluate the contribute provided by each part of a news 
story. In Table 3 there are reported the performance on the three test sets; the 
performance is expressed in terms of the recognition rate.  

Table 3. Recognition rate of the text classification algorithm applied on the ideal transcription 
with respect to the two TV networks. Performance accounts for the case of transcriptions 
extracted on the whole news story, on the anchor shot only, on the news report shot only. 

 ONLY ANCHOR ONLY NEWS REPORT WHOLE 
NEWS STORY 

RAI1 92,4% 92,4% 95,5% 

CANALE5 74,4% 84,3% 87,0% 

The results reported in Table 3 demonstrate that the transcription of the speech of 
part or of the whole news story can be effectively used to classify the news story 
according to the six classes reported above. As it could be expected, higher 
performance are obtained when the transcription of the whole news story is used. This 
is particularly evident on the news videos of CANALE5. In fact, in this case most 
information is in the news report portion of the news story, while on the news videos 
of RAI1, the news report and the anchor sections provide the same results. Our 
opinion is that the different performance obtained on the two datasets, when only the 
anchor section of the news stories is used, depends on the different style of the news 
video of the two TV networks. In fact, the RAI1 anchorman introduces and 
summarize in a certain detail the news; differently, the anchorman of CANALE5 just 
provides few information about the news that is analyzed in dept in the news report 
section. As an example, in the Table 4 we report two cases of news introduced by the 
CANALE5 anchorman with only few words, which give rise to erroneous 
classifications. 

Table 4. Recognition rate of the text classification algorithm applied on the ideal 

Real transcription 
(in italian) 

Transcription 
translated in English Classification results 

“Nel calcio è scoppiato il 
caso Adriano” 

“The Adriano case has 
exploded within the 

football world” 

Society and Culture 50.0% 
Sports  44.7% 
Other   0.3% 

“Vicino a Torino si è 
consumata una terribile 

tragedia familiare” 

“Close to Torino there has 
been a terrible family 

tragedy” 

Sports 43.7% 
World 30.0% 
Society and Culture 15.0% 
National News   4.9% 
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For a more detailed analysis, in Figures 4.a and 4.b there are reported the 
performance of the text classification algorithm on the ideal transcriptions with 
respect to the six categories of news stories. The performance are expressed in terms 
of recall (ρ) e precision (π), which are defined as follows: 

i

i i

TP

T P F N
ρ =

+
 

(3) 

i

i i

T P

T P F P
π =

+
 

(4) 

where TP = true positive, FP = false positive and FN = false negative (missed). 
On the RAI1 dataset the performance is reasonably good and stable across all the 

categories. The lowest values resulted on the Finance and the Society and Culture 
classes. Contrarily, on the CANALE5 dataset the best results are obtained on the 
Finance class, while the performance on Society and Culture class is low again. It is 
very interesting to note the different behavior of the system with respect to the 
Finance class on the two datasets; this can be explained by considering that the videos 
of CANALE5 always present a news from the Stock Exchange with a very 
standardized structure. Hence, terms like Wall Street, NASDAQ, MIBtel occur very 
often, simplifying the correct classification. Differently, RAI1 presents news from the 
Stock Exchange in a specific economical news video after the main edition of the 
television news. 

3.3   Experimentation: 3rd Phase 

The final step of our experimentations consisted in the use of the text categorization 
algorithm on the transcription obtained using the speech recognition module. 
However, we observed that speech recognition can be reliably used only on the 
anchor portion of the news story. In fact, the audio track of the anchor portion is 
noiseless, the speech is fluent, but not fast and the words are pronounced sharp. On 
the other side, the speech of the news report part is often noisy due to environmental 
sounds. Moreover, it is possible to train the speech recognition module for each 
anchorman of a TV network: in fact, the number of anchormen is usually less than ten 
for all the editions of each TV network. On the contrary a specifically trained speech 
recognition module cannot be used on the news report audio track, due to its 
theoretically infinite number of speakers. This aspect contributes to further lower the 
performance on the news report part of the news story. 

Following the above considerations, in our experimentations we considered only 
the transcription provided by the speech recognition engine on the anchor portion of 
the news story. In particular, we carried out two experiments applying the text 
classification algorithm on the transcription provided by the speech recognition 
module trained in the first case on the standard vocabulary provided with the tool, 
while in the second case it was used an extended vocabulary including some non-
italian words, names of some important cities and persons. In Table 5, there are 
reported the performance obtained in the two experiments.  
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Fig. 4. Performance of the text classification algorithm on the ideal transcriptions with respect 
to the six news stories categories on the (a) RAI1 and the (b) CANALE5 datasets. 

From the results in Table 5, it is possible to note that in both cases the use of the 
speech recognition module trained on the standard vocabulary produces a degradation 
of the recognition rate of about 6-7%. In particular, the use of an extended vocabulary 
allows to significantly improve the performance in case of CANALE5, while on the 
RAI1 dataset the use of the extended vocabulary is completely irrelevant. The 
different contribution given by the use of an extended vocabulary on the two datasets 
can be explained by considering the different style of the two TV networks. In fact, the 
anchor part of the CANALE5 news videos is very concise: hence, the name of 
important cities and persons, as those added to the extended vocabulary, are very useful 
to classify the news story. Differently, the RAI1 anchor part is much more detailed, so 
that the words added to the vocabulary do not contribute to improve performance. 

Table 5. Performance of the text classification algorithm applied on the real transcriptions 
provided by the speech recognition module trained on the standard and on the extended 
vocabulary. For the sake of completeness it is reported also the performance obtained on the 
ideal transcription of the anchor shot only. 

 
STANDARD VOCABULARY 

(real transcriptions) 
EXTENDED VOCABULARY 

(real transcriptions) 
SHOT ANCHOR 

(ideal transcriptions) 

RAI 1 86,0% 86,0% 92,4% 

CANALE 5 66,9% 72,2% 74,0% 

4   Conclusions 

In this paper we faced the problem of news story classification according to a set of 
six categories by applying an algorithm of text classification on the transcription of 
the audio track. This experimental validation represents the main contribution of this 
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paper to the state of the art. In fact, to the best of our knowledge, in the scientific 
literature no paper reports a detailed experimentation performed on real data. The 
tests have been carried out on eight hours of news videos from the main Italian public 
network (namely, RAI 1) and the main Italian private network (namely, CANALE 5). 
These preliminary experimental results demonstrates the possibility of classifying 
news stories using the transcription obtained by using a speech to text module to the 
anchor portion of the news story.  

Future work will be devoted to the experimentation of the method on a much larger 
dataset in order to obtain a more reliable experimental validation. 
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Abstract. The aim of this paper is to present an improvement of a pre-
viously published algorithm. The proposed approach is performed in two
steps. In the first step, we generate the Weighted Adaptive Neighborhood
Hypergraph (WAINH) of the given gray-scale image. In the second step,
we partition the WAINH using a multilevel hypergraph partitioning tech-
nique. To evaluate the algorithm performances, experiments were carried
out on medical and natural images. The results show that the proposed
segmentation approach is more accurate than the graph based segmen-
tation algorithm using normalized cut criteria.

Keywords: hypergraph, neighborhood hypergraph, hypergraph parti-
tioning, image segmentation, edge detection and adaptive thresholding.

1 Introduction

Image segmentation is an important step in computer vision. Several algorithms
have been introduced to tackle this problem. Among them are approaches based
on graph partitioning [1,2,3,4,5,6].

The graph approaches carry the appeal of a strong theoretical basis and the
advantage of being applicable not only to the segmentation of images, but also
to other low, mid, and high level vision tasks. For grouping pixels into regions
with a graph-theoretic approach, a graph is usually defined as G(X, e), where
the nodes X represent the pixels (one node per pixel) and the edges e represent
the weights w(i, j) that connect pairs of nodes.

One of the most frequently used techniques to partition a graph is by means
of the cut cost function. The goal of the cut algorithm is to find two sub-graphs
A and B of G that minimize the value of : cut{A,B} =

∑
i∈A,j∈B w(i, j) and

with the obvious constraints A ∪B = X , A ∩B = ∅, and A 	= ∅ ,B 	= ∅.
Several alternatives to the above criterion have been proposed to date [4,1,3].

Of particular note is the normalized cut criterion (Ncut) of Shi and Malik [1],
which attempts to rectify the tendency of the cut algorithm to favor isolated
nodes of the graph.

A hypergraph is an extension of a graph in which edges are allowed to connect
arbitrary, non-empty sets of vertices (as shown in Fig. 1). Similarly to graphs,

S. Singh et al. (Eds.): ICAPR 2005, LNCS 3687, pp. 522–531, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. An example graph and a hypergraph

hypergraphs can be used to represent the structure of many applications, such
as data dependencies in distributed databases, component connectivity in VLSI
circuits and image analysis [7,8,9,10]. Also, like graphs, hypergraphs may be
partitioned such that a cut metric is minimized. However, hypergraph cut met-
rics provide a more accurate model than graph partitioning in many cases of
practical interest. For example, in the row-wise decomposition of a sparse ma-
trix for parallel matrix-vector multiplication, a hypergraph model provides an
exact measure of communication cost, whereas a graph model can only provide
an upper bound [11,12]. It has been shown that, in general, there does not exist
a graph model that correctly represents the cut properties of the correspond-
ing hypergraph [13]. Recently, several serial and parallel hypergraph partition-
ing techniques have been extensively studied [14,15,12] and tools support exists
(e.g. hMETIS [16], PaToH [11] and Parkway [17]). These partitioning techniques
showed a very great efficiency in distributed databases and VLSI circuits fields.

In this paper, we present a new hypergraph-based image segmentation algo-
rithm using hypergraph partitioning techniques. The basic idea of this algorithm
can be described as follows. It first builds a weighted hypergraph of the given
gray-scale image. Then the algorithm partitions this representation into a set of
vertices, representing homogeneous regions. The hypergraph partitioning is done
by a fast multilevel programming algorithm. Our contribution consists in pre-
senting an Adaptive Image Neighborhood Hypergraph representation (WAINH).
The WAINH is the most significant step in the segmentation algorithm, because
it makes it possible to connect the given gray-scale image and the existing hy-
pergraph partitioning techniques.

The adaptive representation captures the local properties of the gray-scale
image and the whole key information for the segmentation purpose. This leads to
a new hypergraph-based technique which is more relevant to image segmentation
than our previous work [9].

The remainder of this paper is organized as follows: in section 2, we intro-
duce the weighted adaptive image neighborhood hypergraph. The hypergraph
partitioning for image segmentation is introduced in section 3. In section 4, we
illustrate the performances of the proposed approach. The paper ends with a
conclusions and perspectives in section 5.
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2 Adaptive Image Neighborhood Hypergraph (AINH)

A hypergraph is a pair H = (X,E), where X = x1, x2, . . .xn is the set of vertices
(or nodes) and E = E1,E2, . . . ,Em, with Ei ⊆ X for i = 1, . . . , m, is the set of
hyperedges.

Let us note G(X ; e) a graph and H(X,E) a hypergraph. The hypergraph
having the vertices of G as vertices and the neighborhood of these vertices
as hyperedges (including these vertices) is called the neighborhood hypergraph
of graph G. To each graph G we can associate a neighborhood hypergraph
(figure 1):

HG = (X, (Ex = {x} ∪ Γ (x))) where Γ (x) = {y ∈ X, (x, y) ∈ e} (1)

In this paper, the image will be represented by the following mapping :

I : X ⊆ 2 −→ C ⊆ n

Vertices of X are called pixels, elements of C are called colors. A distance d on
X defines a grid (a connected, regular graph, without both loop and multi-edge).
Let d′ be a distance on C, we have a neighborhood relation on an image defined
by:

Γλ,β(x) = {x′ ∈ X, |d′(I(x), I(x′)) ≤ λ and d(x, x′) ≤ β). (2)

The neighborhood of x on the grid will be denoted by Γλ,β(x). To each image
I, we can associate a hypergraph called Image Neighborhood Hypergraph(INH)
[8] :

HΓλ,β
(I) = (X, ({x} ∪ Γλ,β(x))x∈X) (3)

The figure 2 illustrates an example of image neighborhood hypergraph rep-
resentation.

On a grid Γβ , to each pixel x we can associate a neighborhood Γλ,β(x),
according to a predicate λ. The threshold λ can be carried out in two ways. In
the first way, the λ is given for all the pixels of the image. In the second way,
the λ is generated locally and applied in an adaptive way to the image I.

In this paper, the attribute λ is computed in an adaptive way depending on
the local properties of the image. The value of λ will be estimated by :

λ = Median {I(y) −Median(F (x))}∀y∈F (4)

F is the window centered in x with the size [2β + 1 × 2β + 1].
This HΓλ,β

(I) combinatorial representation is more relevant than the pre-
vious one introduced in [9], because it takes into account both the local and
global aspects of the image. Hence HΓλ,β

(I) offers new facilities for handling the
topology and the geometry of the image. Consequently, it gives more information
about the nature of the image to analyze.
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Fig. 2. An example of INH representation

3 Multilevel WAINH Partitioning

From HΓλ,β
(I), we define a Weighted Adaptive Image Neighborhood Hypergraph

(WAINH) according to the two maps functions fwv and fwh
. The first map fwv

associates an integer weight wxi with every vertex xi ∈ X . The weight is defined
by the intensity in each pixel. The map function fwh

associates to each hyperedge
a weight whi defined by the mean intensity in this hyperedge. The WAINH is
defined by:

Hλ,β = (X,Eλ,β ,wx,wh), ∀x ∈ X, fwx(x) = I(x)

∀E(x) ∈ Eλ,β , fwh
(E(x)) =

1
|E(x)|

|E(x)|∑
i=1

I(xi)xi∈E(x)

The formal definition of the k-way hypergraph partitioning technique is as
follows : find k disjoint subsets Xi, (i = 0, . . . , k − 1) of the vertex set X with
part (region) weights Wi (i = 0, . . . , k − 1)(given by the sum of the constituent
vertex weights), such that, given a prescribed balance criterion 0 < ε < 1,
Wi < (1 + ε)Wavg holds ∀i = 0, . . . , k − 1 and an objective function over the
hyperedges is minimized. The Wavg denotes the average part weight.

If the objective function is the hyperedge cut metric, then the partition cost
(or cut-size) is given by the sum of the costs of hyperedges that span more than
one part. Alternatively, when the objective function is the (k − 1) metric, the
partition cost is given by : Pcost =

∑|E|−1
i=0 (γi − 1)whi

Computing the optimal bisection of a hypergraph under the hyperedge cut
metric (and hence the (k − 1) metric since k = 2 for a bisection) is known to
be NP-complete [18]. Thus, researches have focused on developing polynomial
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Fig. 3. Multilevel Hypergraph Partitioning

time heuristic algorithms resulting in good sub-optimal solutions. Because it
scales well in terms of run time and solution quality with increasing problem
size, the multilevel paradigm is preferred to direct solution approaches. Below,
we describe the main steps of the multilevel paradigm (figure. 3).

i. Coarsening phase: Hλ,β is approximated via a succession of smaller hyper-
graphs that maintain its structure as accurately as possible. A single coarsening
step is performed by merging the vertices of the original hypergraph together to
form vertices of the coarse hypergraph, denoted by a map fmerge : X → Xcoarse,
where

|X |
|Xcoarse| = r, r > 1, (5)

and r is the prescribed reduction ratio. The map fmerge is used to transform
the hyperedges of the original hypergraph Hλ,β to the hyperedges of the coarse
hypergraph. Single vertex hyperedges in the coarse hypergraph are discarded as
they cannot contribute to the cut-size of a partition of the coarse hypergraph.
Several fmerge maps functions have been proposed [19] (figure 4): edge coarsen-
ing, hyperedge coarsening and modified hyperedge coarsening.

ii. Initial partitioning phase: During the initial partitioning phase, a parti-
tioning of the coarsest hypergraph Hλ,β

coarse is computed, such that it minimizes

(a) (b) (c)

Fig. 4. Coarsening phase : (a) Edge coarsening : connected pairs of vertices are matched
together. (b) Hyperedge coarsening : all the vertices belonging to a hyperedge are
matched together. (c)Modified hyperedge coarsening : we match together all the ver-
tices in a hyperedge as well as all the groups of vertices belonging to a hyperedge.
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Fig. 5. The two steps of the proposed segmentation algorithm. The input parameters
are: intensity threshold λ, spatial threshold β and the number of desired regions k.

the cut. Since this hypergraph has a very small number of vertices, the time to
find a partitioning using any of the heuristic algorithms tends to be small.
iii. Uncoarsening phase: During the uncoarsening phase, a partitioning of the
coarser hypergraph is successively projected to the next level finer hypergraph,
and a partitioning refinement algorithm is used to reduce the cut-set (and thus
to improve the quality of the partitioning). Since the next level finer hypergraph
has more degrees of freedom, such refinement algorithms tend to improve the
solution quality.

Figure 5 illustrates the proposed algorithm. It starts with a WAINH gener-
ation followed by a multilevel hypergraph partitioning.

4 Experimental Results

A set of gray-scale images with different homogeneous areas was chosen in order
to demonstrate the performances of our algorithm. The simulations are grouped
in two parts. Firstly, the evaluation of the algorithm according to the WAINH
representation, then the evaluation of the proposed algorithm compared to the
existing methods.

We will first describe the various stages of implementation of the proposed
algorithm.

1. For WAINH generation, we use an adaptive threshold λ. It is estimated using
Equation (4) while the parameters value (β,k) are adjusted in experiments.

2. For WAINH partitioning, and in the coarsening phase, we use the hyper-
edge coarsening approach. In the initial partitioning phase, we compute the
k-way partitioning of the coarsest hypergraph using the multilevel hyper-
graph bisection algorithm [15]. In the uncoarsening phase, we use the F.M.
refinement algorithm [14].

For the coarsening, initial partitioning and uncoarsening phases we use the
Hmetis package [16].

We will now show the effect of the weighted hypergraph generation on the
quality of the image segmentation results. For this study, we implement two
weighted neighborhood hypergraph representations : the WAINH representa-
tion defined in section 3, and the WINH representation used in our previous
work [9].
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(a) (b) (c)

Fig. 6. WAINH and WINH comparison. (a) Peppers image. (b,c) Outputs of the pro-
posed algorithm using WINH (λ = 20, β = 1 and k = 51) and WAINH (β = 1 and
k = 51) representations respectively.

The WINH representation uses a global threshold λ. This means that all the
hyperedges Eλ,β(x) are generated with the same threshold λ.

Figure 6 shows the segmentation results of Peppers image obtained, using
WAINH and WINH representations. From this figure, we note that the proposed
algorithm using WINH representation tends to divide large constant areas into
multiple segments. The reader might see that we could improve the results by
using WAINH representation. Indeed, the use of WAINH representation in the
proposed algorithm involves the detection of more significant regions with high
precision. Consequently, weighted hypergraph representation influences segmen-
tation quality. The improvement of this representation leads to an improvement
of the segmentation quality. These remarks can be observed on each image of
the set.

We will now evaluate the WAINH representation according to the mapping
function fwv and fwh

. Independently of these two functions, we can generate
three representations. (1) Using weighted vertices only, (2) using weighted hy-
peredges only and (3) using both weighted vertices and weighted hyperedges.

(a) (b) (c)

Fig. 7. The output of the proposed algorithm with WAINH (a) using weighted vertices
only, (b) using weighted hyperedge only, (c) using both weighted vertices and weighted
hyperedges. The parameters of the algorithm: β = 1 and μ = 51.
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Peppers Medical Fruits Muscle House

265 × 256 265 × 256 251 × 251 256 × 256 256 × 256

(a’) k = 51 (b’) k = 35 (c’) k = 45 (d’) k = 57 (e’) k = 27

(a”) k = 51 (b”) k = 40 (c”) k = 32 (d”) k = 48 (e”) k = 28

Fig. 8. A comparison between proposed and normalized cut algorithms. (a’,b’,c’,d’,e’)
The outputs of the proposed algorithm with β = 1. (a”,b”,c”,d”,e”) The output of
normalized cut algorithm.

The goal of this study is to evaluate the proposed algorithm according to
these three representations and more particularly to the quantity of information
contained in these representations.

Figure 7 shows the results of the proposed algorithm using these three WAINH
representations. From this figure, we note that the algorithm with these three
representations gives comparable results. But, in some areas containing more de-
tails and more useful information, we can see that the last representation WAINH
(using both weighted vertices and weighted hyperedges) gives significant results.
Indeed, the third WAINH gives more key information about the image used in
multilevel neighborhood hypergraph partitioning technique for the segmentation
purpose.

To evaluate the WAINH representation used in our segmentation approach,
the discussion so far used only one Peppers image. In this study, we show several
additional results on different types of images. These additional results are com-
pared to the results of Shi and Malik segmentation algorithm [1] (Normalized
Cuts detection Ncut). This algorithm use the same parameters for all images,
namely, the optimal parameters given by the authors.

Figure 8 shows a comparison between the proposed and Ncut algorithms
on Peppers, Medical, Fruits, Muscle and House images. According to the seg-
mentation results on these images, we note that our algorithm make a better
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Table 1. The computing times of the proposed and Malik et al. algorithms for Peppers,
Medical, Fruits, Muscle and House images

Image proposed (in second) Ncut (in second)
Peppers 3.22 402.75
Medical 2.90 463.64
Fruits 3.25 447.78
House 2.69 453.62
Muscle 3.78 477.28

localization of the regions in the processed image compared to the Ncut method.
The strength of this algorithm is that it better detects the regions containing
many details.

In addition, it results in shorter computing times faster than normalized cuts
algorithm. The table 1 describes the computing times of these two algorithms.
They have been implemented using C++ language in a notebook with the fol-
lowing characteristics: Pentium Centrino, 1,5GHz, 512 Mo RAM.

5 Conclusions and Perspectives

We have presented a weighted adaptive image neighborhood hypergraph parti-
tioning for image segmentation. The segmentation is accomplished in two stages.
In the first stage, a weighted adaptive image neighborhood hypergraph is gen-
erated. In the second stage, a hypergraph partitioning is computed using a mul-
tilevel technique is computed. Experimental results demonstrate that our ap-
proach using the weighted adaptive neighborhood hypergraph performs better
than the same algorithm using a global representation and the normalized cut
algorithm. Currently, we work on the extension of the proposed algorithm on
color images.
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Abstract. Color induced texture analysis is explored, using two texture analysis
techniques: the co-occurrence matrix and the color correlogram as well as color
histograms. Several quantization schemes for six color spaces and the human-
based 11 color quantization scheme have been applied. The VisTex texture
database was used as test bed. A new color induced texture analysis approach
is introduced: the parallel-sequential approach; i.e., the color correlogram com-
bined with the color histogram. This new approach was found to be highly suc-
cessful (up to 96% correct classification). Moreover, the 11 color quantization
scheme performed excellent (94% correct classification) and should, therefore,
be incorporated for real-time image analysis. In general, the results emphasize
the importance of the use of color for texture analysis and of color as global im-
age feature. Moreover, it illustrates the complementary character of both features.

1 Introduction

The origin of the color name lilac lies in the Sanskrit nilla ‘dark blue’, of which the
Persian made nIlak ‘bluish’, from nIl ‘blue’. In the Arabic, the meaning evolved to a
description of a plant with flowers of this color: the Sering. In 1560, the Sering was
brought to Vienna, by an Austrian ambassador. From there, the plant reached France
and the word’s meaning evolved to “a variable color averaging a moderate purple”[1].

The latter example illustrates that there is more with colors than one would think at
first glance. The influence of color in our everyday life and the ease with which humans
use color are in stark contrast with the complexity of the phenomenon color, a topic of
research in numerous fields of science (e.g., physics, biology, psychology, and computer
science). Despite their distinct views on color, scientists in these fields agree that color
is of the utmost importance in image processing, both by humans and by computers.
However, the use of color analysis increases the computational cost for image analysis
algorithms, since instead of one dimension, three dimensions are present. Therefore,
color images are often converted to gray-scale images, when texture analysis has to
be performed (e.g., see Figure 1). Not surprisingly, with this conversion texture infor-
mation is lost; e.g., using a standard conversion, red, green, and blue can result in the

S. Singh et al. (Eds.): ICAPR 2005, LNCS 3687, pp. 532–541, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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same gray-scale. Nevertheless, as Palm [2] already denoted: “The integration of color
and texture is still exceptional”. However, in the literature three distinct approaches to
combine color and texture can be found: parallel, sequential, and integrative [2]. In the
parallel approach, color and texture are evaluated separately, as shown in Figure 1. Se-
quential approaches use color analysis as a first step of the process chain: After the
color space is quantized, gray-scale texture methods are applied, as shown in Figure 2.
The integrative method uses the different color channels of an image and performs the
texture analysis methods on each channel separately.

Palm [2] used an integrative method to test classification results on color textures
and found that the use of color improved classification performance significantly. Drim-
barean and Whelan [3] used three texture analysis methods on five different color
spaces, with one (coarse) color quantization scheme in an integrative method to test
classification results. The use of color improved performance, but no single color space
outperformed the others. Mäenpää and Pietikäinen [4] used five different color spaces
and two texture analysis techniques to determine whether color and texture should be
used in parallel or sequential. They concluded that combining color and texture gave
only minimal performance improvement, and that, when combining color and texture,
the sequential approach should be preferred.

However, no reports are available that combine studies toward the influence of vary-
ing the color space, the quantization scheme, and the way color and texture are com-
bined, for either the parallel approach, the sequential approach, or a combined approach.
In this paper, each of these variations is applied. Moreover, the new parallel-sequential
approach is introduced: the color correlogram combined with the color histogram.

In the next two sections, we discuss the color spaces and the quantization schemes
applied on them and the texture analysis technique used. In Section 4, the texture pro-
cessing schemes, the texture database, and the classifiers used are briefly described.
As baselines, the co-occurrence matrix, the color histogram, and the color correlo-
gram are applied, in Section 5. In Section 6, the new parallel-sequential approach is
introduced and directly compared with the parallel approach. We end this paper with a
conclusion.

2 Color

A color space specifies colors as tuples of (typically three) numbers, conform to certain
specifications. For image processing purposes, color spaces are often quantized. The
color space in which this is done determines the perceptual intuitivity of the quantiza-
tion up to a high extend. Moreover, the axes of the color space can be quantized, using
a different scheme for each axis. Again, this depends on the color space of choice.

A color space is perceptually intuitive if distances between points in that space (i.e.,
‘colors’) have a relation to perceived closeness of these ‘colors’ by human observers.
If that relation is constant one can even speak of perceptual uniformity. In this section,
we describe the color spaces used and the quantization schemes applied on them. The
quantization of color images transformed into gray-scale images will not be described
for every color space since it is the same for every color space: the gray-scale axis is
divided in the number of bins needed for the specific quantization scheme.
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A quantization scheme, either applied to gray-scale or to color images, provides the
means to determine an intensity or color histogram. Such a histogram can be determined
for parts of the image as well as for the image as a whole. The latter application of the
intensity or color histogram is applied in the current research. It describes the global
color characteristics of an image.

The RGB (Red, Green, and Blue) color space is the most used color space for com-
puter graphics and is not perceptually uniform. Each color-axis (R, G, and B) is equally
important and is quantized with the same precision. The conversion from a RGB image
to a gray value image simply takes the sum of the R, G, and B values and divides the
result by three.

The HSV (Hue, Saturation, and Value) color space is more closely related to hu-
man color perception than the RGB color space [5] and is perceptually intuitive but not
perceptually uniform. Hue is the color component of the HSV color space. When Satu-
ration is set to 0, Hue is undefined and the Value-axis represents the gray-scale image.
The most common quantization of HSV is in 162 (18 × 3 × 3) bins.

The YUV and YIQ color spaces have been developed for television broadcasting.
The YIQ color space is the same as the YUV color space, where the I-Q plane is a 33◦

rotation of the U-V plane. The Y signal represents the luminance of a pixel and is the
only channel used in black and white television. The U and V for YUV and I and Q for
YIQ are the chromatic components. The Y channel is defined by the weighted values
of R(0.299), G(0.587), and B(0.144), where the weights resemble the intensity values
of the R, G, and B components. The YUV and YIQ color spaces are not perceptually
uniform. When the YUV and YIQ color spaces are quantized, each axis is quantized
with the same precision. In addition, to optimize color appearance, the YUV color space
is often sampled. The samplings we used to construct the color correlogram are: 4:4:4,
4:2:2, and 4:1:1, where the numbers denote the relative amount of respectively Y on
each row, U and V on each even-numbered row, and U and V on each odd-numbered
row in the image.

The first color space developed by the Commission Internationale de l’Eclairage
(CIE) is the XYZ color space. The Y component is the luminance component defined
by the weighted sums of R(0.212671), G(0.715160), and B(0.072169). The X and Z are
the chromatic components. The XYZ color space is not a perceptually uniform color
space. In quantizing the XYZ space, each axis is quantized with the same precision.

The CIE LUV color space is a projective transformation of the XYZ color space
that is perceptually uniform. The L-channel of the LUV color space is the luminance
of the color. The U and V channels are the chromatic components. So, when U and V
are set to 0, the L-channel represents a gray-scale image. In quantizing the LUV space,
each axis is quantized with the same precision.

Another view on color representation is the concept of 11 color categories (i.e.,
black, white, red, green, yellow, blue, brown, purple, pink, orange, and gray), as intro-
duced by Berlin and Kay [6]. Since then, several researchers discussed the topic; see
Derefeldt et al. [7] for an overview. Van den Broek et al. [8] developed a method to
describe the complete HSI color space, based on a limited set of experimentally deter-
mined, categorized colors. This method provided a unique color space segmentation,
which can be applied as an 11 color categories, quantization scheme.
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3 Texture

Before texture can be analyzed, either a simple color to gray-scale conversion followed
by a gray-scale quantization or a color quantization scheme has to be applied, as dis-
cussed in the previous section. Next, several texture analysis techniques can be applied,
both for general and for specific purposes. We have chosen for one of the more intuitive
texture descriptors: the co-occurrence matrix [9], which was developed for intensity
based texture analysis. However, it can also be applied for color induced texture anal-
ysis; then it is denoted as the color correlogram [10], a sequential color-based texture
analysis method: first color is quantized and second texture is analyzed.

3.1 The Co-occurrence Matrix / The Color Correlogram

The co-occurrence matrix Cd̄(i, j) counts the co-occurrence of pixels with gray values
i and j at a given distance d̄. The distance d̄ is defined in polar coordinates (d,α), with
discrete length and orientation. In practice, α takes the values 0◦, 45◦, 90◦, 135◦, 180◦,
225◦, 270◦, and 315◦. The co-occurrence matrix Cd̄(i, j) can now be defined as:

Cd̄(i, j) = Pr(I(p1) = i ∧ I(p2) = j | |p1 − p2| = d̄), (1)

where Pr is probability, and p1 and p2 are positions in the gray-scale image I.
The algorithm yields a symmetric matrix; hence, only angles up to 180◦ need to

be considered. A single co-occurrence matrix can be defined for each distance d by
averaging four co-occurrence matrices of different angles (i.e., 0◦, 45◦, 90◦, and 135◦).

The color correlogram is the color-based equivalent of the co-occurrence matrix. So,
for the color correlogram, not the intensity is quantized, but a color space is quantized.
In Equation 1, i and j denote two gray-values. Subsequently, the color correlogram can
be defined by Equation 1, with i and j being two color values.

Because of the high dimensionality of the matrix, the individual elements of the
co-occurrence matrix are rarely used directly for texture analysis. Instead, textural fea-
tures can be derived from the matrix. In previous research [11], we determined which
feature-distance combinations, derived from the co-occurrence matrix or color correl-
ogram, perform best. The best classification was found using a combination of four
features: entropy, inverse difference moment, cluster prominence, and Haralick’s corre-
lation, with d = 1. Consequently, this configuration was chosen for this research.

4 Method

For the co-occurrence matrix, the color histogram, and the color correlogram, for each
color space, five quantization schemes were applied. A complete overview of the
schemes applied is presented in Table 1. In total, 170 different configurations were
applied: 30 for the co-occurrence matrix, 20 for the color histogram, 45 for the color
correlogram, and 75 for the combined approaches.

The VisTex texture database [12], which consists of 19 labeled classes, was used as
test bed both for the baselines (see Section 5) and for the comparison between the par-
allel and parallel-sequential approach for texture analysis (see Section 6). The classes
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Table 1. The quantization schemes applied on the six color spaces and on the 11 color categories,
for each texture descriptor. Note that YUV* is sampled for the color correlogram (see Section 2).

Color space Co-occurrence matrix Color histogram /
Color correlogram

RGB 8, 16, 32, 64, 128 8, 64, 216, 512, 4096
HSV 8, 16, 32, 64, 128 27, 54, 108, 162, 324
YIQ, YUV*, XYZ, LUV 8, 16, 32, 64, 128 8, 27, 64, 125, 216
11 colors 11, 27, 36, 70, 225

Table 2. The best classification results (%) of the color histogram, the co-occurrence matrix, and
the color correlogram, for several color space - quantization scheme (#bins) combination.

Color space Co-occurrence matrix Color histogram Color correlogram
#bins % #bins % #bins %

RGB 8 56% 4096 87% 8 68%
HSV 32 58% 27 88% 162 74%
YIQ 8 54% 125 53%
YUV 4:4:4 8 54% 27 52%
XYZ 64 56% 27 71%
LUV 8 58% 64 84% 27 66%
11 colors 11 84% 27 72%

with less than 10 images were not used in this experiment. This resulted in four classes:
bark (13 images), food (12 images), fabric (20 images), and leaves (17 images). In
order to generate more data for the classifiers, we adapted the approach of Palm [2]
and Mäenpää and Pietikäinen [4]: the original images were split into four sub-images,
resulting in a database of 248 textures.

For all research described in this paper, a combination of three classifiers was used:
a linear discriminant classifier, a 1-nearest neighbor classifier, and a probabilistic neu-
ral network, taken from the MATLAB R© library using their default parameters. The
output of this classifier combination was determined using the technique of majority
voting [13]: when at least two of the three classifiers agree on the class label of a sam-
ple image, this label is given else the label false is given. The training and test set for the
classifiers were composed using random picking, with the prerequisite that each class
had an equal amount of training data.

5 Three Baselines

As a first baseline, the co-occurrence matrix as standard, intensity-based texture anal-
ysis is used. The results are presented in Table 2. The complete results are available
online [14]. The CIE LUV quantized in 8 bins and the HSV color space quantized in
32 bins performed best with a classification performance of 58%. Overall, the perfor-
mances among different color spaces were about the same. Hence, for intensity-based
texture analysis, the choice of color space is not essential. The quantization scheme
chosen is important, usually a lower number of bins performs better: In no instance, the
largest number of bins gave the best results.
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Next to texture, the global color distribution within an image is frequently used
as feature for image classification and image retrieval. Therefore, as a second base-
line, we conducted an image classification experiment, using color solely by calculating
the color histograms. In Table 2, the best four classification results are presented. The
complete results are available online [14]. Classification by use of quantizations of the
RGB color space results in a low performance (i.e., ranging from 19–48%), except for
the 4096 bin quantization scheme (as used in QBIC [15]). However, the latter suffers
from an unacceptable computational load, especially for real-time image analysis ap-
plications (e.g., content-based image retrieval). Therefore, the RGB color space is not
suitable for color-based image classification. The classification using the coarsest LUV
quantization (8 bins) did have a poor performance. All other quantizations, using the
LUV color space, resulted in high classification performance. The color-based texture
classification, using the coarse 11 color quantization scheme, performed well (84%)
(see Table 2), especially when considering its low computational complexity. The 27
and 162 bins quantizations of the HSV color space performed best with 88% and 89%.

As the third baseline, sequential texture analysis is performed (see Figure 2), with
the color correlogram using six different color spaces. The results are presented in Ta-
ble 2. In addition, the 11 color categories scheme was applied using several quantization
schemes (see Section 4). The HSV color space performed best in combination with the
color correlogram (see Table 2). This can be explained by the relatively high precision
in color (Hue) quantization of the HSV 162 bins scheme. However, the color correlo-
gram founded on the 11 color categories also performed good with 72% precision.

An interesting result is the fact that using more bins usually does not improve per-
formance. In no instance, the largest number of bins gave the best results. This result
emphasizes the importance of using a coarse color quantization scheme such as that of
the 11 color categories in which one can represent colors [7].

Gray-scale
conversion

I = (R + G + B) / 3

Color
Quantization

Intensity
Quantization

Co-occurrence
matrix

Color histogram < ........... >
Matching

Database

Fig. 1. The parallel approach for texture analysis, using global color features and local intensity
differences. In parallel, the color histogram is determined, after the quantization of color, and the
co-occurrence matrix is calculated, after the conversion to gray-scale and the quantization of gray
values.
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Color
Quantization

Color correlogram

< ........... >
Matching

Database

Fig. 2. The sequential approach for texture analysis: after color quantization the color correlogram
is utilized.

6 Parallel-Sequential Texture Analysis: Color Histogram and
Color Correlogram

In the previous sections, we have discussed the classification of the VisTex images, us-
ing intensity-based texture features (i.e., the co-occurrence matrix), color histograms,
and a sequential of color and texture: the color correlogram. However, better classifica-
tion results may be achieved when these methods are combined.

In the current section, a new color induced texture analysis approach is introduced:
the parallel-sequential approach, which combines the color correlogram and the color
histogram, as is visualized in Figure 3. This new approach is compared with the parallel
texture analysis approach: the co-occurrence matrix combined with the color histogram,
as is visualized in Figure 1.

First, the color histogram data and texture features were concatenated. The six
best color histograms were used in combination with both the two best quantization
schemes of each color space (for the color correlogram) and the best intensity quanti-
zation scheme (for the co-occurrence matrix). The RGB color histogram was excluded
since it only performs well with a quantization that is computationally too expensive
(see Table 2).

In Table 3, the results of the parallel approach (i.e., combination of color histogram
and co-occurrence matrix, see also Figure 1) are provided. In general, the color his-

Color
Quantization

Color correlogram

Color histogram

< ........... >
Matching

Database

Fig. 3. The new parallel-sequential approach for texture analysis which yields in parallel: global
color analysis, using the color histogram, and color induced texture analysis, using the color
correlogram.
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Table 3. The classification results of the best combinations of color histograms with co-
occurrence matrices (the parallel approach, see also Figure 1) and with color correlograms (the
parallel-sequential approach, see also Figure 3), using several quantizations of color spaces.

Color histogram
11 colors HSV-27 HSV-162 LUV-64 LUV-125

Co-occurrence matrix HSV-32 88% 90% 92% 82% 90%
LUV-8 84% 89% 92% 82% 88%
RGB-8 84% 89% 92% 82% 88%
XYZ-64 87% 84% 91% 79% 90%
YUV/YIQ-8 83% 87% 92% 81% 89%

Color correlogram 11 colors-27 94% 92% 96% 92% 89%
HSV-27 93% 87% 92% 92% 91%
LUV-27 90% 89% 91% 88% 89%
RGB-8 92% 91% 93% 86% 87%
XYZ-27 87% 89% 92% 84% 94%

togram based on the HSV 162 bins quantization scheme performed best (91 − 92%).
However, the computationally much cheaper 11 color quantization scheme did also
have a high performance (88%), when combined with the on HSV 32 bins based co-
occurrence matrix (see Table 3). Therefore, the latter combination should be taken into
account for real-time systems, using color and texture analysis.

The new parallel-sequential approach has a correct classification ranging from 84%
to 96% (see Table 3). So, the combination color histogram with color correlogram im-
proved the classification performance significantly, compared to each of them sepa-
rately (cf. Table 2 and 3).

The configurations using coarse color quantizations for the definition of the color
correlogram, outperformed the more precise color quantizations for all color spaces.
The 11 color categories color quantization using 27 bins for the color correlogram, per-
formed best on average (92.6%), followed by the HSV-27 bins configuration (91.0%).
Concerning the color histogram configurations, the highest average correct classifica-
tion was provided by the HSV-162 bins color histogram (92.8%), followed by the 11
color categories color histogram with 91.2%.

The best color correlogram - color histogram combinations were: the 11 colors, 27
bins correlogram & 11 colors histogram, the 11 colors, 27 bins correlogram & HSV-
162 color histogram, and the XYZ, 27 bins correlogram & LUV-125 color histogram
(the percentages are denoted bold in Table 3). When considering the computational
complexity of these combinations, the first combination should be preferred, with its
feature-vector of size 15: 11 colors + 4 features derived from the 11 colors 27 bins
color correlogram, as described in Section 4.

7 Conclusion

Determining the optimal configuration for color-based texture analysis is very important
since the success of image classification and image retrieval systems depends on this
configuration. Therefore, in this paper, a series of experiments was presented exploring
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a variety of aspects concerning color-based texture analysis. The color histogram, the
co-occurrence matrix, the color correlogram, and their combinations (i.e., the parallel
and sequential approach) were compared with one another, using several color spaces
and quantization schemes. A new texture analysis method: the parallel-sequential ap-
proach, was introduced.

The worst classification results were obtained when only intensity-based texture
analysis (i.e., the co-occurrence matrix) was used, the best classification performance
in this setting was 58% for the HSV and CIE LUV color spaces. Including color sequen-
tially, using the color correlogram, gave better results (74%). The parallel approach (i.e.,
color histogram combined with the co-occurrence matrix improved the performance
substantially (see Table 3). However, by far the best classification results were obtained
using the new parallel-sequential approach (i.e., color histogram and color correlogram
combined, a performance of 96% correct classification was obtained, using the HSV
162 bins color histogram in combination with the color correlogram for the 11 color
categories with 27 bins. These results indicate that the use of color for image analysis is
very important, as classification performance was improved by 38%, compared with the
most widely used, intensity-based, co-occurence matrix. Moreover, in general, coarse
color quantization schemes perform excellent and should be preferred to more precise
schemes.

The success of the parallel-sequential approach emphasizes the importance of both
the global color distribution in images, as identified by the color histogram, and the im-
portance of the utilization of color with the analysis of texture. As was shown, ignoring
color in either texture analysis or as a global feature impairs the classification of image
material substantially. Moreover, the complementary character of global color and color
induced texture analysis is illustrated.

Follow-up research should challenge the parallel-sequential approach, by explor-
ing and comparing different texture analysis methods with the parallel-sequential ap-
proach introduced in this paper. Moreover, the use of combining texture analysis meth-
ods should be investigated since it might provide the means to increase classification
results [16]. Preferably, this research should be conducted using a much larger database
of textures.

Regardless of texture analysis methods, note that the computationally inexpensive
and well performing 11 color categories are human-based. In further work, we will
investigate whether the texture analysis techniques discussed in the current paper can
mimic human texture classification. This is of the utmost importance as it is the human
who will use and judge the systems in which texture analysis techniques are incorpo-
rated [8,15].
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Abstract. As content-based multimedia applications become increasingly im-
portant, demand for technologies on semantic video object segmentation is 
growing, where the segmented objects are expected to be in line with human 
visual perception. Existing research is limited to semi-automatic approach, in 
which human intervene is often required. These include manual selection of 
seeds for region growing or manual classification of background edges etc. In 
this paper, we propose an automatic region growing algorithm for video object 
segmentation, which features in automatic selection of seeds and thus the entire 
segmentation does not require any action from human users. Experimental re-
sults show that the proposed algorithm performs well in terms of the effective-
ness in video object segmentation. 

1   Originality and Contribution 

Although research on image segmentation remains intensive for the past decades, 
most of the algorithms developed are limited to region segmentation, where seg-
mented regions maintain high level of texture consistency but fail to address the issue 
of human content understanding [9]. In this paper, we report our recent efforts in 
developing segmentation algorithms towards semantic object segmentation, where 
objects segmented are consistent with human content understanding rather than tex-
ture consistent regions. The originality of our work lies in the fact that we propose to 
use a two-stage approach to carry out the segmentation. While the first stage identifies 
a number of texture-consistent regions by following the low-level routes, the second 
stage ensures that seeds are selected across the boundaries of different texture consis-
tent regions, and thus making the proposed segmentation close to semantic objects. 

Another contribution in this paper is that we proposed a novel method for region 
growing with automatic seeding, which explores the possibility of developing a video 
object segmentation algorithm based on the concept of seeded region growing. Com-
pared with the latest reported region growing method [15], the proposed algorithm 
features in: (i) the initial seeds for region growing can be automatically selected; (ii) a 
correction procedure is built into the system to improve the boundary of segmented 
object, and (iii) the segmented objects deliver semantic information. 
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2   Introduction to the Problem 

Existing research on video object segmentation can be roughly summarized into two 
approaches [5], temporal-to-spatial [13, 15] and spatial-to-temporal [3, 4]. The tempo-
ral-to-spatial approach sequentially extracts objects by iteratively determining the 
successive dominant motion parameters, and those regions or sets of pixels which 
conform to the dominant motion parameters are taken to construct an object. The 
remaining regions or pixels are regarded as undetermined. The process continues to 
estimate the dominant motion parameters for those undetermined regions until all 
objects are extracted [14]. In the spatial-to-temporal approach [13], an over-
segmented image is first obtained by extracting spatial features from regions, and then 
a region-merging procedure is adopted to identify meaningful objects by using tempo-
ral information such as motion parameters. As these two approaches basically involve 
no action from human users, the segmented objects are often not consistent with hu-
man visual perception. Consequently, practical application of these algorithms is 
normally limited to region segmentation rather than video object segmentation. 

To improve the accuracy and effectiveness, people tend to revisit those region-
based image segmentation [3, 4, 11, 15~18] techniques, in which regions are seg-
mented by grouping together pixels with similar intensity and smooth texture. The 
idea of region growing is one of the most fundamental concepts used in image seg-
mentation techniques [1, 2], in which the regions with connected pixels of similar 
values could provide important cues for extracting semantic objects. 

The first step to start region growing procedure is to select seeds [7, 12, 15, 16, 
18], which often determines the final segmentation results by subsequent region grow.  
Such operations are normally referred to as seeded region growing (SRG) [15], which 
is one of the efficient algorithms for image segmentation. The problem here is that as 
the selection of seeds influences the accuracy of final segmentation, seeded region 
growing expects human users’ intervention by selecting initial seeds manually, which 
would become a major drawback for video object segmentation. To explore the possi-
bility of developing a new video object segmentation algorithm based on the concept 
of seeded region growing, we try to design a scheme, where initial seeds can be auto-
matically selected. As a result, the proposed video object segmentation algorithm can 
be clearly seen to have two elements, automatic seeding and region growing. 

3   Design of the Proposed Algorithm  

The printing area is 122 mm × 193 mm. The text should be justified to occupy the full 
line width, so that the right margin is not ragged, with words hyphenated as appropri-
ate. Please fill pages so that the length of the text is no less than 180 mm. 

To automatically select the seeds for region growing, we use a competitive learn-
ing neural network to do the initial segmentation [8]. In this way, the initial segmenta-
tion will provide a space with secured boundaries for seed selection. Considering 
most of digital videos are already in compressed format at the source, such as MPEG 
videos, we follow the MPEG compression scheme to design the initial segmentation. 
Given N blocks of 64 DCT coefficients inside each video frame, we construct a fea-
ture vector by extracting DC coefficients only and feed the DC coefficients into a 
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competitive learning neural network to see if the DC should be taken as an object DC 
or a background DC. Prior to the segmentation, the competitive learning neural net-
work is trained by a set of video frames, where video object DC coefficients and 
background DC coefficients are manually selected to enable the neural network to 
learn their differences. As this process is essentially carried out in compressed domain 
and only one DC coefficient out of each block is required, the operation cost is ex-
pected to be very small and the processing speed is high. In other words, if the video 
frame size is M × N, the proposed initial segmentation is carried out for a reduced DC 
image with only M/8 × N/8 DC coefficients. This is because MPEG compresses vid-
eos in terms of such blocks. By examining the DCT properties, it can be seen that the 
DC image extracted essentially consists of average pixels, where each DC coefficient 
is the average value of all 64 pixels inside the block. Therefore, each DC coefficient 
can be calculated in pixel domain as follows:  
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where (m, n) represent the location of the top-left pixel inside each block.  
To ensure that the training stage is adaptive to the content of input videos, we take 

the first five video frames as the training sequence to prepare for the initial segmenta-
tion. As the accuracy of the NN classification can not be 100% guaranteed, we do not 
use the training results directly but as guidelines for initial seed selection. This is done 
by constructing a skeleton of the roughly segmented regions delivered by NN to select 
the initial seeds. Since the skeleton is located at the heart of those roughly segmented 
regions, the outcome for seeds is not domain dependent.  

Figure-1 illustrates an example of such initially segmented results, where part (a~f) 
show the original video frames out of five video clips, and part (g~i) the initially 
segmented objects. 

In the segmented illustration (part (g~i) of Figure-1), the object region is repre-
sented as the non-black area and the black part is regarded as the background region. 
As we only use the DC coefficients not pixels, the results shown are not very accurate 
and their boundaries are blocking. This is the direct result of our proposed algorithm, 
where segmentation is done in terms of blocks rather than pixels. However, as we are 
using the segmentation for the purpose of selecting initial seeds, the blocking effect 
can be ignored and such initial segmentation is sufficient for this purpose. 

After the coarse segmented regions are obtained, the next step is to choose the ini-
tial seeds for region growing. Considering the fact that selection of initial seeds has 
great influence upon the final segmentation accuracy, we propose a narrowing-down 
approach to ensure that each seed selected is indeed located inside the initially seg-
mented region. To this end, we firstly generate a skeleton of the roughly segmented 
region by characterizing the luminance feature of those object pixels. Among all the 
segmented object pixels, we remove those non-reliable pixels on the boundaries of the 
object region, and keep those pixels located in the middle of the object region be-
tween two boundaries. As a result, the process generates a skeleton for each object 
region. Similarly, for background regions, we also remove those pixels on its bounda-
ries and only keep those reliable pixels (located in the middle of background region 
between two ends of the boundaries). This operation enables us to generate another  
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skeleton to characterize the background region. For the 46th frame of ‘mother and 
daughter’ given in part (a) of Figure-1, we illustrate the skeletons generated in Figure-2, 
where part (a) illustrates the object skeleton and part (b) the background skeleton. 

 

 
(a)                                      (b)                                    (c) 

 
(d)                                 (e)                                (f) 

 
(g)                                       (h)                                   (i) 

 

Fig. 1. (a~i) Original Frame of ‘Mother and daughter’ No.46, ‘Silent’ No.60 ‘Silent’ No.229, 
‘Seaman’ No. 39, ‘Talking’ No 25, and ‘Wedding’ No. 23, respectively; (g, h, i) Segmented 
results of (a), (b), and (c), respectively. 

          
(a)                                                  (b) 

Fig. 2. (a) The skeleton of the object region; (b) And background region. 
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Correspondingly, the pixels on the object skeleton can be selected as the seeds for 
object region growing, and the pixels on the background skeleton are selected as the 
seeds for background region growing. 

Based on the existing work on region growing [15, 18], we design our region 
growing algorithm as follows, where the automatic selection of initial seeds is taken 
into consideration. 

1: We set the skeletons of foreground and background as the seeded regions for ob-
ject and background, respectively (So: the seeds of object region, and Sb: the seeds of 
background region); 

2: Given each seed pixel Si, (Si∈So or Sb), examine its 8 connected neighbouring 
pixels via: 

fkfk SMeanPSMeanPDDMinimum _)_,(_ −==                                                 (2) 

where Pk is the kth neighbouring pixel of the seed ( ]7,0[∈k ), and Mean_ Sf is the 

mean value of all the pixels (Si) inside the seeded region (So or Sb). 
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Where Si the ith pixel in the seeded region and n is the number of pixels inside the 
seeded region. 

If the pixel Pk has the minimum distance, Minimum_D, and it also neighbours 
with Si, we grow the pixel into Si, and updates the mean value of Si, Otherwise, we 
label the pixel Pk with the seed for later processing. 

3: Process all the labelled pixels. At this stage, each labelled pixel is grown into its 
labelling seed if this pixel neighbours with the seed or if majority of its neighbours 
belong to the labelling seed. 

4: To ensure that each pixel examined is grown into the right region, a correction 
procedure is further added to process those remaining labelled pixels. This procedure 
can be used to improve the smoothness for each region’s boundary. Specifically, if 
they are surrounded by pixels within the same seeded region, they should be grown 
into this region no matter what seed they are labelled by their distance calculation. 

4   Experiments and Conclusions 

The proposed automatic seeded region growing algorithm is implemented by software 
in Matlab and tested by using five test videos (Mother and daughter, Silent, Seaman, 
Talking and Wedding), which are publicly available. The test sequences are in YUV 
format and their frame size is 144× 176. Figure-3 illustrates the experimental results 
achieved by the proposed region-grow algorithm. 

In order to compare the performance of our proposed algorithm with the existing 
research in relevant areas, we implemented the semi-automatic region growing algo-
rithm reported in [15] as our benchmark. For specific implementation, we manually 
selected two seeded regions: one for the foreground and the other for background. 
The size of the seeded region is a window of 8 × 8. The first three results of [15] are 
shown in Figure-4. 
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( a )                                 ( b )                                  ( c ) 

  
                ( d )                              ( e )                                  (f) 
 

Fig. 3. Results of our proposed algorithm. (a) “Mother and daughter” frame 80. (b) “Silent” 
frame 60. (c) “Silent” frame 229. (d)‘Seaman’ No. 39, ‘Talking’ No 25, and ‘Wedding’ No. 23. 

 
In both Fig.3 and Fig.4, the segmented object area is represented as the non-black 

and the black area is treated as the background region. Compared with the results of 
the existing seeded region growing, which involves manual selection of initial seeds, 
as shown in Fig 4, the accuracy of the object area in the proposed algorithm shown in 
Fig 3 is seen to be improved, and the object boundary is also smoothed, although 
there still exist some parts of the pixels, which are either over-segmented or under-
segmented. 

 

 
                  ( a )                                ( b )                                     ( c ) 

Fig. 4. The results of SRG. (a) “mother and daughter” frame 80. (b)  “silent” frame 60. (c)  
“silent” frame 229. 

In addition, we also applied a simple pixel-based quality measurement algorithm 
[19] to compare our results with that achieved by benchmark [15]. The quality meas-
urement uses the spatial distortion of an estimated binary video object mask to get the 
error ratio. The smaller the ratio, the better the results achieved. The measurement is 
defined as follows: 
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Where ( )yxOest
n ,  and ( )yxOref

n ,  represents the estimated and reference binary 

object masks at frame n, and ⊕ means binary ‘XOR’ operation. The comparative 
results are listed in Table 1, where the second column lists the error ratios of our pro-
posed algorithm and the third column lists the error ratios of the benchmark reported 
in [15] and [6].  

5   Conclusions 

In this paper, we proposed an automatic seeded region growing algorithm to extract 
video objects from MPEG compressed videos. In comparison with existing research 
in this area, our contribution can be highlighted as: (i) we introduced a neural network 
to carry out an initial segmentation in compressed domain (block-based segmenta-
tion). This technique enables the proposed algorithm to select seeds for region-grow 
at locations where texture consistency is guaranteed; (ii) via the initial block-based 
segmentation, we propose an automatic seeded region growing for semantic object 
segmentation. On one hand, existing region-grow is often semi-automatic, on the 
other, the initial segmentation enables the proposed algorithm to select seeds across 
the boundaries of different regions, and thus achieve certain level of bridging the gap 
between low-level segmentation and high-level object segmentation. Experiments 
benchmarked by the representative existing research support that our proposed algo-
rithm is effecitive towards semantic video object segmentation, and achieves some 
improvement upon the existing research. From the details of the algorithm design, it 
can be seen that the proposed algorithm is rapid, robust, self-contained, and easy-to-
use without involving any intervention from users. 

Table 1. Error ratio evaluation of the proposed algorithm compared with the benchmark re-
ported in [15] and [6] 

 
 Our proposed 

algorithm 
Algorithm in 

[15] 
Algorithm in 

[6] 
Silent_80 1.79 2.58 2.15 

Silent_229 2.03 3.11 2.03 

Mother and 
daughter 

1.52 2.76 2.33 

Talking 3.53 5.65 3.05 

seaman 3.21 3.21 3.15 

Wedding 2.29 2.29 2.16 
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Abstract. This paper presents an object coding scheme based on varying Bezier 
polynomials between cubics, quadratics and linears. Extracted data points, 
without any other overhead, are the end product of this scheme which form set 
of Bezier control points. Corner detection as a preprocessing phase simplifies 
subsequent coding operation and properties of Bezier splines are exploited to 
extract final data points. The proposed method results in high data reduction 
without any compromise to the quality of reconstructed shapes. The coding 
scheme is suitable for real time image processing applications due to its high 
compression ratio, efficient and accurate representation of given shapes.  

1   Introduction 

Computers are the efficient and error free solution to many problems. Demand for 
computer based applications/processing has immensely increased in last two decades. 
Computers play an important role in image processing as well. Due to heavy image 
sizes, real time processing of images and videos had always been a difficult task. An 
efficient coding/representation of images is one solution to this problem and it has 
become an important area of research today. Object-based description of images 
especially for processing videos is quite natural where an actor is filmed in front of a 
blue screen and then moved in front of any desired background. Different objects in 
an image can be represented by its boundary [1-2] or by the interior of shape [3-4]. In 
boundary representation texture of an object is eliminated. This representation is more 
efficient and still preserves the complete shape of an object. Shape boundaries are not 
efficient enough to be used for real time applications and need some coding. 

Researchers have proposed various coding schemes for an efficient representation 
of boundaries. One of the first coding was chain coding [5]. Chain codes describe an 
object by a sequence of unit-size line segments with a given orientation. It has 
attracted considerable attention over last 30 years [6-9]. There have been many 
extensions to this basic scheme such as generalized chain codes [6], where the coding 
efficiency has been improved with the use of links of different length and different 
angular resolution. Linear approximation or polygonal approximation [10-13] is 
another coding method, in which the data points (also called dominant points) 
considerably reduce, at the cost of some approximation error or distortion. Recently 



 Object Coding for Real Time Image Processing Applications 551 

 

proposed algorithms [12-13] may represent the object by about 1/5th of the total 
boundary points depending upon the shape of an object. For circular shapes the 
number of dominant points and associated distortion may considerably increase.  

Boundaries can be represented more efficiently with various spline curves. This 
involves finding the location of control points by minimizing approximation error. 
Researchers have introduced various curve approximation techniques using different 
spline models like B-splines [14], Hermite interpolation [15] and rational cubic 
interpolation [16]. This is very efficient representation but may cause extra smoothing 
of boundary, especially at its corner positions [17]. In this paper we present a coding 
scheme with Bezier splines which is an improvement to the existing methods and it 
causes high reduction of data points while preserving the original shape of object.  

Rest of the paper is organized as follow. Section 2 describes the proposed 
framework in which the original contributions are highlighted. The coding scheme is 
applied in two phases namely object segmentation and data point extraction which are 
explained in section 3 and 4 respectively. Results are demonstrated in section 5 and 
section 6 concludes this presentation. 

2   Proposed Framework 

The proposed algorithm is designed to code real objects which can be of varying 
shapes and design. A simple curve approximation technique may not be able to pre-
serve the original shape accurately. Therefore, our coding scheme consists of two 
phases. In phase 1, initial characteristic points are detected using some corner detec-
tion algorithm [19-22]. Corners are the robust features that provide important infor-
mation of objects. Precise detection of corner points plays an important role for accu-
rate and efficient coding of objects. After corner detection objects are decomposed 
into segments at those corner points. Each segment is then processed by phase 2 of 
proposed coding scheme. 

In phase 2, suitable data points for each segment are extracted. Processing of these 
segments is completely independent from each other, thus parallel processing can 
speed up the process. We use curve approximation with Bezier curve to find the ulti-
mate data points which form control points of approximating piecewise Bezier spline. 
Most of the proposed curve approximation techniques are based on finding interpolat-
ing data points along the original curve [24-28]. Such algorithms are easy to imple-
ment but high reduction in data points can result if the data points are allowed to de-
viate away from the target curve [29]. This technique is presented in this paper. We 
have gone even one step ahead in proposed coding scheme where the polynomial of 
approximating curve is adjusted according to given segments, in which first, second 
and third order polynomial can be used i;e., approximation with straight lines, quad-
ratics and cubics. During the process any segment can be decomposed into subseg-
ments and different Bezier polynomial can be applied on each subsegment. The pro-
posed scheme results in high data reduction (upto 1/25th of object boundary) without 
compromising to the quality of resultant shape. Approximating curve segments 
through these data points are stitched together to attain the ultimate shape of object. 
The coding scheme is presented in next two sections.  
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3   Object Segmentation 

Object coding can be very expensive operation and lack in accuracy if applied directly 
to the complete shape. Corner detection process can avoid extra smoothing of objects 
and preserve the original shape especially at its sharp corner. Objects are decomposed 
into segments from their natural break points (corners) as a preprocessing step. Corner 
detectors can efficiently mark these break points in an object.  

Authors have presented various corner detection algorithms [19-22] and we use 
SAM04 algorithm [19] for detection of corner points. This is an efficient algorithm 
which can accurately mark corners of an object. The algorithm is briefly described 
here. Readers are referred to [19] for details. It works in two passes. In first pass, per-
pendicular distance of all contour points between Pi and Pk are calculated from the 
straight line joining these contour points. For any contour point Pi, ni ≤≤1  where n 
is the number of points in a closed loop, Pk is calculated as:  

If    (i+L) n 

Then   Pk =  Pi+L  

Else   Pk = P(i+L)-n 

L is a length parameter which takes care of object scaling and resolution. Default 
value of L is 14. Point Pj is the point with maximum perpendicular distance. Pj is se-
lected as a candidate corner point if its perpendicular distance (dj) is greater than pa-
rameter D and the distance dj is assigned to Pj. Distance parameter D checks the local 
sharpness and opening angle of corners. It also controls the wrong selection of corners 
due to noise and other irregularities. Default value of D is 2.6. The perpendicular dis-
tance dj from point Pj(x,y) to the straight line joining the point Pi(x,y) and Pk(x,y) can 
be calculated as: 

If              

Then              

 

Else    

 

Where  

 

Next candidate corner point is detected for a new straight line by incrementing 
both i and k. The process continues for i=1 to n. Higher value of dj is assigned to Pj if 
more than one straight line may respond to same corner Pj. Superfluous corners are 
discarded in second pass. The candidate corner is superfluous if any other candidate 
with higher value of dj is in the range R. For any candidate corner point to live, it must 
be the strongest corner (highest value of dj) among the R number of points on its both 
sides. Default value of R is equal to L but it must be given lower value to enable de-
tection of closely located corners. 
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Fig. 1. Object segmentation. (a) An object (Shape of jug) marked with corner points. (b) After 
segmentation from detected corner points. 

Corner points are detected from an object and it is then broken into segments from 
those corner points. The object is processed segment-wise in next phase of shape cod-
ing. Fig 1 shows the result of object segmentation using SAM04 [19] algorithm. Fig 
1a is the object marked with detected corner points and fig 1b is the object after seg-
mentation. Processing for data point extraction on each segment is independent of 
other segments therefore parallel processing can speed-up the remaining process. 

4   Data Points Extraction 

In this phase of object coding, data points are extracted for a given segment of an ob-
ject using Bezier splines [18]. Bezier splines are the approximating curves and have 
number of properties like simple, easy and efficient implementation, which make 
them highly useful and convenient for object coding. In general, a Bezier curve sec-
tion can be fitted to any number of control points, which determine the degree of its 
polynomial. For n+1 control points represented with pk = (xk,yk), with k varying from 
0 to n, the position vector P(u) along the Bezier curve describes the path between p0 
and pn, which can be given as: 

P(u) = 
=

n

k

nkk uBEZp
0

, )( , 10 ≤≤ u  
(1) 

The Bezier blending functions BEZk,n(u) are the bernstein polynomials [23]: 

knk
nk uuknCuBEZ −−= )1(),()(,  (2) 

where  C(n,k) are the binomial coefficients: 

)!(!

!
),(

knk

n
knC

−
=  

(3) 

(a) (b)
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The above implementation is used to calculate an approximating Bezier curve 
through given control points. For segment coding, we need to perform a reverse 
operation i;e., to find Bezier control points for a given segment such that a Bezier 
curve through them is a replica of given segment. These control points would form 
the data points of that curve.  

Control points from a given segment can be evaluated by exploiting the properties 
of Bezier curves. The extracted data points would be the control points of 
approximating cubic, quadratic or linear Bezier curves. For cubics, Bezier curve 
would require four control points (p0, p1, p2, p3). Among them two control points (p0, 
p3) are the segment endpoints and other two (p1, p2) are to be searched, which lies 
along the tangents (T1 & T2) of a segments at its endpoints. To optimize the search 
algorithm, it is implemented in two phases. Phase 1 is very efficient but determines an 
approximate location of control points. Positions of these control points are refined in 
phase 2 which is relatively slow but accurate. 

Search for the control points P1 & P2 starts from the control points P0 & P3 
respectively. These control points are searched along the tangent lines T1 & T2. 
Control points P1 & P2 are moved, along their respective tangents, one after another 
and approximation error (AE) is minimized. Each control point can move in any 
direction, along its tangent, if it causes reduction in overall approximation error (AE). 
The process continues till P1 or P2 stop moving. At this point AE will minimize. The 
algorithm for search of control points (P1 & P2) is given as:  

1. P1 = P0 

2. P2 = P3 

3. Calculate M1 and M2 

4. Calculate AE 

5. Do  P1 = P1 ± M1   While(AE reduces) 

6. Do  P2 = P2 ± M2   While(AE reduces) 

7. Repeat step 5 and 6 till P1 or P2 stop changing 

In above algorithm M1 & M2 represents one step movement for control points P1 & 
P2 respectively. The same algorithm in run in both phase 1 and phase 2 of control 
points search, the difference lies only in the computation of AE, M1 and M2. Ap-
proximation error (AE) is the distance between two curves i;e., original and computed 
curve. Computed curve is the cubic Bezier curve computed with current position of 
control points. In phase 1, AE is the accumulated distance between two curves at five 
equally separated points along the curve. In phase 2, AE is the total area between two 
curves i;e., accumulated distance of all the points. One step movement for phase 1 and 
phase 2 can be computed as : 

M1 = Cw – C0  

M2 = Cn-w – Cn 

Where C0 and Cn is the first and last point of the given curve and w is the window 
size. Value of w is 1 for smooth curves but it must be given higher value for non-
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smooth or irregular curves (object outlines). The algorithm is separated in two phases 
to optimize the control point search. Phase 1 is computationally very efficient but 
looks for an approximate location of control points P1 and P2. Fig 2a shows approxi-
mating curve after phase 1. Phase 2 is an expensive operation but require slight adjust 
of control points. Fig 2b shows approximating curve after phase 2. It can be observed 
that approximating curve get close to given segment in phase 1 and covers the target 
segment very accurately after phase 2. 

 
 
 
 
 
 
 

Fig. 2. Extracted data point (cubic Bezier control points) their respective curve drawn over a 
given segment (dashed line). (a) After Phase 1. (b) After Phase 2. 

The approximating Bezier curve will introduce some AE. If this max value of AE at 
any point along the curve is beyond specified threshold error limits (default limit is 2 
pixels) then the segment is recursively decomposed into subsegments at maximum er-
ror point. Each subsegment is then processed for data point extraction again. This 
process will continue till all segments are within threshold error limit. Fig. 3 shows 
segment before and after segment subdivision. 

 
 
 
 
 
 
 

Fig. 3. Segment subdivision. (a) Before segment subdivision. (b) After Segment Subdivision. 

Segments, which are already under threshold error limits, are also tested for lower 
polynomial approximations (quadratic and linear). Data points with lowest possible 
polynomial, without causing any further decomposition of segments, are finally 
assigned to the segment. Calculation of quadratic Bezier control points (p0, p1, p2) is a 
simple procedure. Among them (p0, p2) are the segment endpoints and p1 lies at the 
intersection point of segment tangents (T1 & T2). Similarly a linear Bezier would be 
the straight line between two endpoints which are Bezier control points (p0 & p1). 

5   Result Demonstration 

Data points are the end product of this coding scheme, which are actually the control 
points of piecewise Bezier splines. These data points completely represent the actual 

(a) (b)

(a) (b)
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object which can be reconstructed any time through a piecewise Bezier spline 
approximating these data points. Any operation (like transformation, scaling, rotation 
and shearing etc) on these data points results in transformation of complete shape.  

The proposed coding scheme results in high data reduction without making any 
significant compromise to the quality of reconstructed shape. Authors have introduced 
various quantitative parameters (like integral square error or maximum error) to 
estimate the accuracy of reconstructed shape. These quantitative parameters generally 
ignore difference of shapes at high curvature points and other critical areas of an 
object. Therefore human judgment, of reconstructed shapes, by visual appearance is 
always rated very high. Results of two shapes are demonstrated in fig 4&5. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Results of object coding. (a) Original shape marked with corner points. (b) Original 
shape marked with complete set of data points. (c) Reconstructed shape drawn over original.  

Coding results for an object (£) are demonstrated in fig 4. Original shape marked 
with detected corner points, using SAM04 [19], are shown on fig 4a. Complete set of 
detected data points are shown in fig 4b. Segment endpoints are shown with asterisks 
(*) and their intermediate control points are marked with dots (·). Each segment is 
represented by either two, three or four data points, depending upon the Bezier poly-
nomial suited for that segment. Table 1 lists the number of linear, quadratic and cubic 
data segments finalized for this shape. The original shape was distributed into 23 
segments at the detected corner and subdivision points. Distribution of segments were 
12, 4 & 7 cubics, quadratics and linears respectively. The complete shape is repre-
sented with just 50 data points.  

The coding of object (£) achieve compression ratio (CR) of 24.94, where CR is ra-
tio between total number of boundary points to the number of data points. Generally, 
the CR value of polynomial approximation algorithms [12-13] ranges from 4 to 6 de-
pending upon shape. Representation of object boundaries, with spline curves, nor-
mally involves various overheads in the form of control parameters. That’s why in-
spite of low quality representation and lower CR value, polynomial approximation is 
sometimes preferred over curve approximation. In presented technique, no overhead 
or control parameters are involved. Therefore, a simple Bezier curve through detected 
data points can very accurately reconstruct the object boundary. For the shape of 
character pound (£) computed boundary is drawn over original for an easy compari-
son in fig 4c. One can hardly find it deviating away from original shape. 

 

(a) (b) (c)
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Fig. 5. Results of object coding. (a) Original shape marked with corner points. (b) Original 
shape marked with complete set of data points. (c) Reconstructed shape drawn over original. 

Result for another shape ( ) is demonstrated in fig 5. Boundary marked with corner 
points is shown in fig 5a. The detected data points are shown in fig 5b. Accuracy of 
this shape is also similar to fig 4. Outcome of its coding, results in 53 data points. 
Among 23 segments of this shape just 4 are the linear due to the type of shape. Note 
that CR for this shape is even higher than previous one. Reconstructed shape in fig 5c 
also covers the original boundary very accurately. 

Table 1. Quantitative details of reconstructed shapes of fig 4 & 5 

Segments Shape

Linear Quad Cubic Total

D Pts B Pts CR 

£ 7 4 12 23 50 1247 24.9 

 4 7 12 23 53 1536 29 

6   Conclusion 

An object coding scheme based on Bezier curves is presented in this paper. Corner 
detection, as a preprocessing phase, simplifies the coding process and plays major 
role in preserving the original shape of an object. The proposed scheme has obvious 
advantages over previously presented similar techniques which are as follow. Data 
points are the approximation points rather than simple interpolants and approximation 
points highly reduce the set of data points. Bezier curve with varying polynomials 
causes even further reduction of these data points. Detected data points, without any 
overhead, can represent the shape completely. Therefore a traditional Bezier curve 
through these data points can very accurately reconstruct the boundary of an object. 
Authors feel that compression ratio in this technique can further improve by introduc-
ing some intelligence to the recursive subdivision method of section 4. 

(a) (b) (c)
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Abstract. The Logarithmic Image Processing model (LIP) is a robust
mathematical framework for the processing of transmitted and reflected
images. It follows many visual, physical and psychophysical laws. This
works presents a new formulation of a 2D–convolution of separable ker-
nels using the LIP paradigm. A previously stated LIP–Sobel edge detec-
tor is redefined with the new proposed formulation, and the performance
of the edge detectors programmed following the two formulations (the
previous one and the new one proposed) is compared. Another opera-
tor, Laplacian of Gaussian, is also stated under the LIP paradigm. The
experiments show that both methods obtain same results although our
proposed method is much faster than the previous one.

1 Introduction

Many image processing methods involve linear operations between two or more
images, producing a resulting new image. These operations can be simple ones,
such as, addition, subtraction, multiplication, etc., or much more complex ones.
Some problems may arise, for example, in the addition of two images. Within
the real world, this operation produces a new image which is also visible to the
human eye; however, due to the limited bit–depth in conventional representation
standards, the addition of two images can produce “out–of–range” problems, be-
cause when two images are digitally added, it is possible to obtain a value above
the maximum value allowed (for example, with 8 bits of bit–depth, maximum
value would be 255).
The Logarithmic Image Processing (usually called LIP) is a technique initially
stated by Pinoli and Jourlin [1, 2] in late 1980’s to deal with transmitted im-
ages obtained from microscopy and later, further developed by Deng et al. [3].
This framework follows many laws of the human vision system, both physical
and psychophysical (i.e., Fechner’s law, Weber’s law, etc.). LIP is considered to
be a good choice, better than other models [4], because it is at the same time
mathematically well–justified, physically consistent, psychophysically coherent

S. Singh et al. (Eds.): ICAPR 2005, LNCS 3687, pp. 560–569, 2005.
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with higher primates visual system, and computationally affordable. Further-
more, any technique is suitable to be adapted to work under this methodology,
usually obtaining better results. Deng and Pinoli [5] showed the effectiveness
and applicability of LIP to the edge detection field. They used LIP to state an
operator called LIP–Sobel . Although they did not describe explicitly the proce-
dure to create any generic filter, it is easy to abstract a generic methodology to
be able to design filters under the LIP paradigm.

In this contribution, we focus on the convolution, which is a mathematical
tool used to compute the response of a given signal to a given impulse. New
images are obtained taking into account context (causal) information. This op-
eration is computationally expensive and, in many cases, it becomes a bottleneck
that limits the system performance. Our aim is to provide a formulation of a
convolution under the LIP model for image processing. We will focus specifically
in the 2D–convolutions which make use of separable kernels, because this kind
of operators is one of the most common in the image processing field.

2 Brief Outline of LIP

There are two possible ways to apply LIP philosophy to any image processing
technique: to use the “original” images with some special operators, or to work
with “transformed” images applying the usual operators. The first option is pro-
duced by means of an algebraic vectorial space defined by a set of image values
(usually named, grey tone functions or simply grey tone) which are the “usual”
images with an inversion of the scale. We will notate grey tone of f as f̂ = M−f ,
where f is the original image and M the (unreachable) maximum value allowed.
In this framework, a special sum operator (Δ+ ), a new scalar multiplication oper-
ator (Δ× ), and a new subtraction (Δ− ) are also defined . Based on these, further
operators have been proposed, for example, a LIP–Summatory has been defined
as:

Δ
n

i = 1
f̂i = f̂1Δ+ f̂2Δ+ . . .Δ+ f̂n, (1)

where f̂i (i = 1 . . .n) are n different grey tone functions.
The second option is to transform the image, afterwards, to work using the

“usual” operators, and finally, to restore the resulting image to the original space
by the inverse of the transforming function. The transformation is done using a
function called isomorphic transformation defined by:

f̃ = ϕ(f̂ ) = −M · ln
(

1 − f̂

M

)
, (2)

The transformed grey tone functions will be notated f̃ . The inverse of the trans-
forming function (called inverse isomorphic transformation) is:

f̂ = ϕ−1(f̃) = M ·
(
1 − e−

f̃
M

)
, (3)
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3 LIP 2D-Convolution with Separable Kernels

In this section, a mathematical description of a 2D convolution will be intro-
duced. We will focus on a convolution with a separable kernel, that is, given a
2D filter, F , which is separable, where F = aT × b. Let a and b be two row
vectors, then:

conv2D(I, F ) = conv1D(conv1D(I, aT ), b) =
n−1

i=0

b(n−i)·
m−1

j=0

a(m−j)·I(i+1,j+1) (4)

We are willing to compute the LIP version of the 2D–convolution of Eq. 4:

conv2DLIP(Î,F ) = Δ
n−1

i=0
b(n−i)Δ×

(
Δ
m−1

j =0
a(m−j)Δ× Î(i+1,j+1)

)

which could be computed using the isomorphic transformation shown in Eq. 2:

ϕ
(
conv2DLIP(Î,F )

)
=

n−1∑
i=0

b(n−i)·
⎛
⎝m−1∑

j=0

a(m−j) · ϕ(Î(i+1,j+1)
)⎞⎠ =

=
n−1∑
i=0

b(n−i)·
⎛
⎝m−1∑

j=0

a(m−j)·
(
−M ·ln

(
M−Î(i+1,j+1)

M

))⎞
⎠ (5)

If we rename
(
M − Î(i+1,j+1)

)
as I(i+1,j+1), and let us make K = ln(M) ·

m−1∑
j=0

a(m−j) ·
n−1∑
i=0

b(n−i), we further simplify Eq. 5:

ϕ
(
conv2DLIP(Î ,F )

)
= −M ·

[
n−1∑
i=0

b(n−i)

⎛
⎝m−1∑

j=0

a(m−j)· ln(I(i+1,j+1))

⎞
⎠ −K

]
=

= M ·
(
K − conv1D

(
conv1D

(
ln I, aT

)
, b

))
(6)

Finally, applying the inverse isomorphic transformation (Eq. 3) to the Eq. 6:

conv2DLIP(Î ,F ) = ϕ−1
(

ϕ
(
conv2DLIP(Î,F )

))

= M ·
(

1 − econv1D
(
conv1D(ln I,aT ),b

)
−K

)
. (7)

4 Application of the LIP–Convolution

After having stated a new formulation of the convolution under LIP paradigm,
we will show its effectiveness in a pair of particular image processing applications.
The Sobel and the Laplacian of Gaussian edge detectors will be redefined under
the LIP paradigm and some experiments will be applied to images of two sizes:
512 × 512 and 256 × 256 pixels.
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4.1 LIP–Sobel

Deng and Pinoli proposed [5] a reformulation of the well–known Sobel method
using the LIP paradigm. In that case, since they were concerned with a partic-
ular filter with concrete values, they could develop an adapted formula, which
however, was not general, but specific to that very task. This new method de-
tected edges either in well or poorly lit areas of intensity images, making the
detectors more robust and almost illumination invariant.

Authors stated the LIP–Sobel grey tone vector, g = (gx, gy), given by:

gx =
(
f̂1Δ+

(
2Δ× f̂4

)
Δ+ f̂7

)
Δ−

(
f̂3Δ+

(
2Δ× f̂6

)
Δ+ f̂9

)
(8)

gy =
(
f̂1Δ+

(
2Δ× f̂2

)
Δ+ f̂3

)
Δ−

(
f̂7Δ+

(
2Δ× f̂8

)
Δ+ f̂9

)
(9)

Deng and Pinoli [5] define the LIP–Sobel by just translating the positive and
negative values of the original Sobel filter into Δ+ or Δ− , respectively. Using the
LIP isomorphism ϕ(·) from Eq. 2, we obtain,

gx = M −M

(
f3f

2
6 f9

f1f2
4 f7

)
, gy = M −M

(
f1f

2
2 f3

f7f2
8 f9

)
(10)

where fi = M − f̂i, i = 1, . . . , 9 (Proof in [5]).
To evaluate the LIP–Sobel method, the well–known “peppers” image (shown

in Fig. 1.a) has been used. The original image has been darkened progressively
from right to left (shown in Fig. 1.b).

LIP–Sobel by Deng & Pinoli’s Method. The standard Sobel is applied on
the darkened image and the magnitude of the gradient is shown in Fig. 1.c. The
LIP–Sobel method as proposed by Deng and Pinoli, stated in Eq. 10, is applied
on Fig. 1.b and the resulting magnitude of the gradient of the image is shown
in Fig. 1.d. It is to be noted that the edges in the dark regions are not clearly
detected in Fig. 1.c, however, in Fig. 1.d the edges in the dark regions are more
homogenously detected. This behaviour is a beneficial collateral fact.

LIP–Sobel by the LIP–Convolution. The standard Sobel filter is built up
by separable filters, obtained by two vectors, a = [−1, 0, 1] and b = [1, 2, 1]. In
order to obtain the LIP–Sobel using the LIP–Convolution, we applied Eq. 7,
using a and b as stated previously, to the darkened image (Fig. 1.b). The edges
detected by this method are the same as those computed by the method proposed
by Deng and Pinoli (See Fig. 1.d); the Mean Squared Error (MSE) is 3.6·10−13±
4.7 · 10−13. This is caused by the limited computational precision using floating
point variables of simple precision. With those negligible differences, we can state
that both methods reach the same result.

4.2 LIP–LoG

In this section, we will show that the LIP–convolution is a general option, and
another experiment with a different filter size is applied to a different image.
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a) b)

c) d)

Fig. 1. a) Original ‘peppers’ image. b) Darkened ‘peppers’ image. c) Standard So-
bel applied on Darkened ‘peppers’ image. (Magnitude of the gradient). d) LIP–Sobel
applied on Darkened ‘peppers’ image. (Magnitude of the gradient).

Another edge detection filter is the Laplacian of Gaussian, known as LoG. The
Laplacian operator is the sum of the second–order unmixed partial derivatives
of the image, which, in this case have been previously blurred with a Gaussian
mask. The 2D LoG operator is a convolution of a given image with a 2D LoG
filter, shown in Eq. 11.

LoG(I,σ) = ∇2
{
conv2D

(
I,Gσ(x, y)

)}
= conv2D

(
I,

(
∇2Gσ(x, y)

))
, (11)

where Gσ(x, y) stands for the 2D Gaussian function stated in Eq. 15 and
∇2G(x, y) is the sum of the second–order unmixed partial derivatives of G(x, y)
shown in Eq. 12.

H(x, y) = ∇2G(x, y) =
∂2G(x, y)
∂x2 +

∂2G(x, y)
∂y2 =

x2 + y2 − 2σ2

σ4 e−
x2+y2

2σ2 (12)

The Laplacian of Gaussian edge detector is usually implemented using a 2D filter,
as it has been stated above, however, the LoG filter has been demonstrated to be
separable (see [6] for the demonstration of separability) and that approximation
is the one used in this framework, either for the original LoG or for the LIP–LoG
by the Convolution method. In the implementation of the LIP–LoG using the
Deng and Pinoli’s methodology, we could not make use of the separable kernels,
but of the 2D Laplacian of Gaussian kernel stated in Eq. 12.
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The separable formulation of the LoG is shown in Eq. 13:

LoG(I,σ) = ∇2
{
conv2D

(
I,Gσ

)}
= conv1D

(
conv1D

(
I, aσ(x)

)
, gσ(y)

)
+

+ conv1D
(

conv1D
(
I, aσ(y)

)
, gσ(x)

)
(13)

where Gσ(x, y) stands for the 2D Gaussian function, gσ(t) stands for the 1D
Gaussian function, and aσ(t) is the second–order derivative of a 1D Gaussian
function, respectively defined by:

Gσ(x, y) =
1

2πσ2 e−
x2+y2

2σ2 (14)

gσ(t) =
1√
2πσ

e−
t2

2σ2 (15)

aσ(t) =
∂2Gσ(t)
∂t2

(16)

In order to use a different filter size than Sobel (which is 3 × 3), we will use a
different size for the LoG filter, i.e. we will take a 7×7 filter. Thus, there exists 49
elements, each one with a different value obtained from the LoG formula in 15.
This refers to the size of the Gaussian filter and obviously, of the second–order
partial derivatives of it.

Although Deng and Pinoli did not state explicitly a LIP–LoG filter, it is easy
to extend the mechanism they used in the LIP–Sobel to deal with this new task.
The LIP–LoG formula is given by:

LoG7×7
Δ (f̂) = Δ

7

i = 1
Δ

7

j = 1

(
H(i, j)Δ× f̂(i, j)

)
(17)

which is translated into the formula:

LoG7×7
Δ (f̂) =

7∏
i=1

7∏
j=1

(
f(i, j)H(i,j)

)
, (18)

where H(i, j) is the 2D LoG filter defined in Eq. 12 and f(i, j) are each of the
49 different grey tone functions in the image involved in every convolution.

We tested these operators in a new experiment using a different image. The
famous “Lenna” image (see Fig. 2.a) has been darkened by means of a horizontal
darkening stripe over her eyes (see Fig. 2.b). The standard LoG (with σ = 1.0)
is obtained applying Eq. 11 on the darkened “Lenna” image (see Fig. 2.c).

LIP–Average by Deng & Pinoli’s Method. The result image of applying
the Eq. 18 with σ = 1.0 on the darkened image is shown in Fig. 2.d. For both
Fig. 2.c and Fig. 2.d, a thresholded zero crossing detector has been applied. The
threshold was selected to be the same value in order to compare the accuracy of
the detection, but as the intention of this contribution is not the precise selection
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a) b)

c) d)

e) f)

Fig. 2. a) Original ‘Lenna’ image. b) Darkened ‘Lenna’ image. c) Standard LoG applied
on darkened image. d) LIP–LoG applied on darkened image. e) Thresholded standard
LoG applied on darkened image (threshold=10 ). f) Thresholded LIP–LoG applied on
darkened image (threshold=10 ).

of the threshold value for each case, it should be taken as an example. In any
case, it is easy to observe that the zero crossing slopes in the darkened zone (for
example, the eyes) of the image are clearly visible in Fig. 2.f, on the contrary,
the borders in Fig. 2.c in the darkened zone of the image are very dull, and thus,
in Fig. 2.e all those zero crossings are eliminated because there are very small
differences in the slopes.

LIP–LoG by the LIP–Convolution. The LoG filter has a size of 7 × 7 but
for the LIP–LoG operator by the LIP–Convolution method, we used a separable
kernel composed of a pair of 7–element vectors. The first vector, gσ , holds the
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values of a 1D Gaussian function with σ = 1.0 generated by Eq. 16 with t =
[−3,−2,−1, 0, 1, 2, 3], the second vector, aσ, contains the values obtained from
Eq. 16 with the same interval t stated above. Assuming σ = 1.0 and applying
Eq. 13 with a and g vectors defined in Eq. 19 and 20, respectively, the image
shown in Fig. 2.d is obtained, exactly the same result as with the LIP–LoG by
Deng and Pinoli’s method.

aσ = [0.0355, 0.1620, 0,−0.3989, 0, 0.1620, 0.0355] (19)
gσ = [0.0044, 0.0540, 0.2420, 0.3989, 0.2420, 0.0540, 0.0044] (20)

4.3 Speedup Analysis

In this Section, we will focus on the computation time spent by each method and
experiment. For this task, we have programmed the algorithms and tested them
on a set of two experiments with two different sizes for the images for which
time consumption and speedup were calculated. We considered the results of
the experiments using the Deng and Pinoli’s method as the base reference time,
and we computed the gain of speed, or “speedup”, of each method for every
experiment compared to that base reference time. If the speedup value is above
one, it means that the new system is faster than the reference one. In order to
facilitate the comparison of the performance of the different methods, another
alternative speedup is also computed, taking the time for the LIP–Convolution
experiments as the base reference time.

From the obtained results, shown in Tab. 1 for the Sobel edge detector exper-
iment and in Tab. 2 for the Laplacian of Gaussian experiment, we can infer that
the LIP–Convolution is much faster than the original Deng and Pinoli’s method.
One of the reasons for this speedup is due to the use of separable kernels that
this new formulation allows, in opposition to the Deng and Pinoli’s method,
in which there does not exist a technique to make use of the separability of
the filters. Another reason for the speedup is that the LIP–Convolution makes
use of additions and multiplications, opposed to the Deng and Pinoli’s method,
which is based on multiplications or divisions and exponentiations, much slower
and computationally more expensive than the first ones. On the other hand, the
standard algorithms are faster, however, the standard operators do not behave
invariantly against illumination changes.

A special note must be done on the processing time of the LIP–LoG by
the Deng and Pinoli’s method with respect of the others. Taking into account
the philosophy expounded by Deng and Pinoli in [5], in which only 2D masks
were considered, we have implemented the LIP–LoG by the Deng and Pinoli’s
method using a 2D LoG mask, obtained from Eq. 12, which is much slower than
two consecutive 1D convolutions. Besides, the final implementation does not
make use of convolutions (sums of multiplications, as stated above) but makes
use of multiplications of exponentiations, which are much slower. And, finally,
we cannot take a common exponentiation for all the values, and thus, many
exponentiations have to be computed. As the LoG is symmetrical, we made
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Table 1. Computation time and speedup comparison (time in seconds) of the Sobel
and LIP–Sobel experiment

Size Method Time Speedup Alt. Speedup
Standard Sobel 0.1978 4.34 1.60

512 × 512 Deng & Pinoli 0.8577 1.00 0.37
LIP–Convolution 0.3165 2.71 1.00
Standard Sobel 0.0541 3.63 1.53

256 × 256 Deng & Pinoli 0.1963 1.00 0.42
LIP–Convolution 0.0826 2.38 1.00

Table 2. Computation time and speedup comparison (time in seconds) of the LoG
and LIP–LoG experiment

Size Method Time Speedup Alt. Speedup
Standard LoG 0.1357 57.71 1.59

512 × 512 Deng & Pinoli 7.8312 1.00 0.03
LIP–Convolution 0.2163 36.20 1.00
Standard LoG 0.0390 30.88 1.63

256 × 256 Deng & Pinoli 1.2042 1.00 0.05
LIP–Convolution 0.0636 18.93 1.00

common exponentiations for all the values which are the same in the LoG filter,
this way, the exponentiations were reduced to a 25% of the original amount.

5 Conclusions

Taking into account that convolution is a very useful and widely employed tool in
the fields of image and video processing, and that LIP is a very robust mathemat-
ical framework, we have combined in this work these two techniques into a gen-
eral formulation of the convolution under the LIP paradigm, LIP–Convolution.
This formulation has been designed generically: any 2D separable kernel of any
size can be applied.

Two versions of LIP–Sobel were programmed, the original method (called
here Deng and Pinoli’s method) and the proposed method (called LIP–
Convolution). After several executions of the LIP–Sobel, the results obtained
show that both methods are equivalent in terms of accuracy. Nevertheless, the
computation time shows that the LIP–Convolution, proposed in this work, is a
very advantageous alternative. It is more than two times faster than the Deng
and Pinoli’s method. These results are due to the use of separable kernels and
the use of multiplications and additions instead of multiplications/divisions and
exponentiations, which are computationally much slower. Another experiment
has been exposed, the Laplacian of Gaussian, using a different image. In this
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experiment, it is also shown that the LIP–Convolution method is the fastest one
and obtains a very large speedup, maintaining the same results.

As a final remark, we have stated a new generic operator which will allow
logarithmic image processing, with the same benefits that the LIP paradigm
provides but much more general than any previously stated one (any separable
filter of any size is suitable) and with significant speedups. Furthermore, we
expect to achieve larger speedups using parallel computing primitives available
in conventional platforms (such as the SSE instruction set in the Intel x86).
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Abstract. Towards the goal of object/region recognition in images, tex-
ture characterization is a very important and challenging task. In this
study, we propose a salient point based texture representation scheme.
It is a two-phase analysis in the multiresolution framework of discrete
wavelet transform. In the first phase, each wavelet sub-band (LH or HL or
HH) is used to compute multiple texture features, which represents var-
ious aspects of texture. These features are converted into binary images,
called salient point images (SPIs), via an automatic threshold technique
that maximizes inter-block pattern deviation (IBPD) metric. Such oper-
ation may facilitate combining multiple features for better segmentation.
In the final phase, we have proposed a set of new texture features, namely
non-salient point density (NSPD), salient point residual (SPR), saliency
and non-saliency product (SNP). These features characterize various as-
pects of image texture like fineness/coarseness, primitive distribution,
internal structures etc. K-means algorithm is used to cluster the gener-
ated features for unsupervised segmentation. Experimental results with
the standard texture (Brodatz) and natural images demonstrate the ro-
bustness of the proposed features compared to the wavelet energy (WE)
and local extrema density feature (LED).

Keywords: Texture, wavelet transform, feature saliency, binary domain
texture features, segmentation.

1 Introduction

Among various analysis techniques, signal processing based multiresolution ap-
proaches have drawn a lot of attention in the recent years for texture segmenta-
tion [1],[6], [8], [9], [10] and/or texture-based indexing and retrieval [3], [5], [7].
Recently, some researchers [5], [7] introduced the concept of interest or salient
points that guides to extract conventional texture features (Gabor statistics)
with computational efficacy. K. Karu et al. [4] introduced a scheme for texture
coarseness measure attributed by local extrema density, which identifies the level
of texture in images. However, their coarseness measure is found unsuitable for
texture segmentation.

S. Singh et al. (Eds.): ICAPR 2005, LNCS 3687, pp. 570–579, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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(a) (b)

Fig. 1. System representation and wavelet decomposition. (a) A simple block diagram
of the proposed approach, (b) wavelet decomposition (i) Functional decomposition (2-
levels); (ii) Block diagram for 2 -level decomposition.

In a recent study [10], wavelet intermittency based texture features (salient
point density, SPD and salient point distribution non-uniformity, SPDN), were
proposed. However, a single criterion may not represent multiple aspects of tex-
ture alone. One possible solution is to include more texture features of diverse
nature for binary space formation. Such an approach may also facilitate com-
bining multiple texture features in the binary domain. We then propose three
texture features, namely NSPD, SPR, and SNP, which are found effective for
texture segmentation. Typical texture features like norm-1 energy, norm-2 en-
ergy, standard deviation, average residual, entropy, and coefficient intermittency
indices are attempted for binary space formation. A simple methodology of our
approach is shown in Fig. 1(a).

The rest of the paper is organized as follows. Section 2 describes the proposed
scheme in details including an automatic threshold algorithm. In section 3, the
proposed features are validated through experimental details and comparison.
Finally, the contribution is discussed and concluded through section 4.

2 Proposed Scheme

The proposed scheme is based on the concept of feature saliency in the multires-
olution framework to be detailed in the following sub-sections.

2.1 Motivation

In image analysis, the word “feature saliency” may refer to its distinctness or
rarity in representing image objects. In our study, it refers to relatively high fea-
ture values, which have a correspondence with high level concepts. Since image
texture is a generalized concept with perceptual and structural components that
form image objects. Hence, feature saliency should represent all kinds of vari-
ability (including interest points) that are responsible for real surface formation.
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Analyzing such a critical concept has already proved fruitful in the multiresolu-
tion domain. We thus represent salient points in the discrete wavelet transform
domain [11] as locations of reasonably high values for various low level features.
However, to represents reliable surface property in each resolution level, a fixed
number of salient points is mandatory. We thus define feature saliency loosely
by a threshold based technique, which may include more characteristic points
than just corners or edges.

2.2 Salient Point Representation

We represent salient points in the multiresolution framework of wavelet trans-
form using Daubechies’ D4 wavelets (decomposition is shown in Fig. 1(b)). We
assume that various textures are independent in their inherent structures, which
may be approximated by feature saliency.

Over the past years, many texture features have been proposed. Some are in
the image domain, while the others in the transform domain. However, finding
appropriate features for combination is quite challenging. We thus investigate
the potentiality of individual feature in our current study. Selection strategy of
multiple features and their combination techniques will be explored in future.
Some of the texture features are norm2 energy, norm1 energy, standard deviation,
average residual, entropy, and intermittency index. If the detail sub-bands of
wavelet transform are represented by Di

j(m, n), we can specify various texture
features by

F 1
ij(m0, n0) =

1
N2

W

NW −1∑
m=0

NW −1∑
n=0

|Di
j(m, n)|2 (1)

F 2
ij(m0, n0) = μij

=
1
N2

W

NW −1∑
m=0

NW −1∑
n=0

|Di
j(m, n)| (2)

F 3
ij(m0, n0) = − 1

N2
W

NW −1∑
m=0

NW −1∑
n=0

|Di
j(m, n)|2 log |Di

j(m, n)|2 (3)

F 4
ij(m0, n0) =

1
N2

W

NW −1∑
m=0

NW −1∑
n=0

|Di
j(m, n) − μij | (4)

F 5
ij(m0, n0) =

√√√√ 1
N2

W

NW −1∑
m=0

NW −1∑
n=0

(Di
j(m, n) − μij)2 (5)

F 6
ij(m0, n0) = N2 (Di

j(m0, n0))2∑N
m=1

∑N
n=1(D

i
j(m0, n0))2

(6)

Here preliminary feature images are represented by F f
ij(m0, n0), where

(m0, n0) is the center of the neighborhood kernel of size (NW × NW ). Note
that we used (5 × 5) kernel to obtain preliminary features except F 6

ij(m, n).
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(a) (b) (c) (d)

Fig. 2. Salient point (black pixels) images for the bb35 image at the level-1, level-2,
and level-3 of wavelet decomposition. (a) Original bb35 image; Salient point images at
threshold 0.75: (b) SPI11 (LH), (c) SPI21 (LH), and (d) SPI31 (LH).

By adopting a simple threshold technique on the low level features F f
ij(m, n), we

can obtain a salient point (binary) image:

SP If
ij(m, n) =

{
1 if F f

ij(m, n) ≥ Fth,

0 Otherwise.
(7)

Here Fth is the threshold value for individual low level feature. Fig. 2 shows three
salient point images for the LH sub-band of mos32 images corresponding to level-
1, level-2, and level-3 wavelet decomposition, respectively. Having obtained the
binary images corresponding to all sub-bands, we can compute the following
texture features.

2.3 Proposed Texture Features

We define the proposed texture features in the salient point or binary space as
explained above. Binary representation provides us with many advantages (like
feature selection and combining to be explored in future) including computa-
tional efficacy.

i) NSPD Feature. Since non-salient points may play roles for representing
smooth texture surfaces, we may define non-salient point density (NSPD) by

NSPDf
ij(m0, n0) = 1.0 − SPDf

ij(m0, n0), (8)

where
SPDf

ij(m0, n0) =
1
w2

∑
(m,n)∈Wij

SP If
ij(m, n). (9)

Here w2 is the size of feature window Wij . Since the sum of the SPD and NSPD
is equal to 1.0, NSPD characterizes symmetrically opposite nature to SPD.

ii) SPR Feature. It is logical to think that there is a certain difference between
the concentrations of salient and non-salient points for each texture. This may
also contribute to image texture. We thus define another feature regarded as
salient point residual (SPR):

SPRf
ij(m, n) = |SPDf

ij(m, n) −NSPDf
ij(m, n)| (10)

This feature indicates the proportional effects of the high and low activity points
in texture regions.
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iii) SNP Feature. Another way to analyze the overall structural property of
texture is to combine salient and non-salient points locally. We thus obtain a
feature named as saliency and non-saliency product (SNP):

SNP f
ij(m, n) =

{
1.0 − PRODf

ij(m, n) if SPDf
ij(m, n) ≥ NSPDf

ij(m, n),
0.25 + PRODf

ij(m, n) Otherwise.
(11)

Here

PRODf
ij(m, n) = SPDij(m, n) ×NSPDf

ij(m, n). (12)

Such representation describes whether salient or non-salient points are dominant
in a sample texture region. This feature can be modeled by using different trans-
lations (Eq. 10), which produce non-overlapping feature values for the saliency
and non-saliency dominance. In stead of translation, different weights can also
be used for obtaining uncorrelated features. For the given test data, a weight
of 100 and 50 can be used for SPD and NSPD dominance, respectively. Note
that all of the mentioned features are computed at every location of binarized
sub-band, where m, n = 0, 1, .....,N − 1.

2.4 Effect of Changing the Size of Feature Window

The size of the feature window plays an important role during segmentation.
If we assume each texture to have a fixed average frequency, the required win-
dow size should be equal to or greater than the period of the lowest average
frequency texture. We can approximate minimum and maximum frequency in a
texture image by Fourier analysis. Integrating this frequency information with
wavelet analysis, approximate window size per sub-band can be fixed. However,
an experiment shows that overall classification accuracy (as analyzed by the con-
fusion matrices obtained from segmented image) for a given image-set remains
more or less constant after a window size of 16×16 (an example is shown in Fig.
3(a) and (b)).
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Fig. 3. Effect on classification accuracy (mos41 image) for varying window-size.
(a)Original mos41 image (b)Accuracy vs. window size (8, 12, 20, 24, 28) for NSPD,
SPR, and SNP.
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2.5 Automatic Feature Threshold

Selecting suitable threshold value for initial features is a challenging task. An
ideal solution is to compute segmentation accuracy for various threshold val-
ues and to choose the one which maximizes accuracy. However, this process is
computationally expensive because it has to go through the steps of binariza-
tion, feature extraction, and segmentation for each threshold. Since we compute
the texture features in the binary domain, we can develop an alternate solu-
tion, which maximizes inter-block pattern (1-count, 01Change count) deviation
(IBPD) per sub-band. The idea is form an appropriate binary array that en-
sure maximal separation among various texture regions or objects. A simplified
algorithm is given below:

1. Take a wavelet sub-band (LH, HL, or HH).
2. Compute initial texture features F f

ij(m, n) at every pixel of sub-bands.
3. For each feature, calculate minimum (minF ) and maximum (maxF ) fea-

ture values. Compute Nth (currently, we use 50) number of threshold values
within the feature range by thF (i) = minF + i ∗ step, where i = 0, 1, ...,Nth

and step = (maxF − minF )/Nth.
4. For each threshold, generate a binary image, SP If

ij , per wavelet sub-band.
5. Divide each binary image into non-overlapping blocks (currently, we use

16×16 block) and compute a set of pattern measures (currently, we use two
measures, i.e., average number of 1-count and polarity-count (0 to 1 as “+”,
1 to 0 as “-”)) for all sub-blocks.

6. Compute a performance index called “inter-block pattern deviation (IBPD)”,
which is the standard deviation of the pattern measures mentioned above.

7. Take a new threshold and repeat steps 4-6 above to obtain a set of IBPD
per pattern measure.

8. Compute thresholds corresponding to maximum IBPD for all measures. Take
an average to obtain the final threshold Fth.

9. Repeat above steps for all sub-bands and for all initial features.
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Fig. 4. Inter-Block Pattern Deviation(IBPD) plots for mos31 image. (i) Original mos31
image; IBPD plots for(ii) F 1

ij (iii) F 2
ij , (iv) F 3

ij , (v) F 4
ij , (vi) F 5

ij and F 6
ij features (only

for LH sub-band).
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Fig. 4 shows IBPD plots for all initial features against feature threshold values
for mos31 image (only LH sub-band). The two curves in each plot correspond to
IBPD values for 1-count and polarity-count pattern measures, respectively. Ex-
pected threshold value is obtained by averaging threshold values corresponding
to IBPD peaks in the above plots.

3 Segmentation Experiment

We have performed experiments over 20 mosaic texture (Brodatz album) and 10
natural texture images (digital camera). All are gray level images of size 256 ×
256). In all experiments, we used three levels of wavelet decomposition, which
produces 9 detail sub-bands.

To investigate threshold based binary approach, we have performed an ex-
periment using mos31 and mos41 images. Six mentioned features F f

ij(m, n) per
wavelet sub-band are computed through local neighborhood operation using 5×5
window. Respective binary arrays are obtained by manual thresholding, where
Fth = factor × max(F f

ij). Segmentation results (Fig. 5 ) for NSPD features
shows our binary approach is applicable for various texture features.

Original F 1
ij F 2

ij F 3
ij F 4

ij F 5
ij F 6

ij

Fig. 5. Segmentation results of mos31 and mos41 images (256 × 256) using manual
threshold values. Only NSPD for all initial features (F f

ij : f = 1, 2, ..., 6) is used. Values
for parameter “factor” in (row1) are 0.1, 0.2, 0.05, 0.25, 0.25, and 0.75, while the same
for (row2) are 0.03, 0.14, 0.02, 0.11, 0.1, and 0.25. Feature window is 16 × 16.

3.1 Results

Results for the proposed features (NSPD, SPR, SNP) are shown in Fig. 6 using
manual thresholding. For mosaic images, we used a fixed threshold (0.75), while
various thresholds(in the range from 0.6 to 1.5) are used for the natural images.
Clearly, the proposed features produce nice segmentation results for textures
with diverse complexities. Results for SPD, SPDN, WE, and LED are also shown
for comparison.

Observation shows that LED segments all expected classes with noisy results.
On the other hand, WE produces relatively noise-free segmentation than LED.
But due to the rigid nature, WE sometimes fails to capture all relevant classes
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(i)Original(ii)SPD (iii) NSPD (iv) SPR (v) SNP (vi) SPDN (vii)WE (viii) LED

Fig. 6. Segmentation Results of mos32, mos41, ns31, and ns32 images. (i) Original
images; Results obtained for F 6

ij initial feature using (ii) SPD, (iii) NSPD, (iv) SPR,
(v) SNP, (vi) SPDN, (vii) WE, and (viii) LED features. Feature window size is 16×16
for all features except SPDN, which requires a size of 20 × 20.

(i) mos31 (ii)SPD (iii) NSPD (iv) SPR (v) SNP (vi) SPDN

Fig. 7. Segmentation results of mos31(256 256) using automatic thresholding for
various initial features (F 1

ij , F
2
ij , F

4
ij , andF 6

ij ; top to bottom). Results for all features
are not shown for space limitation.

(see results for mos41 and ns32 images in Fig.6). However, we always obtain
faithful segmentation results by our proposed features. Among the proposed
features, the results are comparable except minor variations in accuracy (see
subsection 3.2).

Automatic threshold selection ( see section 2.5) can also produce nice seg-
mentation as shown in Fig. 7. However, SPR and SNP results are a bit inferior
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to NSPD, SPD or SPDN in automatic case. This reveals the necessity of more
accurate threshold value by automatic method. One tentative solution to this
problem is to include more pattern measures during threshold selection.

3.2 Comparative Study

We have also performed a comparative study between our proposed features
(NSPD, SPR, SNP) with some existing features like WE [3], [6], [8], LED[4],
and SPD, SPDN [10]. The rate of misclassification is computed for 20 mosaic
(Brodatz) images as shown in Fig. 8(a), where x-axis represents image indices
of increasing number of texture classes. The bar-diagram in Fig. 8(b) shows
the average misclassification rate against various features. This confirms the
achievement of the lowest misclassification (varies from 5.48 % to 6.2 %) by the
proposed features. An approximate performance order of the proposed features
(for manual thresholds) is (i) SPR, (ii) NSPD, and (iii) SNP, while the same for
automatic threshold is (i) NSPD, (ii) SNP, and (iii) SPR, respectively.

(a) (b)

Fig. 8. Misclassification analysis; (a) Misclassification rate (%) across images and (b)
average (over 20 mosaic images) misclassification rate (%) for the proposed (NSPD,
SPR, SNP) and existing (WE, LED, SPD, SPDN) features.

4 Conclusion and Discussion

We have proposed a set of new texture features (NSPD, SPR, and SNP) in
the multiresolution framework. An interesting fact is that all of these features
are extracted in the binary domain. Experimental results on the mosaic (Bro-
datz) and natural images demonstrate the superior performance of the proposed
features compared to the conventional WE or LED features. We also proposed
an automatic threshold selection technique that maximizes property (1-count,
polarity-count) deviation among regional binary patterns. Note also that the
binary domain may facilitate developing strategies for multiple feature selection
and combination. A single binary array for multiple features may be obtained
by logical OR operation, while repeatability of salient points can be used for
feature selection. These issues along with the external noise sensitivity analysis
will be explored in future.
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Abstract. Recognition of rock fractures is crucial in many rock engineering ap-
plications. In order to successfully applying automatic image processing tech-
niques for the problem of rock fracture detection and description, the key (and 
hardest task) is the robust image segmentation of rock fractures. A one-pass val-
ley-edge detection algorithm (“valley” or (“ridge”) means here finding locally 
dark (or bright) line-like or curve-like features) was studied. The image seg-
mentation algorithm is for delineating rock fractures based on multiple scale 
and valley-edge detection techniques. Results indicate that this approach is use-
ful in this domain of images. 

1   Introduction 

In rock engineering, the measurement of failure, fault, crack, fracture and different 
textures on material surface is very important. Exposed rock faces provide a window 
to characterize discontinuities hidden inside a rock mass, and having an efficient 
method for mapping exposed rock faces is important for good understanding of dis-
continuities which in turn significantly influence the strength, stability, deformation 
and hydraulic properties of rock masses. The techniques of image processing and 
computer vision can be applied as a powerful tool for obtaining more detailed infor-
mation and analysis.  

The advantages of image analysis and computer vision measurement methods, 
compared to the other methods, are (1) high speed, e.g. in a few seconds, thousands of 
objects can be measured; (2) high accuracy, because of the digitization technology, 
measurement accuracy can be reached by changing camera lens, however, the object 
size limitation of measurement process only depends on image acquisition systems; 
(3) non-touching measurement, it can measure the objects which are difficult to reach 
by a man (i.e. micro-fracture net etc. ); and (4) multiple and detailed measurements, 
e.g. measuring fracture space, aperture, orientation and surface characteristics of mul-
tiple fractures. 

Lemy and Hadjigeorgiou [1] extracted fractures from the enhanced images using 
edge and line detection algorithms. The nature of these features is identified using 
artificial neural networks, and the discontinuity network is characterized using geo-
technical criteria. Maerz [2], Reid and Harrison [3] traced fractures based on thresh-
olding algorithms converting gray-level images into binary images. Johansson [4] 
presented three different fracture tracing algorithms for single rock fracture or crack. 
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The similar work has been done by Kemeny and Randy [5], Lee and Kim [6], Wang 
and Pavlidis [7], Harrison [8], Sun [9], Hu [10], and Whittaker [11].  

As the above literature review, the previous research work mainly concentrated on 
the two aspects: (1) the algorithms for fractures image binarization based on grey 
level information, and (2) the algorithms for tracing single rock fracture based on the 
properties of discontinuities. The algorithms were mainly used for either the images 
of single rock fracture or the images of well-oriented rock fractures. For the images 
multiple and randomly oriented rock fractures, there is no standard algorithm studied. 
Therefore, this paper proposes a new algorithm for auto-tracing multiple and ran-
domly oriented rock fractures based on multiresolution and valley-edge detection 
techniques.   

In the following sections: first, a brief description of visual properties of rock frac-
ture and basic consideration of image segmentation are outlined; then a one-pass 
valley edge detection algorithm is described based on sample images; thirdly the thin 
and randomly oriented rock fracture tracing algorithm is depicted based on the one-
pass valley edge detection algorithm; fourthly, it states how to add multiresolution 
technique into the above fracture tracing algorithm for thick and randomly oriented 
rock fractures; and finally, the discussions and conclusions are given. 

2   Fracture Properties and Image Segmentation Consideration 

In most cases, rock surface is rough, except for the variations of colors and gray- 
scales, three dimensional surface roughness is the another property comparing to 
other applications. For image processing and analysis, fractures or cracks belong to 
linear curved objects; the length of an object is much longer than width. Inside the 
object, it may be empty or filled by different materials. The filling materials are with 
different colors. Since the large fracture width and rock surface color variation, it is 
usual that there are many gaps on one object. Another property is that some fault 
object appears on an image due to rough and noised surface. Random and multiple 
fractures may form a complicated network where fractures cross each other. All the 
properties make image processing and segmentation harder than other applications. 
The followings are reprehensive examples for different types of fractures or cracks 
(Fig. 1).  

We here use gray-scale information (a color band) to trace the fracture curves. To 
develop the algorithm, several aspects must, generally speaking, be considered: (a) 
gray flatness or smoothness; (b) curvature variation; (c) magnitude strength; (d) com-
putational searching costs; and (e) distance linking etc.  

    On the surface of rock mass, the objects of fracture often appear as step edges or 
ridge edges. The aim of image processing and image segmentation is to auto-tracing 
rock fractures, which is one of the most difficult tasks in image processing and image 
segmentation, due to the complicated properties on the rock surface. 

Segmentation algorithms for monochrome images are generally based on one of 
two basic properties of gray-level values: discontinuity and similarity. In the first 
category, the approach is to partition an image based on abrupt changes in gray level. 
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 (a)           (b)                    (c) (d) 

Fig. 1. Four different types of rock fracture images.  (a) fractures are oriented in the similar 
direction, but the aperture vary much; (b) fractures have different gray-scales, (c) fractures form 
a network, and (d) very rough surface with 3D structures. 

An edge, in the image analysis literature, is a jump in intensity. The cross section 
of a so-called ideal edge has the shape of a ramp: infinite slope and flat portions on 
either side of the discontinuity. In smoother versions of the ideal edges, the first de-
rivative (in appropriate direction) assumes a local maximum at a so-called edge point 
or edge pixel. A well-known edge detector of this type is the Canny edge detector, 
locating local maxima in gradient magnitude (=steepest slope). However, in our case 
we are more interested in another class of detectors, for example, those known as 
ridge detectors in the image analysis literature. A ridge can be simply thought of as a 
double edge (a bar edge). Between the step parts there is a narrow plateau or peak. 
Sometimes, ridge detectors are expressed as follows: a bright (dark) ridge point is 
defined a point for which the intensity assumes a local maximum in the main princi-
pal curvature direction. 

Based on the above consideration, we developed a special valley edge detection al-
gorithm for thin rock fracture tracing, presented as the follows. 

3   One-Pass Valley Edge Detection for Thin Fracture Tracing 

A valley-edge detector tries to detect the lowest valley point in a certain direction. If it 
is, the pixel is used as the valley-edge candidate, and its direction and location are 
marked, for further processing to form a valley-edge, by thinning and tracing proce-
dures. 

In Fig. 2a-b, when examining a pixel p, check the four different directions shown 
in the figure, to determine whether p is the valley-edge point or not. As an example, a 
small kernel valley-edge detection function runs as follows:  

In the 90o direction:   
 

If ( ) ( )yxfyxf ,1, −< , then ( ) ( )yxfyxfF ,,10
1 −−= , 

 
If ( ) ( )yxfyxf ,1, +< , then ( ) ( )yxfyxfF ,,10

2 −+= , 

 
If ( ) ( ) ( ) ( ),1,2,21,2,1 +−+−+−−<− yxfyxfyxfyxf γβα  

then 
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( ) ( ) ( ) ( )yxfyxfyxfyxfF ,11,2,21,20
3 −−+−+−+−−= γβα ; 

 
If ( ) ( ) ( ) ( )1,2,21,2,1 +++++−+<+ yxfyxfyxfyxf γβα  

then  
 

( ) ( ) ( ) ( )yxfyxfyxfyxfF ,11,2,21,20
4 +−+++++−+= γβα  

 
where, we just use 4x4 kernel as illustration example, so, 
 

1=++ γβα ; 3.0== γα ; 4.0=β , 

 
if increase the kernel size, the more parameters are needed in the similar way. 

                     

(a)       (b) 

Fig. 2. The diagram for valley-edge detection algorithm 

And similar expressions in the 00, 450 and 1350 directions. In the directionθ, calcu-
late the following sum:   

 

  ϑϑϑϑ
ϑ 44332211 FwFwFwFwT +++=  

 
θ = 00, 450, 900 or 1350 ; wi (i=1,2,3,4) are weights, e.g. w1 = w2 = 1.2, w3 = w4 = 

0.8. The weights are decided according to the distance (L) between the testing pixel 
and its neighborhoods. The distance L is pre-determined based on image resolution 
and quality and smoothing is done prior to valley-edge detection. 

Tmax =max(TO, T45, T90, T135 ).  If Tmax is greater than a threshold T (here we set T 
as 11 in the following rock fracture images), the detected point will be marked as a 
valley-edge candidate. Here we merely stress that for each direction two values are 
calculated, and two values are obtained, f1 and f2 (=two 2nd differences at two scales). 
A weighted sum of these (in e.g. the 135 degree direction) is: after valley-edge detec-
tion, a post-processing subroutine must be added. In the post-processing subroutine, 
several functions are used, such as thinning, bridging of small gaps, and removal of 
short curves or lines (refer to Figs. 3-4). 
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The algorithm is robust for the images which involve thin fractures and less noise, 
but if an image consists of much noise or the fractures are thick, the noise remove 
procedure is a hard task, and the detection result may show too many details for thick 
fractures. Instead of smoothing out the noise and alleviating unnecessary details in 
thick fractures, we suggested using multiresolusion technique. The next section will 
present how to use the technique before and during fracture tracing. 

 

 

Fig. 3. Example 1 of thin fracture tracing by the new algorithm. The top-left image is original 
image, the top-right image is inverted and enhanced image, the bottom-left image is a magni-
tude image by Robert edge detector, and the bottom-right image is the result image. 

 

Fig. 4. Example 2 of thin fracture tracing by the new algorithm. The left image is original 
image, the middle image is a magnitude image, and the right image is the result image. 
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4   Tracing Algorithm for Thick Fracture and Noise Images 

Multi-scale representations are more or less related to scale-space theory, notably the 
theories of pyramids, wavelets and multi-grid methods [12]. For the complicated rock 
fracture images, the methodology of Multi-scale representations is very useful as we 
tested. If most fractures on an image are very thin, the fine-detailed information on 
the image is very important for fracture tracing, and the image preprocessing algo-
rithm must avoid to destroying the details. On the contrary, if fractures are thick, it is 
necessary to remove the detailed information on the rock surface, because the detailed 
information may produce a lot of fault fractures. In general, the multiple scale tech-
nique makes image structures at coarse scales corresponding to simplifications of 
corresponding structures at fine scales. 

By using the knowledge of multiple scales, we combine the valley edge detection 
results of different scale images, and have a promising fracture tracing result which is 
difficult to be obtained by using other methods.  A gray scale fracture image of 
734x596 pixels is presented in Fig. 5(a); its fracture tracing result is in Fig. 5(b), 
where mainly including three steps: setup the image into four resolution levels; do 
ridge edge detection for each image; and fracture gap link. In Fig. 5(a), the noise 
edges randomly distributed on the whole image surface, and thick fracture cannot be 
detected properly by using just valley edge detection. The fracture mapping result is 
processed based on the combination of multiple scales, valley edge detection and 
fracture tracing methods. The question is how to scale the image into different scale 
levels here, in the following; we will give a brief description of the question. 

The image scale is reduced. Let  
 

nx ,...,1= , my ,...,1= , and ( )yxf ,  is the original image. Then 
 

( )kk yxf , , 
k

k nx 2/,...,1= , 
k

k my 2/,...,1= , ,...3,2,1=k  

 

where, Kk ≤ , 
Km 2≥ , 

Kn 2≥ . 

To obtain valuable scaled ( )kk yxf , , we tried several image shrink methods (e.g. 
used Gaussian, average, medium, adaptive, maximum and minimum etc. filters). The 
figure 6 is one of the examples to show the differences among the rock fracture image 
shrink methods. 

In figure 6, since fractures in Fig. 5(a) have low gray values, Maximum filter (in 
original image, choose maximum gray value pixel, of four neighboring pixels, as a 
new pixel in the shrink image) eras thin fractures, on the contrast, Minimum filter 
make fractures sharpen, but the noise are sharp too. In our case, we use Minimum 
filter to shrink image for three times, then smooth the scaled image by a Gaussian 
filter. 

One of typical examples is shown in Fig. 7. The original image has a rough surface 
with thick fractures, if the developed ridge detection and fracture tracing algorithms 
are directly used without image scale operations, the detection result will include a lot 
of fault fractures. When we shrink the original image one time, the detection result 
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will be better. The best detection result is in Fig. 7(d), where, we shrink the image for 
three times before ridge detection and fracture tracing. 

 

  

  (a)  (b) 

Fig. 5. One example of rock fracture images: (a) Original image of resolution 734x596; and (b) 
Fracture tracing result. 

     

 (a) (b) (c) (d) (e) 

Fig. 6. Shrink image three times on the image in Fig. 5(a): (a) Maximum filter; (b) Odd lines; 
(c) Average filter; (d) Middle filter; and (e) Minimum filter 

In order to trace the fractures, we need to link the gaps between valley edges. This 
task requires the extraction of information about attributes of endpoints, in particular 
orientation and neighborhood relationships. As usual, after image enhancement and 
valley-edge detection for each resolution image, the valley edges are thinned into a 
width of one pixel, but some gaps in the valley edges prevail and noise is still present 
in the image. To close the gaps, it is necessary to trace valley edges. To do this, the 
new algorithm first detects significant endpoints of curves (or lines). Then, it esti-
mates the directions for each endpoint based on local directions of valley-edge pixels. 
Finally, it traces fractures according to the information of directions of each new 
detected pixel (new endpoint) and an intensity cost function. The valley-edge tracing 
starts from the detected endpoints to see which neighborhood has the highest gray 
value, and when a new pixel is found as valley-edge point, it is used as new endpoint. 
If the end point cannot be found, the various threshold values are changed until a new 
endpoint is determined.  
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(a)     (b) 

 

(c)     (d) 

Fig. 7. Valley edge detection result: (a) Image of resolution 734x596; (b) Image of resolution 
367x298; (c) Image of resolution 183x149; and (d) Image of resolution 91x74. 

Before it starts to trace from another detected endpoint, the tracing procedure con-
tinues until a fracture is fully traced. When there is no detected endpoint for continu-
ous tracing, the valley-edge tracing procedure stops. For each resolution image, spe-
cial tracing thresholds have been setup. The basic idea of image segmentation is to 
use multiple scale concepts to find maximum information about each fracture and 
trace the boundaries of the fractures. 

5   Conclusion 

For this study, the presented fracture tracing algorithm is based on mutiresolution, 
ridge edge detection and fracture gap tracing methods, and it is the robust for noise 
fracture tracing, especially for the rough rock surface with thick cracks or fractures. 
By using multiresolution technology can alleviate producing noise fractures, the new 
ridge edge detection can directly produce a binary image without the step for thre-
holding gradient magnitude image, and the gap link procedure consists of a number of 
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procedures (or sub-algorithms) for fracture thinning, curvature detection, and gap 
link. The developed algorithms have been coded into a program, and a number of 
fracture images have been tested. The testing results show that the developed algo-
rithm is much better that ordinary thresholding algorithms or simple line or curve 
detection algorithms. The next step of work is to use neural network to classify im-
ages into different classes, then use pyramid methods to divide original image into 
several scale levels, to use the tracing algorithm with different parameters for rock 
fracture network detection. 
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Abstract. In this paper, we present an effective and robust shape-based leaf 
image retrieval system that supports two novel features:  improved MPP 
algorithm and revised dynamic matching method. The improved MPP 
algorithm reduces the number of points for the shape representation 
considerably. Moreover, the new dynamic matching method, which is a revised 
Nearest Neighbor search, reduces the matching time. We implemented a 
prototype system based on these features and performed several experiments to 
show its effectiveness. We compare its performance with other known methods 
and report some of the results. 

1   Introduction 

So far, many researchers have proposed techniques for content-based image retrieval 
using image features such as image color, shape, texture, and spatial relationship. In 
particular, shape-based image retrieval has received efficient and interesting  
approach. Specifically, shape recognition methods have been proposed and imple-
mented into face recognition, iris recognition, and fingerprint recognition. Neverthe-
less, if images contain similar color or texture, shape-based image retrieval is more 
effective than other approaches using color or texture. For instance, leaves of most 
plants are green or brown; but the leaf shapes are distinctive and thus can be used for 
identification. 

Like typical content-based image retrieval, shape-based image retrieval is com-
posed of three steps. The first step is to detect edge points. Among the existing edge 
detection methods [1] [2], we use Canny Edge Detection method [3]. The next step is 
to represent shapes in such a way that it is invariant to translation, rotation, scale, and 
viewing angle changes. The last step is shape matching that determines how similar 
shapes are to a given query image. 

In general, shape representations are classified into two categories: boundary-based 
and region-based. The former describes a region of interest using its external charac-
teristics [4] while the latter represents a region of interest using its internal character-
istics [1]. We choose the external representation since our primary concern is shape 
characteristics such as length of boundary, orientation of straight line, the extreme 
points to join, or number of concaves. For the shape representation, we can use MPP 
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(Minimum Perimeter Polygons) algorithm [5-7]. MPP is a polygonal approximation 
method to identify curvature descriptions [8] [9], but it only uses outside boundary of 
the strip of cells. Nevertheless, it takes long time to retrieve images due to the consid-
eration of many unnecessary points. In order to relieve this problem, we propose an 
improved MPP algorithm for the shape representation.  

Another important issue of shape-based image retrieval is the shape matching 
method on which the retrieval performance heavily depends. There are several ap-
proaches to the shape-matching problem. In this paper, we develop a new dynamic 
shape-matching algorithm with the intention to reduce matching time. 

The rest of this paper is organized as follows. Section 2 describes shape representa-
tion methods. Section 3 presents how to perform image matching and retrieval. In 
section 4, some of the experimental results are presented and finally the last section 
concludes the paper and discusses some future work. 

2   Shape Representation Methods 

Shape-based image retrieval includes edge detection, shape representation and shape 
matching. There exist many shape representation methods: chain codes [10], Fourier 
transform [11], and MPP. Chain codes are used to represent a boundary by a con-
nected sequence of straight-line segments of specified length and direction. The Fou-
rier transform converts the function from space domain to frequency domain with the 
derived sine wave coefficients describing a given 1-D function.  

A boundary can be approximated with arbitrary accuracy by a polygon. In case of 
closed curve, the approximation is exact when the number of segments in the polygon 
is equal to the number of points in the boundary, so that each pair of adjacent points 
defines a segment in the polygon. MPP is a method for defining curvatures when a 
change of the slope occurs with the control points approximately uniformly spaced 
along the curvatures. Algorithm 1 shows the steps for finding the MPP of a region and 
Fig. 1 shows examples of image representation using MPP.  

However, when an image contains plenty of the straight lines along the boundary, 
segmentation result using MPP may include many useless points and show poor per-
formance for shape matching. In order to relieve this problem, we merge points along 
boundary if their angle exceeds some threshold. Algorithm 2 shows the details of the 
point merging algorithm.  

 

Algorithm 1. MPP algorithm 

1. Obtain the cellular complex. 
2. Obtain the region internal to the cellular complex. 
3. Use function boundaries to obtain the boundary of the re-

gion in step 2 as a 4-connected, clockwise sequence of 
coordinates. 

4. Obtain the Freeman chain code of this 4-contected se-
quence using function fchcode. 

5. Obtain the convex and concave vertices form the chain 
code. 

6. Form an initial polygon using the vertices, and delete 
from further analysis any white dots that are outside 
this polygon. 
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7. Form a polygon with the remaining concave an convex 
points 

8. Delete all black dots that are concave vertices 
9. Repeat steps 7 and 8 until all changes cease, at which 

time all vertices with angles of 180 are deleted. The re-
maining dots are the vertices of the MPP 

 

    
(a) (b) (c) (d) 

 

  
(e) (f) (g) (h) 

Fig. 1. Examples of image segmentation using MPP. (a) and (e) are original images, (b) and (f), 
(c) and (g), (d) and (h) are results, respectively, when the cell size is 2, 3, 5. 

Algorithm 2. Point merging  

Input:  point : (X, Y) coordinates;  
 N : the number of points;  
 threshold : specific angle value; 
find_sequence(point, N, threshold){ 
  for ( i=0; i<N; i++){ 
    a=get_distance(point[i-1], point[i+1]); 
    b=get_distance(point[i], point[i-1]); 
    c=get_distance(point[i], point[i+1]); 
    angle=acos((b^2+c^2-a^2)/(2*b*c)); 
    if(angle < threshold)  
      add_point(result, point[i]); 
  }  
  return result; 
} 

 

In this algorithm, a, b, and c are the sides of a triangle. Let the angle opposite the 
side c be A. Then, we can define cosine A as follows: 
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222 −+=  (1) 

where ),( ji xx  and  ),( ji yy  are coordinates of two points. 

Table 1 and Fig. 2 show the result when the points of the segment are merged with 
the threshold 160 degree. 

Table 1. Example of point merging 

I X[i] Y[i] angle merge I X[i] Y[i] angle merge 

0 51 16 108  6 65 90 135  

1 55 16 108  7 41 90 135  

2 60 31 176 merging 8 36 85 135  

3 65 51 180 merging 9 36 71 166 merging 

4 70 71 166 merging 10 41 51 180 merging 
5 70 85 135       

 
 

   
(a) (b) (c) 

Fig. 2. Image segmentation using point merging 

For the invariance, we adjust angles with respect to the longest distance between 
two points, and then detect left, right, top, bottom points for scale invariance as shown 
in Algorithm 3. Fig. 3 shows the steps to adjust the original image.  

Algorithm 3. Adjustment algorithm 

Input: crt_1, crt_2 : two points of Criterion 
 
Rotating_point (point, N, crt_1, crt_2){ 
  cos=(crt_2[X]-crt_1[X])/get_distance(crt_1, crt_2); 
  sin =sqrt(1- cos^2); 
  for (i=0; i<N; i++){ 
      point[i][X]= cos*(point[i][X]-crt_1[X])+sin* 
        (crt_1[Y]- point[i][Y])-crt_1[X]; 
      point[i][Y]= sin*(point[i][X]-crt_1[X])-cos* 

22 )()( ijij yyxxa −+−=  (2) 
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        (crt_1[Y]-point[i][Y])- crt_1[X]; 
      if(crt_1[Y]<=point[i][Y]) 
        add_point(result,point[i]) 
  } 
  return result; 
} 

 

 
(a) (b) (c) 

Fig. 3. Image Adjustment based on viewing angle and scale (a) Original image (b) Rotational 
adjustment (c) 4 edge points detection for scale invariance. 

3   Image Matching and Retrieval 

The final step of image retrieval is image matching and browsing. In this section, we 
present an efficient dynamic matching method for obtaining ranks of all database 
images in an approximate order of similarity to the query image. Typically, a similar-
ity query is defined as finding the most similar data object. In the case of image data-
bases, a similarity query is to find out the most similar images to a given image with 
respect to the given features. 

3.1   Similarity Measure 

After extracting points of interest from images, we perform shape matching to meas-
ure the similarity between images. Generally, similarity between two objects is meas-
ured by simply evaluating the Euclidean distance [12] between objects’ corresponding 
points, and accordingly the distance between two images are calculated by the follow-
ing equation.  

 

=
−=

k

i
ii vuVUD

1

2)(),(  (3) 

where U  and V  are the query and database image, respectively, and 
iu  and 

iv  are 

their 
thi  features, respectively, and k  is dimension of the feature space. 

According to the Euclidean distance, we can also evaluate similarity between query 
and database image using the following equation. 
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where || u is the number of points of interest extracted from the query image and 

)),(min( vuDi
 is the minimum distance between iu  and 

iv . 

If we use the brute-force algorithm, the time complexity T is )(|)||(| 2nOvuO =  to 

search the shortest path between 
iu and 

iv . For the linear time complexity, we use 

nearest−ε )( NNneighbor −ε  search algorithm where the time complexity is 

O(Dpolylog(N)) [13]. 

3.2   Dynamic Matching Algorithm 

Even though the time complexity of nearest−ε )( NNneighbor −ε  searching algo-
rithm is linear, it may take long time to match images for large database. In order to 
reduce the matching time, we developed a dynamic matching algorithm. Typical leaf 
shape has roughly symmetric distribution. Symmetry can occur in any orientation as 
long as the image is the same on either side of the central axis. The axis of symmetry 
is vertical and this makes a good model for symmetry in visual information. Using 
this property, the matching scope on the shape can be reduced by 1/2×1/2=1/4 times 
with respect to full matching. Moreover, the matching process may stop when the 
accumulated similarity value is beyond the threshold. 

Even the improved MPP algorithm can produce many points of interest for compli-
cated images. To solve this problem, we created a function called SMP based on the 
sampling methodology. Let || u  and || v  be the number of points of interest extracted 

from the query image and database image, respectively. If || u  is less than || v , the 

number of interest points can be reduced by ||/|| uv  when we use )(vSMP  function.  

Algorithm 4 below describes the dynamic matching algorithm. 

Algorithm 4. Dynamic matching algorithm 

Dynamic_matching(input_image, db_image, N, threshold){ 
  input_point=condensing_point(input_image); 
  db_point=condensing_point(db_image); 
  if(sizeof(input_point) < sizeof(db_point)) 
    SMP(db_point); 
  for (i=0; i<N/2; i++){ 
    NN_point=NN_search(input_point[i], db_point); 
    Sim = S(input_point[i], NN_point, N/2); 
    if(Sim > threshold) { Sim = -1; break; } 
  } return result; 
} 
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4   Experimental Results 

We have implemented a prototype shape-based leaf image retrieval system as part of 
a nationwide project that aims to develop an information bank for all domestic native 
plants. In the experiments, we used as hardware platform PCs with Dual 2.8 GHz 
Xeon Processors and 1GB of RAM and Microsoft SQL Server 2000 as underlying 
DBMS.  

In order to show the effectiveness of our proposed algorithm, we compare it with 
other methods including Fourier Descriptor and Moment Invariants. In addition, we 
considered a hybrid-search scheme that uses not only leaf shape, but also leaf ar-
rangement for better performance. Fig. 4 shows a variety of leaf arrangements, which 
can be classified into (a) alternate, (b) opposite, and (c) verticillate. While the 
alternate arrangement has one leaf per node, the opposite arrangement has two leaves 
per node and the verticillate has three or more per node. 

 

 

(a) (b) (c) 

Fig. 4. Leaf arrangement 

The leaf arrangement of user-sketched image is identified by leaf base and the 
number of leaves per node. The leaf base indicates the shape of the leaf base where it 
attaches to the stem.  

In order to evaluate its performance, we collected 1032 leaf images from “The Ko-
rea Plant Picture Book” [14]. The representation must be invariant to viewing angle 
change. For this reason, we adjust the viewing angle using Algorithm 2 above.  

Fig. 6 shows the recalls and precisions of our improved MPP, MPP, Fourier De-
scriptor, and Moment Invariants. Precision is the fraction of retrieved images that is 
relevant to a query. In contrast, recall measures the fraction of the relevant images 
that have been retrieved. Recall is a non-decreasing function of rank, while precision 
can be regarded as a function of recall rather than rank. In general, the curve closest to 
the top of the chart indicates the best performance. 

In this figure, for example, our proposed algorithm achieves approximately 1.25 
times better precision and recall than MPP. In addition, it achieves approximately 
2.11 times better precision and recall than Fourier Descriptor. 

Table 2 illustrates the average response time of the NN-search and Dynamic 
matching with different cell sizes. From the table, we can observe that regardless of 
matching method used, the response time decreases as the cell size increases. Overall, 
our proposed method achieved approximately 2.2 times faster response time than the 
NN-search.  
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Fig. 5. User Interface 

 

Fig. 6. Precision and recall curve 

Table 2. Average retrieval response time in seconds 

Response Time 
Cell size 

NN-search (A) Dynamic matching (B) 
A / B 

5 29.57 13.57 2.18 

7 16.58 7.26 2.28 

9 12.45 5.80 2.15 

5   Conclusions and Future Work 

In this paper, we have presented a shape-based leaf image retrieval system. To im-
prove the efficiency of leaf representation, we revised the MPP algorithm to reduce 
the number of points of interest. For the matching, we proposed a dynamic matching 
algorithm that reduces the matching time. In addition, by using hybrid-search scheme 
that considers leaf shape as well as leaf arrangement, we further improved the overall 
system performance. To evaluate its effectiveness, we have implemented a prototype 
system and compared our proposed scheme with Fourier Descriptor and Moment 
Invariants. Experimental results show that the proposed algorithm is more efficient 
than other methods. In the future, we will improve the shape representation algorithm 
such that it can consider not only a contour but also a leaf vein. 
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1 Introduction

In general, the resolution and the field of view of a digital image are limited
by the camera. Image mosaicing techniques [3, 9] have been used to synthesize a
wide-area image from a number of images, which are taken from different camera
pose and/or positions. Mosaicing in more general cases of camera motion can
be performed by projecting thin strips from the images onto manifolds which
are adapted to the motion[11]. These 2D image alignment methods for image
mosaicing can be applied successfully when the scene can be approximated by
one plane such as in aerial photography, where the scene can be considered flat
because the camera is far from the scene. However, these methods fail when the
scene is 3D which includes different depths. In order to handle 3D parallax, a
depth invariant mosaicing method by computing the camera motion using space-
time volume has been developed[14]. Zhigang Zhu et. al. proposed a method
for generating stereoscopic mosaics from images captured by a video camera
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Abstract. A wide-area image can be synthesized from an image se-
quence taken with a moving camera by using image mosaicing techniques.
However, motion blur caused by the motion of the camera may signif-
icantly degrade the quality of the synthesized image. In this paper, we
propose a new method for generating a deblurred mosaic from an image
sequence that is degraded by motion blur under the condition that we do
not have any information about the intrinsic and extrinsic parameters of
the moving camera during input acquisition. In this method, we assume
the objects in the scene can be classified into two regions in order to
handle depth. In this paper, the displacement vectors of the features,
which are computed using the KLT feature tracker on the consecutive
frames, are classified into two regions. Here, the classified vectors provide
a Point Spread Function (PSF) of the blurred image, and a homography
between two consecutive frames for segmentation and mosaicing. Exper-
imental results show that the Signal to Noise Ratio of the generated
images can be significantly improved by our proposed method.
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mounted on an airborne platform with GPS/INS measurements using a parallel-
perspective representation [13].

Since such image sequences are sometimes captured using a moving camera,
the motion makes the captured images blurred. As motion blur due to camera
motion may significantly degrade the image quality, a considerable amount of
research has been dedicated to restore these images. Blurred images can be de-
blurred by using image deconvolution [5]. A general motion blur PSF can be
recovered from various devices [1]. Motion blur correction from multiple images
has recently been tried as well. Rav-Acha et.al. proposed a method for image
deblurring from two images having motion blur in different direction[7]. Synthe-
sizing a super-resolved image from multiple images is also an active research topic
[3, 8, 10]. Motion deblurring has also been addressed in the context of temporal
super-resolution [2].

In most of the research on image restoration, motion blur is considered shift
invariant. However, in practice, the motion blur is shift variant because a 3D
scene has multiple depths, so the applicability is limited when the scene can
not be considered flat. In addition, as many image mosaicing approaches do
not consider motion blur, the quality of the mosaic synthesized from a blurred
sequence is degraded.

In this paper, we propose a new method for generating a deblurred mosaic
from a blurred image sequence captured by a moving camera, in which the intrin-
sic and motion parameters are unknown. In our proposed method, we combine
methods for motion image deblurring and image mosaicing so that we can syn-
thesize mosaic images without motion blur from image sequences taken with a
moving camera.

The proposed method is achieved by deblurring each frame of the input se-
quence and generating a mosaic image from the deblurred frames. The proposed
method also takes into account multiple regions with different depth and blur
by segmenting each frame based on displacement differences of tracked points,
and the estimation of the homography1 and PSF for each region.

The proposed method first tracks a number of feature points over the input
image sequences using the KLT feature tracker. By assuming that the object
scene can be represented by two layers of planar regions, the displacement vec-
tors of the features on the consecutive frames are classified into foreground points
and background points. For each region, the displacement vectors are averaged
for estimating the PSF of the motion blur. By applying the Wiener filter [5]
with the estimated PSF for each region, the input image sequence can be de-
blurred. Our method then merges all the images in the input image sequence
by image mosaicing techniques. For the image mosaicing, the homography of
each region between the consecutive frames is estimated from the displacement
vectors within the region. After the image mosaicing, we can finally synthesize
a deblurred wide-area image from the input image sequence. We also have con-
ducted experiments with various scenes consisting of a foreground object and

1 The homography maps the projected point from one plane in a 3D scene to another
plane.
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a background object. Experimental results demonstrate that our method can
generate higher quality mosaics than images without motion blur restoration.

2 Proposed Method
2.1 Corresponding Points
The moving camera provides a sequence of images. By computing corresponding
points between consecutive frames, we can obtain the homographies between the
consecutive frames for each region and the parameters of the PSF representing
motion blur caused by camera motion. We compute corresponding points using
the KLT feature tracker [6].

2.2 Classifying Corresponding Points

In order to make a mosaic of a scene that can be approximated by two layers, we
need to classify the corresponding points into foreground points and background
points.

Let pi
k = (xi

k, y
i
k) denote the position of the ith feature point in the kth frame

(0 < k < m, 0 < i < n. m indicates the number of the images and n denotes
the number of tracked feature points). First, we compute the displacement di

k

between the consecutive frames of every corresponding point as

di
k =

√
(xi

k+1 − xi
k)2 + (yi

k+1 − yi
k)2. (1)

We assume that the displacements of the points in the foreground region are
sufficiently larger than those in the background region for the classification as
shown in Fig. 1. Then, we classify the points into foreground points and back-
ground points using the Discriminant Analysis Method in which the threshold
is determined by maximizing F (t), the ratio between inner-class and inter-class
variance. F (t) is represented as follows:

F (t) =
σ2

B

σ2
I

, (2)

where t is the threshold, σ2
B is inter-class variance and σ2

I is inner-class variance.
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2.3 Deblurring Images

As the distance from the camera to the foreground is different from the distance
to the background region, the motion blur should be restored independently for
each region. Since we assume that the translational component of motion of the
camera is almost dominant, we can approximate the PSF as follows:

h(x, y) =
{ 1

w , x cos θ + y sin θ ≤ 2
w

0, x cos θ + y sin θ > 2
w

, (3)

where w and θ are the width and the angle of motion blur, respectively. Since
we also assume that the motion vector between two consecutive frames is almost
constant in each region, we can compute w and θ by an average vector of the
displacement vectors of the corresponding points in each region. We can deblur
each region of each frame using the PSF for the foreground region, hf

k(x, y),
or the PSF for the background region, hb

k(x, y). Given the estimated PSF, we
can deblur each frame using existing deconvolution algorithms. We deblur the
images by a Wiener filter [5] in the frequency domain.

As the background regions of the frames are rarely blurred, these do not need
to be deblurred in most of the cases. Artifacts from excessively enhancing the
edges degrade the quality of images if the backgrounds are strongly deblurred.

2.4 Segmentation and Mosaicing

Given the deblurred frames, we generate a wide-area mosaic. When the scene can
be considered flat such as in aerial photography, image mosaicing generally needs
homographies between a base frame, which is selected as the standard image
plane for merging, and every other frame. However, we consider our scene in 3D
therefore a single plane is not enough. We generate mosaics for the foreground
region and the background region separately by using a separate homography for
each region rather than a single homography for the whole frame. It is necessary
to segment the scene to handle this case.

Segmentation of the scene is done by splitting the scene into two layers of
planer regions. First, we select a base frame, which is not necessarily the start
frame, from the input frames. From the base frame, we manually select the
vertices v j

base (0 < j < l, l indicates the number of the vertices) on the border of
the foreground region which approximates a polygon. The corresponding vertices
in the kth frame v j

k can be computed with

v j
k = Hf

base,kv
j
base, (4)

where Hf
base,k is the homography of the foreground region. This is shown in Fig.

2. However, to obtain v j
k, we must compute the foreground homography Hf

base,k.
We can obtain Hf

base,k by the product of the homographies of consecutive frames
up to the kth frame.

Hf
base,k = Hf

base,base−1H
f
base−1,base−2 · · ·Hf

k+1,k. (5)
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Fig. 2. Segmentation

The consecutive frame homographies can be obtained from the SVD of the fore-
ground points that were obtained from corresponding point classification in sec-
tion 2.2.

Each pixel in the foreground regions of the deblurred frames is transformed
into a base frame by Hf

base,k. The color values of the pixels in the same place are
averaged, and then the foreground regions are merged into a foreground mosaic
If (x, y), while the background regions are also merged into a background mo-
saic Ib(x, y) by the background homography Hb

base,k as shown in Fig. 3. Hb
base,k

can also be computed in the same way as the foreground homography Hf
base,k.

Although each frame is deblurred as described in section 2.3, the artifacts from
enhancing the edges remain in each image. By the averaging of the image mo-
saicing process, the effect of the artifacts can be decreased.

Given both foreground and background mosaics If (x, y) and Ib(x, y), we can
finally generate the output image O(x, y) as:

O(x, y) = If (x, y) · Mf + Ib(x, y) · M̄f , (6)

where Mf is a segmentation mask for the shape of the foreground region obtained
from the vertices of the polygon in the base frame.

2.5 Removing mistracked corresponding points

The tracked corresponding feature points sometimes may include some wrongly
tracked feature points. When there are such mistracked points, the accuracy in
estimating the PSF and the homography between consecutive frames is reduced.
Because the accuracy of the homography is very important for segmentation
and image mosaicing, it is important to improve the accuracy. We remove the
as many as possible of the mistracked feature points during the segmentation
process with the following technique.

For All Frames
1. Compute Homography Hf

base,k, and vertices v j
k as in section 2.4.

2. For All corresponding points
If Foreground point
If Inside polygon Keep point
Else Delete point
If Background point
If Inside polygon Delete point
Else Keep point
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Fig. 3. Image mosaicing

3. If No deleted points Stop processing
Else Go to step4
4. Reclassify remaining points as in section 2.2. Go to step1

With the new corresponding points, the input frames are deblurred as de-
scribed in section 2.3. After deblurring images, we then segment the captured
frames again, and merge the foreground and background images using the new
points of each region.

3 Experimental results

We recorded a video sequence of a number of scenes, whereby a planar foreground
object is in front of the background scene.

3.1 Blur removal

In Figs. 4a and 5a, we show examples taken from input image sequence that is
blurred due to camera motion. Figs. 4b and 5b show individual frames deblurred
by hf

k(x, y) using a Wiener filter. However, artifacts still remain in the deblurred
frames. Figs. 4c and 5c show the output images generated by the proposed
method. Figs 4d, e, and f show a close-up of the raw input image, a deblurred
only output image, and a deblurred+mosaiced output image respectively. As can
be seen from the figures, our method produces the clearest text.
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points are removed by image segmentation. We show a result when the mis-
tracked corresponding points are not removed in Fig. 7. Since the accuracy of
the homography computed from the points which include all the mistracked
corresponding points is degraded, the input images are wrongly aligned. Conse-
quently, the text in the foreground region can hardly be read. The width of the
result image is also narrower than the image shown in Fig. 4c because of the
poor accuracy of the homography.

3.3 S/N ratio

In order to validate the accuracy of the output image, we compute the Signal to
Noise Ratio (S/N ratio) of the foreground regions of the images. S/N ratio SNR
is expressed as:
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(a) Raw input image sequence (b) Deblurred foreground region input
image sequence

(c) Deblurred mosaic

(d)Input image zoom-in (e)Deblurred only zoom-in (f)Deblurred mosaicing zoom-in

Fig. 4. A planar document is captured as the foreground region in the scene

3.2 Mistracked corresponding points removal

In Fig. 6, we show the input sequence in Fig. 4 including the mistracked cor-
responding points in the background region. These mistracked corresponding
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where f(i, j) represents evaluated image, and F (i, j) represents the ground truth
image captured without motion blur by using a tripod. N is the number of the

SNR = 20 log10

(
255

RSME

)
, (8)

(a) Raw input image sequence (b) Deblurred foreground region input
image sequence

(c) Deblurred mosaic

(d)Input image zoom-in (e)Deblurred only zoom-in (f)Deblurred mosaicing zoom-in

Fig. 5. A planar photo is captured as the foreground region in the scene

(a)Images before removing mistracked
corresponding points

(b)Images after removing mistracked
corresponding points

Red dots represent corresponding points between two consecutive frames.

Fig. 6. Examples taken from image sequence including mistracked corresponding points

RSME =

√∑
[f(i, j) − F (i, j)]2

N
(7)
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4 Conclusion
In this paper, we have presented a method for generating a deblurred mosaic
image from motion images captured by a handy moving camera, under the con-
dition that the scene consists of the layers with different depth. By deblurring
each frame and mosaicing them, we generate the deblurred image with a high
S/N ratio. The experimental results demonstrate the validity of the proposed
method.

our method is effective in restoration of motion blur, and in decreasing artifacts
by deconvolution of the PSF.

(a) Deblurred mosaic (b) Zoom-in of (a)

Fig. 7. A result without removing the mistracked corresponding points

(a) S/N ratio of the images shown in Fig4 (b) S/N ratio of the images shown in Fig5

Fig. 8. S/N ratio

pixels in the foreground region. RSME is the root square mean error. In Fig. 8,
we see that S/N ratio of the images generated by the proposed method exceeds
that of the images deblurred at each frame independently. The results show that
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could also be useful for mosaicing a group photo when the people stand in front
of a planar background.

Our proposed method has several possible applications. It could be applied to
image mosaicing from blurred sequences captured from moving cars or trains out
of the city in which a building stands in front of the background. Our approach
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Abstract. The aim of our project is to design an algorithm for counting
people in public transport vehicles such as buses by processing images
from surveillance cameras’ video streams. This article presents a method
of detection and tracking of multiple faces in a video by using a model
of first and second order local moments. The three essential steps of
our system are skin color modeling, probabilistic shape modeling and
bayesian detection and tracking. An iterative process is used to estimate
the position and shape of multiple faces in images, and to track them in
video streams.

1 Introduction and Previous Works

Estimating the number of people in a noisy environment is a central task in
surveillance. A real time count can be used to enforce the occupancy limit in
a building, to manage transport traffic in real time, to actively manage city
services and allocate resources for public events. Our project is to add a count-
ing system for moving platforms such as buses, to an existing on-board digital
video recorder, without requiring specific sensors or other equipment. Images are
captured using a video camera placed in front of the vehicle entrance and are ana-
lyzed to determine the number of people stepping into and out of the bus. Acqui-
sition rate is about 6 frames per second, and the recorder delivers JPEG images
with a high compression rate (quality 50). The context of our application and the
viewpoint of the camera are so that the scene background is dynamic. Indeed,
outdoor scene as seen through windows is different at every bus stop, and there
can be moving objects such as cars or other people that we should not count.
Then the bus starts again and the background starts moving. The scene also
vary much in lighting conditions, according to time of day and vehicle location.

Figure 1 shows a sequence from inside a vehicle. People can be viewed from
the front and from the side.

Finding people in images is a difficult task [1] due to the high variability in
the appearance of people. For human detection and tracking for surveillance,
various approaches have been proposed in the past years [2,3].

Background subtraction [5] is often a first step to find objects of interest such
as faces. Unfortunately, this approach needs a stationary background, whereas
the background often changes in our application. Interframe motion based ap-
proaches [6] do not apply easily for the same reason.
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a b c

Fig. 1. Original sequence

Classical template matching methods require the learning of several face pat-
terns [8]. Recent works [9] on template matching deal with variation in scale,
pose, or shape, in the context of pedestrian detection. In their acquisition con-
ditions, the great variability of human is dramatically reduced which is not true
for our application.

Feature based approaches extract invariant structural features from one or
more images, and then classify extracted objects with statistical classifiers such
as support vector machines [11], neural networks [12], probabilistic approaches
[13], or cascades of filters [14]. Features are designed to be invariant to some
changes in illumination and pose. Several works use Harr wavelets [14], DCT [15]
or local descriptors [16]. However, the most widely adopted feature is skin color
[2,3] since it forms a relatively tight cluster in color spaces, even when considering
darker and brighter skins. Color is low level information, which permits fast
processing and is robust to changes in pose and illumination.

This motivates our approach, which is to count people by finding and tracking
faces, using skin color as the main information source.

The main problem of methods based on skin color is the determination of a
threshold to be used on each pixel for deciding which pixels correspond to skin:
this segmentation step gives a binary mask for further processing like clustering.
This can lead to information loss if the skin color model is not accurate enough.
Our method solves this problem by taking a Bayesian approach and deciding for
skin or non-skin at an upper stage of processing, combining skin probabilities
information with spatial and temporal information. A similar strategy has been
used by [18] for single face tracking.

This article presents the main steps of our multiple faces tracking method.
The next section deals with how skin probability maps are obtained from the
images and skin model. Then the shape model is presented, as well as how it
is integrated into a Bayesian framework. Our iterative method to estimate the
faces positions and shapes is detailed. Finally some results of face detection and
tracking are discussed.

2 Skin Model

A skin color model is needed in order to detect skin colored pixel in images. Skin
chrominance is very specific, as opposed to its luminance. Thus our model is
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defined in a chrominance color space so that skin pixels can be easily recognized
from non-skin pixels. The two-dimensional normalized-rg color space is efficient
for this task. It is defined from the original RGB space by:

r =
R

R + G + B
, g =

G

R + G + B

In this color space, skin color can be accurately modeled by a single bidi-
mensionnal gaussian probability distribution, whose parameters are learned from
about 160 million skin pixels from the FERET faces database [19], by computing
the mean vector and variance-covariance matrix of the sample set. The resulting
gaussian probability density function is named gskin, and is applied to each pixel
of an image I to obtain a skin probability map SI :

SI(i, j) = gskin(I(i, j))

where (i, j) is a position in the image I and I(i, j) is the color of I at this
position, in normalized-rg coordinates.

3 Face Shape Model and Bayesian Framework

3.1 Statistical Modeling

Our face detector is based on a statistical representation of the problem: a face is
a skin region, parameterized by its position, shape and orientation. Our tracking
application does not need an accurate representation of face shape. A elliptical
shape is convenient since it does not require many parameters and is general
enough to approximate most face shapes.

Let x be a 5-dimensional random variable modeling the position and shape
of a skin object, by its first and second order moments:

x = (μx,σx) with μx = (μx1, μx2),σx =
[

σx11 σx12
σx12 σx22

]

Our face model can be seen as an ellipse centered in μx with axes defined by
covariance matrix σx. This model has been introduced in [18] for one single face
tracking using color, whereas our algorithm is designed to track multiple faces.

And let z be a random variable representing each observed image. That is
to say, the realizations for z are the images where faces are to be detected. The
face detection problem then involves computing the probablity density p(x/z),
from which we can decide where faces are likely to be in the image.

Considering a bayesian framework, the a posteriori probability density p(x/z)
is proportional to the product of the observation density p(z/x) by the prior
density p(x): p(x/z) ∝ p(z/x).p(x).

p(x) describes all a priori information on expected faces, such as possible
faces positions and sizes. This helps the algorithm to avoid detecting arms and
legs that are also skin colored.
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3.2 Observation Density

The observation probability density p(z/x) must now be defined. It represents
the probability to observe the image z, knowing that a skin object parameterized
by x is present. The number of skin objects in the image is not known, and p(z/x)
should allow the estimation of the number of objects and their parameters.
Since random variable x is defined as the parameters of only one object, it is
5-dimensional, which is reasonable, but it does not directly allow the estimation
of many objects. Thus p(z/x) is defined so that there is a local maximum for
each x corresponding to a skin object in the image.

The function chosen for the observation probability is the correlation func-
tion between the skin map Sz of image z and the bidimensional gaussian gx

parameterized by x :

p(z/x) ∝
∫

Sz(t).gx(t)dt

where t is a bidimensional variable.
p(z/x) has local maxima for each skin object in z, with the hypothesis that

objects are well separated from each other.

3.3 Skin Objects Detection

From this point, there are several ways to detect the objects in our image,
including the exhaustive search of local maxima in the 5-dimensional func-
tion x &→ p(z/x), or sampling algorithms like Condensation [17]. We propose
a method that doesn’t require the computation of p(z/x) for all values.

The random variable x can be seen as two random variables μx and σx

which represent the first and second order moments of the object respectively.
The method proposed here estimates μx by using a priori information about σx,
then estimates σx for each detected object, using an iterative process.

3.4 First Order Moment Estimation

The detection of the first order moments μx of objects in the image involves
an a priori estimation of σx. σm is defined as the average covariance matrix
representing a face. With this assumption, the observation density becomes:

p(z/μx,σx = σm) ∝
∫

Sz(t).gμx,σm(t)dt

∝
∫

Sz(t).g0,σm(μx − t)dt

The observation density with fixed σx = σm is proportianal to the 2-dimen-
sional convolution product of Sz by a gaussian function with covariance ma-
trix σm, which is an inexpensive computation. Objects’ first order moments are
detected by finding the local maxima of the function.
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3.5 Iterative Second Order Moment Estimation

Suppose that an object x0 is present in the image, with first order moment
μx0 . Its second order moment σx0 must be estimated so that p(z/x0) is a local
maxima. If there is only one skin object in the image, the problem is simply
resolved by computing the second order moment of the whole skin map:

σ2
x0

=
∫

(t − μx0)
2.Sz(t)dt

where t is a bidimensional variable. Since the number of objects in the image is
unknown, our method is to estimate σx0 by using local moments iteratively. Let
W be a 2-dimensional window defined in the same space as Sz, with

∫
W (t)dt=1.

The second order local moment of Sz centered in μx0 is defined as:

σ2
Sz ,W =

∫
(t − μx0)

2.Sz(t)W (t)dt (1)

A sequence of local moments is defined as:{
σ0 = 1
σ2

n+1 = σ2
Sz,g(μx0 ,α.σn)

(2)

where g(μx0 ,α.σn) is the bidimensional gaussian window of first and second
order moments μx0 and α.σn respectively, with α chosen experimentally for
convergence.

As expected, this sequence converges to the second order moment of the skin
object. By using local moments, the computation of σx0 is not disturbed by the
other objects in the image. The detection of multiple skin objects in the image
can then be achieved. Figure 2 shows the results obtained with this method.

Fig. 2. (a) original image, (b) skin map, (c) local maxima (d) detected objects

4 Tracking

Our method for temporal tracking of detected skin objects is tighly related to
the recursive method used for the second order local moment estimation. The
tracking is composed of a prediction step followed by an observation step for
each object.
Prediction Step. During the tracking of a skin object in the video stream, the
past estimated positions and shapes are stored and used to predict the next state
of the object. Any kind of prediction can be used here. For our application, a
constant speed prediction gives good results since people enter the bus with a
continuous motion:

x̂t+1 = xt + (xt − xt−1)
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Observation Step. The observation step corrects the predicted position and shape
of the object with respect to the observed image. The gaussian function parame-
terized with the predicted state defines the window in which the first and second
order local moments of the object are computed. This step is iterated by using the
previously computed local moments as the parameters of the gaussian window:⎧⎪⎪⎨

⎪⎪⎩
μ0 = μpredicted

σ0 = σpredicted

μn+1 = μSz,g(μn,α.σn)
σ2

n+1 = σ2
Sz ,g(μn,α.σn)

(3)

with μSz,g(μn,α.σn) the first order local moment of Sz in the window g(μn,α.σn),
defined by:

μSz,g(μn,α.σn) =
∫

t.Sz(t).g(μn,α.σn)dt

In this sequence, the σ update step is the same as in equations 1 and 2. This
sequence converges to the first and second order moments of each face for the
current image.

5 Results

5.1 Faces Detection Results

The skin model and face detection algorithm have been validated on the Caltech
image database, containing 873 images of faces from a total of 9352 images. 95%
of the faces were successfully detected, while the false detection rate was 15%.
These rates are similar to those (74% to 98%) of other efficient face detectors [2].

Figure 3 presents some results. Images (a) to (d) shows successful results ob-
tained on face images. The color model is robust to lighting intensity variations as
seen in Image (d). Image (e) is an example of detection failure, where observed skin
color does not match the skin model. Image (f) presents a case of false detection
when non-face objects have a color very similar to skin. Finally, images (g) to (i)
are example of images in which there were no face, and no false detection occurred.

5.2 Face Tracking Results

Our tracking method has been tested under real conditions, on video streams
from a transport vehicle. We used 3 hours of video and 3 cameras. The acquisition
rate was 6 frame per second for each camera. The front camera was the most
useful for our people counting application, whereas the other cameras were only
used to validate the tracking method with a different scene. Several bus stops
were simulated, with about 15 people getting in the vehicle each time. The total
time for all bus stops sequences is about 10 minutes.

Experiments in an indoor office under controlled illumination conditions have
also been made. 72 persons passed by the camera during 5 minutes, with many peo-
ple crossings and turn-backs. The acquisition frame rate is 30fps in this sequence.
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a b c

d e f

g h i

Fig. 3. Face detection examples

Figure 4 shows an example of tracking of several faces inside a transport
vehicle during a stop. Four people were present in this sequence, and were all
tracked successfully. Image (b) includes a false detection of a face, caused by
pixels whose color is very similar to skin. Since those pixels are static, this false
detection has no effect on the results of a people counting application.

Figure 5 shows an example of two people crossing during the office video
sequence. The two faces have been tracked successfully. In the middle image,
the two faces are very close from each other, but the constant speed prediction
step manages to keep track of each face. The middle images also presents an
example of false detection: an arm is detected as a face. This can be easily avoided
with an appropriate prior probability map describing possible face positions and
shapes.

It is difficult to describe quantitatively the performance of a face tracker. In
the bus video sequences, each person entering the vehicle was present for about
30 images. During these 30 images, the face starts being tracked when it gets
close enough to the camera (because small objects are intentionnally discarded
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a b c

d e f

Fig. 4. Tracking example

Fig. 5. Office sequence crossing example

by the tracker), and the person is tracked successfully most of the time. Cases
were people cross each other are the main difficulty we encountered since it
happens that the tracker jumps from a face to the other. This happens when the
two faces are very close from each other. The prediction step could be improved
to help the tracker avoiding these tracking failures.

In a simple counting system, counting rate has an accuracy of 85% on office
video, and 90% on video transport. These results have been obtained by count-
ing tracked faces crossing a segment defined manually in image space. Most
non-detections were caused by faces passing under the segment or people walk-
ing behind another person. False detections were caused by some arms being
counted. The office video results are not as good as the vehicle results because
there were more people crossing each other.

The processing rate is about 2 images/second with unoptimized C code,
which is a third of the required rate for real time. This gap could be bridged by
deferred processing of images between two bus stops for the counting application.
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6 Conclusion and Perspectives

The main features of our method are the statistical modeling for detection and
tracking and the iterative estimation of shape parameters. Only one parameter
is needed: the minimum face size σm used for first order moment estimation.
The statistical model is convenient since it helps to avoid thresholding during
skin detection, and integrates efficiently several information sources:

– prior knowledge such as expected faces position and shape
– skin color probability for each pixel
– shape probability, modeled by a gaussian function whose parameters are

estimated iteratively.

Other information sources can be easily added to our framework, as soon as
they can be expressed as probability maps. The next step is to improve track-
ing robustness by learning the trajectories of tracked faces, in order to compute
automatically a probability map for frequently appearing face shapes and posi-
tions. This will result in a better prediction step. The skin detection can also be
improved by using an adaptive skin model. Trajectography methods could also
be included for a more robust tracking in crossing situations.
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Abstract. In this paper, we propose an algorithm to characterize camera motion 
in video sequences based on image feature analysis. The approach predicts 
camera motion using spatio-temporal information obtained from tracking se-
lected feature points throughout an image sequence. The spatio-temporal infor-
mation provides the advantage of rich visual characteristic along a larger tem-
poral scale over the traditional approaches, which tend to formulate computa-
tional methodologies on a few adjacent frames. The algorithm detects five basic 
camera motions of stationary, panning, tilting, zooming, and the combination of 
panning and tilting. We conduct the experiments to verify the proposed ap-
proach using real compressed video sequences. The experimental results have 
demonstrated the performance of proposed approach in determining camera 
motion. 

1   Introduction 

Recent advances in data compression and communication technologies have made 
digital video increasingly available and more pervasive. MPEG-7 provides a rich set 
of standardized tools to describe multimedia content. The meaning and manipulation 
of the content have become more accessible to the users and enable the generation of 
new unique applications. Search and browsing performances become more effective 
since the detail of content that can be described using MPEG-7 is quite comprehen-
sive. In a video sequence, motion features provide the easiest access to the temporal 
dimension and are hence of key significance in video indexing. When used in combi-
nation with other features such as color or texture, they significantly improve the 
performance of similarity-based video-retrieval systems. They also enable motion-
based queries, which are useful in contexts in which motion has a rich meaning such 
as sport or surveillance [1]. Camera motion is one aspect to help infer higher-level 
semantic content and query information in video retrieval. Nevertheless, the efficient 
methodology for annotating the visual information of camera motion is still inappli-
cable. Several approaches have been developed to estimate camera motion based on 
the analysis of optical flow computed between consecutive images [2]-[4]. However, 
the estimation of optical flow, which is usually based on gradient methods or block 
matching methods, is computationally expensive [5]. Some approaches directly ma-
nipulate MPEG-compressed video to extract camera motion using the motion vectors 
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as an alternative to optical flow [6]-[9]. However, the accuracy in detecting camera 
zoom operation is difficult to achieve because of noise in motion vectors due to 
independent object motion in the frame or the MPEG encoding process, such as quan-
tization errors, and other artifacts. Moreover, the MPEG encoder delivers numerous 
wrong motion vectors on the background when formed by large uniform regions. In 
this paper, we propose an approach to characterize camera motion based on the image 
feature analysis. The motion trajectories of image features are calculated and used to 
determine the global motion of a shot in video sequences. 

2   Spatio-temporal Characteristic of Image Features 

Image features are local, meaningful, and detectable parts of an image, which can be 
classified into two categories: a global property of an image (global feature), and a 
part of the image with some special properties (local feature) [10]. Edges and corners 
are basic features for image recognition and motion analysis. Edges are the most sali-
ent and useful features in images, since solid objects, surfaces, and shadows all pro-
duce edges. Corners are another type of image features. They are stable across image 
sequences and are very useful in image matching for stereo and object tracking for 
motion [11]. The motion is unambiguous at a corner while it is ambiguous at an edge. 
Therefore, we select corner as the image feature for camera motion analysis. Harris 
corner detector is used since it is relatively simple, efficient and reliable. By observ-
ing the motion trajectories of image features along a shot, we envisage the possibili-
ties of accomplishing the spatio-temporal characteristic of camera motion in video 
sequences. Figure 1 shows examples of spatio-temporal characteristic of various cam-
era motions. Given a video consists of image sequence with (x, y) image dimension 
and t temporal dimension. The camera motion can be inferred directly from the spa-
tio-temporal information of the feature points. For instance, motion trajectories of 
horizontal lines in both (t, x) and (t, y) dimensions as shown in Fig. 1(a) depict static 
camera motion. Motion trajectories of slanted lines with negative slope in (t, x) di-
mension and horizontal lines in (t, y) dimension indicate pan right while tilt up has the 
horizontal trajectories in (t, x) dimension and slanted lines with positive slope in (t, y) 
dimension. For zoom out, the motion trajectories are expanded in for both (t, x) and  
(t, y) dimensions. The combination between pan left and tilt up has the motion 
trajectories of slanted lines with positive slope in both (t, x) and (t, y) dimensions. 

3   Camera Motion Characterization 

In our approach, camera motion is estimated by analyzing the motion trajectories of 
image features. The spatio-temporal characteristic of image features is determined 
into two steps. The first step is to extract the image features and track those feature 
points along a shot. We define the region to represent the whole image as the shaded 
area shown in Fig. 2. The corners are entirely detected in this specific area. Because 
the edge pixels have some noise, we omit those pixels for feature detection and  
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tracking (i.e., five pixels in our case). The width of shaded area is equal to 20 percent 
of the total length. In the case that a number of detected image features or the distribu-
tion of feature points is too small, the whole pixels will be used for feature detection. 
Ten image features that have the longest tracking duration are selected as the good 
feature points for camera motion analysis. Then the algorithm computes slope, y-
intercept and standard deviation for each motion trajectory. 
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Fig. 1. Spatio-temporal characteristic of various camera motions, (a) stationary, (b) pan right, 
(c) tilt up, (d) zoom out, and (e) pan left-tilt up. 
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Fig. 2. Feature detection area 
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The second step is to classify a frame into camera motion. We consider five motion 
classes; stationary (stationary camera and little scene motion), panning, tilting (cam-
era rotation around its horizontal/vertical axis), zooming (focal length change of the 
lens of a stationary camera), and the combination of panning and tilting. The camera 
motion is estimated from spatio-temporal characteristic of the good feature points 
using the process described in Fig. 3. The algorithm first determines the easiest cases, 
which are stationary, panning, and tilting without object motion. Then zooming op-
eration is examined. This can reduce the computational process when a shot consists 
of no object motion. Next, the algorithm repeats detection of the first block diagram 
with including object motion before going to the last process of panning-tilting detec-
tion. The concept of stationary, panning, and tilting detection is described in Fig. 4. 
Motion trajectories of horizontal lines (i.e. small standard deviation) in both (t, x) and 
(t, y) dimensions indicate static camera motion. Motion trajectories of slanted lines in 
(t, x) dimension with positive slope indicate pan left and negative slope indicate pan 
right. For (t, y) dimension, positive slope indicates tilt up and negative slope indicates 
tilt down. When the object motion is concerned, we consider a dominant motion class 
as the camera motion of a shot. The algorithm to classify zooming motion is described 
in Fig. 5. In zooming operation, the motion trajectories are either expanded in or out 
for both (t, x) and (t, y) dimensions. The algorithm determines whether they are ex-
panded in or out by comparing the y–intercept of positive and negative slope. If the y-
intercept of negative slope is greater, it is expanded in which refers to zooming out 
operation. Otherwise, it will be zooming in. If the characteristic of motion trajectories 
does not fall into any motion classes, the camera motion is unknown. 

Motion trajectories of the 
good feature points

Stationary, panning, and tilting
(without object motion) detection

Zooming detection

Stationary, panning, and tilting
(with object motion) detection

Panning-tilting detection

Camera motion

Motion trajectories of the 
good feature points

Stationary, panning, and tilting
(without object motion) detection

Zooming detection

Stationary, panning, and tilting
(with object motion) detection

Panning-tilting detection

Camera motion  

Fig. 3. Block diagram of camera motion characterization 
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Fig. 4. The concept of stationary, panning, and tilting detection, Mx(t) and My(t) are the motion 
trajectories in (t,x) and (t,y) dimensions, respectively. 
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Fig. 5. Block diagram of zooming detection 

4   Experimental Results 

We conduct the experiments using the proposed approach to estimate camera motion 
of a variety of shots in video sequences. Totally 50 shots are examined. The examples 
of shots used in experiments and their feature points are shown in Fig. 6. The corre-
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sponding motion trajectories can be seen in Fig. 1. Table 1 summarizes the perform-
ance of the proposed approach comparing with manual annotation. The effectiveness 
of camera motion characterization is evaluated into two aspects; precision and recall. 
From the experimental results, the camera motions of combining between panning-
tilting and zooming cannot be detected. They were passed through the last process 
and were detected as the unknown motion. However, the overall results have demon-
strated the performance of proposed approach to determine camera motion. 

 

Fig. 6. Examples of shots used in experiments and their feature points, (a) stationary, (b) pan 
right, (c) tilt up, (d) zoom out, and (e) pan left-tilt up. 

5   Conclusions 

In this paper, we proposed the camera motion characterization based on image feature 
analysis. The motion trajectories of selected feature points are used to determine 
global motion and dominant motion class of a shot in video sequences. The camera  
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motion can be inferred directly from spatio-temporal characteristic of the image fea-
tures. The method can reduce the computational process because it does not use the 
whole pixels in frames. The algorithm is evaluated using real compressed video se-
quences. The proposed approach works well in detecting the well-known basic cam-
era motions (i.e., stationary, panning, tilting, zooming, and the combination of pan-
ning and tilting). We believe that our approach can be further extended to detect more 
complicated motions in the future. 

Table 1. The performance of camera motion characterization 
 

Motion 
Correctly 
detected 

Missed 
Falsely 
detected 

Recall Precision 

Static 12 0 0 1.0 1.0 

Panning 10 0 0 1.0 1.0 

Tilting 8 0 0 1.0 1.0 

Zooming 8 2 0 0.8 1.0 

Panning-tilting 8 2 0 0.8 1.0 
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Abstract. Shape information is an important distribution to Content-
Base Image Retrieval (CBIR) systems. There are two major types of
shape descriptors, namely region-based and contour-based. In this paper
we present a shape retrieval method that makes use of a contour-based
descriptor, Principal Components Descriptor (PCD). In PCD, shapes are
aligned on principal axes and described by a combination of the mean
shape and weighted eigenvectors. The retrieval is achieved by comparing
the weights of the eigenvectors. The developed approach is applied to
Sharvit’s Silhouettes database and the results are compared with MPEG-
7 standard contour-based descriptor, Curvature Scale Space (CSS). The
comparison indicates that PCD shows higher accuracy than CSS.

1 Introduction

Great efforts have been made to find efficient and robust content-based methods
for image retrieval, as a result of the dramatically increasing amount of digital
images and image data in various databases. Popularly used low level image fea-
tures in Content-Base Image Retrieval (CBIR) include shape, texture and colour.
It is believed that shape is one of the most basic features because humans can
easily recognize objects only using the contours of objects. Contour-based de-
scriptors have two major advantages. It is easy to obtain the object boundaries
from actual images by segmentation, and the contour-based analysis is compu-
tationally low cost.

A number of contour-based description methods have been previously pro-
posed. Autoregressive (AR) [1] and High-Resolution Pursuit (HRP) [2] regress
shapes by a linear combination of bases with corresponding weights. Each basis
contains useful features, which are used to retrieve shapes. Nevertheless, the ex-
traction of such features is a complicated process and the regression of complex
contours with a small number of bases might not be accurate enough. Fourier De-
scriptor (FD) [3] maps shapes from the spatial domain to the frequency domain.
The low frequency part presents the fundamental shape and the high frequency
part represents the shape details. Shape analysis in the frequency domain is
rotation and dilation invariant, insensitive to noise, and able to extract global
features. However, FD is sensitive to the variant phases of frequency components.
Since wavelet transform and multi-resolution decomposition has been developed
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in recent two decades, wavelet is also used to describe shapes [4]. Wavelet De-
scriptor (WD) transforms shapes in the spatial domain to the spacial-frequency
domain and compare shapes along the spacial axis in a certain sub-band. WD
can easily remove noise-like details and extract fundamental shapes. However,
one of its disadvantages is that it is sensitive to the starting point and it needs
to be overcome in the matching procedure. Curvature Scale Space (CSS) [5] [6]
uses maxima of curvature zero-crossing points in scale space as feature vector
to represent and index shapes by comparing the positions of these maxima. Al-
though CSS makes use of curvature, a very important feature of planar curves, it
is difficult and complicated for matching due to the various numbers of maxima
in different shapes.

Principal Components Analysis (PCA) is an efficient method for shape analy-
sis. By applying PCA, a shape can be represented by the mean shape plus
weighted principal components. Principal Components Descriptor (PCD) ex-
tracts features from the weights of principal components and indexes shapes by
measuring the Euclidian distance of the weights on first several principal com-
ponents. The second section of the paper describes the details of the developed
method. The third section presents the experiment results, evaluations and a
comparison of PCD and the MPEG-7 standard descriptor, CSS. Conclusions are
given in the final section.

2 Method

2.1 Pre-processing

Several preprocessing procedures need to be undertaken before applying PCD to
shapes. These include segmentation, boundary extraction and shape normalisa-
tion. Segmentation for images can be well performed by several existing methods,
such as morphological scale space filtering [7] and Expectation-Maximization [8].
The segmented object, however, could be either with some noise on the edge or
seriously distorted, if the segmentation is not perfect. For the former situation,
the proposed approach can remove the effect of noise on the edge by ignoring mi-
nor components in the shape description. Nevertheless, the latter situation would
seriously effect the further processing because the the serious distortion makes
the shape meaningless. Since the paper focuses only on the shape retrieval and
the experiments are all based on the shape database in which segmentation has
already been done perfectly, we assume that the segmentations is efficiently per-
formed in pre-processing. After segmentation, a contour-based shape is obtained
by recording the positions of the pixels on the edge in the order of clockwise (or
anti-clockwise) direction, which means that the contents of an object are always
on the right-hand (or left-hand) side of the edge curve. This step is quite similar
with getting 8-connectivity chain code. The points on an edge are represented
as pk = [xk, yk]T , where k is the index of the edge points. Therefore a shape
containing n points on its edge can be repressed as S = [p1,p2, . . . ,pn]. And
then, a normalisation process is performed so that the points with same index
on edges are corresponding. One of the commonly used normalisation methods
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is Procrustes, which uses an iterative process to minimize the distance from the
shapes to their mean. However, Procrustes is not suitable for retrieval because
it suffers from the variant start sampling points and it globally normalises all
shapes in a database to the mean shape. If the query shape is from outside of
the database, a normalisation of all shapes in the database and the query shape
needs to be performed again. Therefore, a local normalisation method is devel-
oped for the retrieval case, which is named Principal Axes Method (PAM). It
contains four basic steps: translation, rotation, dilation and re-sampling.

Translation. All shapes are first translated so that their centroid is at the origin.
The translated shape is

V = [p1 − pc,p2 − pc, . . . ,pn − pc] (1)

where pc = 1
n

∑n
k=1 pk is the centroid and n is the number of sampling points

on each shape.

Rotation. V in Eq.(1) is also the matrix of variance corresponding to the origin.
Thus the covariance matrix of all translated points is

C =
1
n
V · VT (2)

Since this is a 2-dimension system, there are two eigenvalues, λ1 and λ2
(λ1 > λ2), and two corresponding mutually orthogonal eigenvectors, e1 and e2.
Since e1 and e2 provide the principal axes of a shape, given the rotation matrix
R = [e1, e2]−1, the shape can be rotated to a normalised space by

B = R · V (3)

An example of orientation normalisation of a fish shape using the principal
axes is given in Fig. 1.

Dilation. All shapes need to be scaled in order to normalise their sizes and make
all points on edges be corresponding. After translation and rotation, the centroid
and principal axes of a shape are coincided with the origin and coordinates. The
dilation is performed by scaling the bounding box of all shapes to the same
width, while preserving their width/height ratio. Let w and h be the width and
height of the boundary box, the dilation matrix is

D =
[
1/w 0
0 1/w

]
(4)

Thus final normalised shape after dilation is

S′ = D · B. (5)

Re-sampling. After translation, rotation and dilation, N points are evenly sam-
pled along the shape contour, starting from the farthest intersection point of the
contour and the x-axis. An example of the re-sampling is given in Fig. 1(e).
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(a) Original shape
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(b) Two principal
axes

(c) The rotated shape

(d) The boundary box (e) The start point

Fig. 1. Shape normalisation: (a) is the original shape, (b) shows two principal axes of
the shape, (c) is the shape after rotating, (d) is the shape with boundary box and the
circle in (e) is the start point of resampling.

2.2 Principal Components Descriptor

After the pre-processing, all the shapes are in a normalised space. By applying
PCA to these shapes, we can obtain a parameterised shape model and reduce
the dimensionality of the feature vector. We rearrange the representation of a
shape to a 2×N dimensional vector s = [x1, . . . , xN , y1, . . . , yN ]T , where (xi, yi)
is the position of the ith sampling points. Thus, the mean shape of a database
containing M shapes is

s̄ =
1
M

M∑
i=1

si, (6)

and the covariance matrix is

C =
1
M

M∑
i=1

(si − s̄)(si − s̄)T . (7)

The eigenvalues [λ1, . . . ,λM ] of the covariance matrix are sorted so that λi ≥
λi+1). A shape si in the database can be represented by

si = s̄ + Pbi + ε (8)

Where, P = [p1, . . . ,pt] is the matrix of the eigenvectors corresponding to the
first t largest eigenvalues, bi = [bi1, . . . , b

i
t]

T is the vector of their weights and
ε is the error. The error decreases when the number of eigenvectors increases.
The eigenvectors with the largest eigenvalues are the more significant axes to
represent the covariance [9]. In practice, a small number of eigenvectors with
large value eigenvalues are sufficient for describing shapes and the eigenvectors
with small value eigenvalues describe the noise-like details on shapes, which
should be avoided in feature extraction.
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2.3 Feature Extraction and Matching

Given the shapes in a database, the mean shape and the eigenvectors are in-
variant. Since a shape can be approximately described by the mean shape and
a number of eigenvectors with associated weights, the vector of weights can be
used as feature vector. Since all eigenvectors are orthogonal, the feature vector
can be calculated by projecting the error between a shape and the mean shape
to the orthogonal eigenvector space, if the error in Eq. (8) is ignored, i.e.

bi = PT (si − s̄). (9)

The distance between two shapes is defined by the Euclidian distance of their
feature vectors

Dis(si, sj) = (bi − bj)T (bi − bj). (10)

The distance between a given query shape to each of the shapes in the database
is calculated using Eq.(10) and all the shapes are sorted with respect to the
distance to the query shape.

2.4 Summary

Given a shape database(it is assumed that the segmentation and boundary ex-
traction have been done perfectly), a summary of the procedure of the feature
extraction and retrieval is following:

1. Normalise all shapes in the database following the procedure of translation,
rotation, dilation and re-sampling described in Sec. 2.1. The normalisation
makes all shapes relevant and removes the effects of variant scales, rotations
and starting points.

2. Calculate the mean shape and covariance matrix using Eq. (6) and Eq. (7),
respectively. Find the eigenvalues and eigenvectors of the covariance matrix
and sort them according to the eigenvalues. Create the eigenmatrix using
the first t eigenvectors, P = [p1, . . . ,pt].

3. Compute the feature vectors of all shapes in the database by Eq. (9).
4. Given a query shape, normalise it using same method in step 1.
5. Compute the feature vector of the query shape by Eq. (9) and the distances

between the query shape and the shapes in the database using Eq. (10).
Index the shapes according the values of distances.

3 Experiments and Evaluations

3.1 Experiments

The presented approach is tested using Sharvit’s Silhouettes database [10], which
contains 1070 binary images including airplanes, folks, animals, cartons, etc.
The shapes in the database have variant orientations, sizes and translations.
The object boundaries are first extracted from these images. All shapes are
then normalised by the method described in Sec. 2.1. In feature extraction, the
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number of eigenvectors, t, is experimentally selected as 20. Then, 10 shapes are
randomly select from the database as the query shapes. The first 7 retrieval
results using both PCD and CSS are shown in Fig. 2. In order to compare it
with CSS, the retrieval results using CSS are listed in Fig. 2 as well.

The results show that the proposed method can correctly identify similar
shapes in the database provided a query shape. Despite different starting posi-
tion, orientation and size of shapes, the retrieval is successful in almost all cases,
which implies that the PCD approach is highly robust to orientation and size
of shapes. In result 4, 7, 8 and 10, the similar shapes with extremely different
orientation are retrieved, which means that it is invariant to shape rotation. In
result 7, 8, and 9, the similar shapes with different scales are listed, which implies
that the method can eliminate the effect of dilation. Comparing the retrieval re-

No. Query Similar images retrieved by PCD Similar images retrieved by CSS

1

2

3

4

5

6

7

8

9

10

Fig. 2. The results of experiments using PCD and CSS
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sults using PCD and the ones using CSS, we can find that for some complicated
shapes, especially for query shape 6, 7, 8 and 9, the PCD can find similar shapes
more efficiently. A more detailed statistical evaluation and comparison is given
in the next section.

3.2 Evaluations

One of most efficient evaluation methods for image retrieval is Precision versus
recall graph (PR graph), which is a standard evaluation method and popularly
used by CBIR community [11] because PR graphs present abundant information
of retrieval result and can be easily understood. In the PR graph,

Precision is the percentage of similar images retrieved with respect to the
total number of images retrieved.

P =
No. of similar images retrieved
Total No. of images retrieved

(11)

Recall is the percentage of similar images retrieved with respect to the total
number of similar images in database.

R =
No. of similar images retrieved

Total No. of similar images in database
(12)

We use average PR graphs to evaluate the overall performance of the PCD
approach. Leave-one-shape-out experiments are performed on the Sharvit’s Sil-
houettes database using manually built ground-truth of the database. The recall-
precision values are calculated for each shape and the average recall and preci-
sion are achieved in the end. To perform an objective evaluation, the MPEG-7
contour-based descriptor, CSS, is implemented following the algorithm described
in [6] and applied to the same database. Fig. 3(a) presents a comparison of the
average PR graph of both methods. For all recall values, the PCD approach
produces higher precision than CSS, which indicates better performance of the
PCD approach when compared to the CSS approach.

The number of principal components used in the feature vectors, namely t,
is a key parameter in the presented method. A too small number of principal
components are not sufficient to describe the shapes precisely and may lead to
loss of important features. On the other hand, too many principal components
may cause overfitting problem and produce inferior retrieval results. Therefore,
it is crucial to find an optimal number of principal components in the feature
vectors. To evaluate the effects of different t values on the performance of our
approach, The average precision is calculated for different t values when the
average recall is 20%. The results are presented in Fig. 3(b). It can be observed
that using more than 10 principal components is sufficient to provide satisfying
results. A maxima can be seen when around 20 principal components are used.
There is a slight drop when more than 20 components are used, as a result of
including noise-like details represented by minor components. Overall, from 15
to 20 is a reasonable range for the choice of component numbers.
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Fig. 3. Evaluation results

The experiments and evaluations have proven that the proposed approach is
more efficient in shape retrieval. However, it is found that the proposed method
is less efficient when applied to certain shapes where too many points distribute
on the less important parts, for example the tail of a ray. It would make PAM
find two meaningless axes in stead of the real ones of an object. Thus, the
normalisation may fail and the re-sampled points on the shape would not be
corresponding to the other shapes in the database. This would make the retrieval
difficult and may lead to inferior retrieval results.

4 Conclusions

We have presented a novel approach to contour-based shape retrieval based
on PCD and evaluated the proposed approach using a public database. The
experiment results reveal that the PCD approach is highly robust to orientation
and size of the shapes and able to identify shapes with largely different poses.
To perform a precise evaluation, the proposed approach is compared with the
MPEG-7 CSS algorithm. The comparison shows that the proposed approach
outperforms the CSS approach.
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Abstract. Surveillance systems that automatically detect illegal behaviors per-
formed by unaware people have a wide range of applications: security, health-
care, conservation of cultural heritage and so on. In particular monitoring public 
areas such as museums and archaeological sites is a challenging problem that 
has to be solved in order to avoid irreparable damages to historical heritage. In 
this paper a system able to check by common digital RGB cameras unexpected 
accesses to forbidden areas in a public museum is presented. The reliability of 
the proposed framework is shown by large experimental tests performed in the 
Messapic Museum of Egnathia (Italy) . 

1   Introduction 

Archaeological sites and museums, scattered across the world, keep physical remains 
of past human activity and they testify thousands of years of endeavors to develop 
culture, science and civilization.  

Unfortunately archaeological finds are fragile and non-renewable therefore it is 
very important to plan adequate precautionary measures to avoid irreparable damages 
to the cultural heritage caused by visitors. 

In general the preservation of the archaeological heritage is insured by a lot of 
strict rules that visitors have to observe. The monitoring of visitor behaviors is either 
performed by watchman or by traditional surveillance systems consisting of cameras, 
storage devices, video monitors and security personnel.  

Both solutions are tedious as security staff or watchman need to identify specific 
and unusual events from a large number of very common and repetitive events. A 
solution of these problems might be a visual system able to automatically detect ille-
gal behaviors performed by visitor in archaeological site or museums.  

Automatic recognition of  human  behaviors is one of the most exciting and chal-
lenging problem in the computer vision research field.  

Open literature proposes different methods for understanding human actions and 
good review can be found in [1,2,3]. Basically, works in recognition of behaviors of 
unaware humans can be classified into three categories. The first one consists of 
methods that perform recognition of human behaviors by detecting and tracking the 
hands and/or eventually some other major body components like arms, head or legs 
[4,5]. These algorithms, besides, being very complex and time consuming, require a 
very narrow field of view and a considerable amount of prior knowledge that gener-
ally is impossible to get in unaware human context as surveillance.  



636 M. Leo et al. 

 

The second category consists of methods that perform recognition of human be-
haviors by using space-temporal information of the human body configuration (pos-
ture analysis) [6,7,8,9,10]. These algorithms, generally, are not view invariant and are 
based on the assumption that human activities can be deduced just from human body 
posture; the reliability of these approaches has been proved only for a limited number 
of human activities, very often in contrived scenarios.  

Finally, the third category of algorithms for the recognition of human behaviours, 
to witch our work belongs, uses the analysis of the spatial and temporal properties of 
human motion (position in the scene, moving velocity and so on) [11,12,13,14]. 

In this paper we address the problem of  automatically detect in real time violations 
of forbidden areas. In some cases this problem can be solved using a simple window 
in the image and monitoring the optical flow to detect access violations. Nevertheless, 
this kind of approaches gives good results only when the camera observes the scene in 
a proper direction and avoid the problems of the perspective projection. But in many 
real contexts such as the surveillance of  large areas, the simple motion detection is 
not significant unless it is combined with a position information on the ground plane. 
Besides the presence of shadows can alter the moving blob shape and gives rise to 
false alarms. For this reason we propose a three steps algorithm: at first the RGB 
digital images acquired by non-professional cameras are used to detect moving ob-
jects; then shadow regions are removed by temporal photometric gain analysis and 
finally, for each detected moving object, the approximate 3D localization is obtained 
by homographic transformations. Whenever the 3D position of a moving object falls 
in a forbidden area the system automatically detects the event and provides an alarm 
signal.  

The rest of the paper is organized as follow: an overview of the proposed system is 
provided in section 2 where motion detection, shadow removing and 3D localization 
algorithms will be detailed; section 3 presents, instead, the experimental results ob-
tained on the real image sequences acquired by IEEE 1394 cameras in the Messapic 
Civic Museum of Egnathia (Brindisi, Italy). 

2   System Overview 

The proposed system works on the RGB images acquired by common digital cameras. 
The acquired images are firstly processed by a motion detection algorithm performed 
through background subtraction. In this phase the background is automatically built 
and updated by temporal statistical analysis. After motion detection a shadow remov-
ing procedure is performed on each image in order to discard shadow regions  that, 
generally, alter the shape of the moving objects. After shadow removing, moving 
points are merged in regions on the basis of their spatial relationship. Finally the cen-
tre of the bounding box of each moving region is considered and the corresponding 
coordinates on the ground plane are extracted by homographic projection.  

The following subsections explain the details of each step involved.  

2.1   Motion Detection  

The motion detection step has been achieved by implementing a novel background 
subtraction algorithm. It is essentially a variation of [15] with the advantages of  
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allowing the background modeling also in cases of motion in the initial image se-
quences, and also of being more robust in cases of multiple reflections in indoor con-
texts. The proposed motion detection approach is composed by three distinct phases: 
firstly, a model of the background needs to be created; then a background subtraction 
procedure is used to distinguish moving objects from static ones. Finally, an updating 
algorithm adapts the background to any variation in light conditions.  

The background modeling algorithm implemented is very reliable because it does 
not require any assumption about the presence of moving objects in the scene.  

It uses a sliding window (of N frames) whose first frame is assumed as first coarse 
background model, even if there are moving objects. Then, each frame of this window 
is compared with the coarse background: if a pixel value is similar (in all the three 
color channels) to the correspondent in the model image, mean value and standard 
deviation are evaluated for that point.  

Practically, for each pixel, 6 parameters are considered: BGRBGR σσσμμμ ,,,,,  where 

nμ  e nσ  represent respectively the mean value and the standard deviation in the n-th 

color band. 
After checking all frames of the examined window, the statistical parameters are 

maintained only for those pixels with intensity values similar to the model for almost 
90% of the whole considered window.  

After this, a new sliding window is examined using as referring model the statisti-
cal parameters where maintained and the intensity values of the first image for those 
points in which the statistical parameters were  rejected in the previous window. 

This procedure is iterated until  mean and  standard deviation values have been 
maintained for all the pixels. 

After the model construction, the system is able to automatically detect the pres-
ence of moving objects. For this purpose, a simple subtraction algorithm has been 
implemented. It is based on the evaluation of the difference between current image 
and the model; this difference is calculated for each color band. A pixel will be con-
sidered as a moving point if it differs more than two times from the relative variance 
at least in one color band. Formally, denoting with IOUT the output binary image: 
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In order to make the system substantially insensible to variations in light condi-
tions, an updating module has been implemented. The characteristics of the applica-
tive context requires some specific constraints: in particular, objects that differ from 
the background image have always to be detected, that is they will be never included 
in the background model in order to maintain information about the presence of object 
removed from the scene until anomalous conditions will be restored. 

So, the updating procedure starts from the output of the last algorithm, and only the 
pixels corresponding to static points (IOUT(x,y)=0) will be updated. In detail, for each 
point, a weighted mean between the historic value and current value is carried out. 
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The parameter α used for the updating can vary in [0,1] and smoothes the relative 
relevance of the current image instead of the background one.  
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2.2   Shadow Removing  

After the background subtraction, in the resulting binary image many small clusters of 
pixels are still observable: a one-step filter removes blobs whose size is lower than a 
certain threshold. Finally, an image with only foreground objects is generated, where 
each object contains also its own shadows. The presence of shadows is a great prob-
lem for a motion detection system, because they alter real size and dimension of the 
objects and they make very difficult any following automatic scene interpretation 
attempt. This problem is mostly remarked in indoor contexts, where shadows are 
emphasized by the presence of many reflective objects; in addition shadows can be 
detected in every direction, on the floor, on the walls but also on the ceiling, so typical 
shadow removing algorithms, that assume shadows in a plane orthogonal with the 
human plane, cannot be used. 

To prevent all these problems, correct shapes of the objects must be extracted: the 
system needs the implementation of a shadow removing algorithm. 

The shadow removing approach here described starts from the assumption that a 
shadow is a uniform decreasing of the illumination of a part of an image due to the 
interposition of an opaque object with respect to a bright point-like illumination 
source. From this assumption, we can note that shadows move with their own objects 
but also that they have not a fixed texture, as real objects: they are half-transparent 
regions which retain the representation of the underlying background surface pattern. 
Therefore, our aim is to examine the parts of the image that have been detected as 
moving regions from the previous segmentation step but with a texture substantially 
unchanged with respect to the corresponding background. The algorithm looks for 
moving points whose attenuation values, at each color band, are similar; differently, 
moving points belonging to true foreground regions will have different attenuation 
values. In addition, these attenuation value will be lower than 1, because of the minor 
light that illuminates the shadow regions. Formally, we evaluate, for each moving 
point (x,y) the attenuation values S at each color band: 
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where In(x,y) and Bn(x,y) are respectively the intensity value in the n-th color band of 
the pixels (x,y) in the current image and in the background image. 

After this, pixels with an uniform attenuation will be removed: 
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The output of this phase provides a motion image with the real shape of the mov-
ing objects, without any artifacts due to noise or shadows. 
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2.3   Localization of the Moving Objects in the Scene  

After Motion Detection and Shadow Removing each pixel in the acquired image is 
labeled as belonging to the background or to some moving object. To perform the 
localization of the moving object in the 3D scene is, at this point, important to analyze 
the spatial relationship between moving pixels and aggregate them in uniform regions 
(connectivity analysis). The proposed system makes use of the 8 connectivity crite-
rion: two pixels are part of the same object, regardless of whether they are connected 
along the horizontal, vertical, or diagonal direction. Each object is now localized in 
the 2D image plane but, due to the perspective distortion, it is not possible to deter-
mine its position in the 3D scene. To localize them in the 3D scene a further step must 
be introduced. For each detected moving region a point p is considered: it is obtained 
as the intersection of the vertical line passing through the center of the bounding box 
of the considered region and the lower side of the same bounding box.  

To localize the point p in the 3D scene an homographic relationship between the 
image plane and the ground plane is introduced.  

The relation between the generic point ),,,( kkzkykxP iii  belonging to the ground 

plane and its corresponding point )1,,( ii vup  in the image plane is: 
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To get the position in the scene of the moving object detected in the image plane 
the 11 unknown items of the matrix M have to be computed ( 43m  can be set to 1 

considering that this is an homogenous linear system). The ijm  elements can be dis-

covered considering 4 couples of points for which the coordinates both in the ground 
planes and in the image plane are a priori known.  

3   Experimental Results 

The experiments were performed in the Messapic Civic Museum of Eganthia (Brin-
disi, Italy). This museum have a lot of rooms containing important evidence of the 
past: the smallest archeological finds are kept under lock in proper showcases but the 
largest ones are exposed without protection. The areas next to the unprotected finds 
are forbidden to the visitors and a cord separates forbidden from allowed areas.  

Sometime visitors step over the cord in order to touch the finds or to see them in 
more detail. In our experiment a IEEE 1394 camera was placed in the main room of 
the museum in order to monitor the behaviors of the visitors in the area where were 
placed some of the most important messapic archaeological finds. 

The acquired images were sent to a laptop (Pentium III, 1200 Mhz, RAM 512, HD 
30 Gb) where run the algorithms described in the previous section. 
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In figure 1A it is possible to see a frame acquired by the camera where the 4 red 
markers indicate the point of the ground plane chosen to discover the parameters of 
the homographic projection. The matrix M obtained by solving the homogeneous 
liner system (1) for the aforesaid 4 point is: 

−−
−

=

10313815.0000152512.0

000

0326.430313738.00493247.0

030553.90300762.00599709.0

M . 

In figure 1B the plan of the acquired area is reported: the green color indicates al-
lowed areas whereas pink color indicates forbidden areas. The red points correspond 
to the red reference points in figure 1A.  

The room was monitored for about 1 hour (10 frame/sec). During the experiment 
several visitors came to the room but nobody of them went inside the forbidden areas. 
Some illegal accesses were performed by some actors. 

In the figures 1A and 1B are furthermore pointed out the reference coordinate sys-
tems for both the image plane and the ground plane; onto the image plane the measure 
unit is the “pixel coordinate” whereas onto the ground plane is the “meter”. 

A 
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2

4

3

1
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2,70 m
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1,80 m x

y
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Fig. 1. A) A frame acquired by the camera where the 4 red markers indicate the point of the 
ground plane chosen to discover the parameters of the homographic projection. B) the plan of 
the acquired area: the green color indicates allowed areas whereas pink color indicates forbid-
den areas. Red point correspond to the red point in figure 1A. Each figure reports also the refer-
ence coordinate systems used in the experiment. 

In figure 2 the column A shows some frames extracted meanwhile a person steps 
over the cord and access to the forbidden area, whereas the column B shows the rela-
tive images containing the moving points detected before the shadow removing step 
and finally the column C shows the results obtained after shadow removing. The 
relative position of the moving person onto the image plane and onto the ground plane 
are respectively reported in columns A and C. By comparing the position of the mov-
ing person onto the ground plane with the boundary lines of the forbidden area the 
system detected that in the third and fourth rows the person is performing an illegal 
access and it sent an alarm to avoid dangerous interaction of the transgressor with the 
finds.  
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A B C 

   
u=66 v=234  x=0.74 m y=3.88 m 

   
u=98 v=219  x=1.08 m y=3.97 m 

   
u=134 v=211  x=1.43 m y=3.90 m 

   
u=211 v=160  x=2.83 m y=4.55 m 

Fig. 2. The column A (on the left) shows some frames extracted meanwhile an actor performed 
the step over the cord; the column B shows the corresponding people segmentation results 
before shadow removing step and finally, the column C shows the relative images containing 
only the moving objects (after shadow removing step). 

In figure 3 the benefits of using the proposed approach is evident: the figure A on 
the left shows a visitor that stays behind the limit of the forbidden area but he seems 
very close to the find due to the perspective projection onto the image plan. In this 
case every approach based only on motion detection could wrongly detect an access 
violation and send a false alarm. The proposed approach instead detects the real posi-
tion of the visitor and it is able to label this situation as normal. In the figure B on the 
right the visitor is inside the limit of the forbidden area. In this case the position esti-
mation indicates the access violation and an alarm could be provided.  

The proposed algorithm was tested on a large number of normal activities and on 
15 forbidden situations that have been recorded during the 1 hour monitoring. The 
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system succeeded in detecting all the access violations. Of course the systems can fail 
every time the first two steps of the algorithm produce a not precise  people segmenta-
tion. In fact the position evaluation, as explained in the previous section,  depends on 
the exact estimation of the people shape: for instance the presence of shadows can 
modify  the point p, obtained as intersection between the vertical line passing through 
the bounding box center and the lower side of the same bounding box. 

Future work will be addressed to monitoring different activities such as the people 
trajectories evaluation, the interaction between people, the number of people who 
look at a each museum piece. 

 
A B 

  

Fig. 3. Two critical situations: A) a visitor stays behind the limit of the forbidden area but he 
seems very close to the find due to the perspective projection onto the image plan; the proposed 
system avoid the error of the perspective perception and classifies as normal this behaviors. B) 
A visitor is inside the limit of the forbidden area. In this case the position estimation indicates 
the access violation and an alarm can be provided. 
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Abstract. Cyclic strings are strings with no starting or ending point,
such as those describing a closed contour. We present a new algorithm
to compute a similarity measure between two cyclic sequences based
on Dynamic Time Warping. The algorithm computes the optimal align-
ment between both sequences and is based on the cyclic edit distance
algorithm proposed by Maes. The algorithm runs in O(mn lg m) time,
where m and n are the lengths of the compared strings. Experiments
on a shape classification and shape retrieval with a public database are
presented.

1 Introduction

Contour matching is an important problem in shape classification and retrieval.
Contours are cyclic strings: strings with no beginning or end. A cyclic string can
be viewed as the set of strings obtained by cyclically shifting a representative
string. Fig. 1 (a) shows the contour of two shapes whose representative strings
start at arbitrarily chosen points.

Dynamic Time Warping (DTW) defines a dissimilarity measure based on an
optimal alignment of two (non-cyclic) strings and has been successfully applied
to speech recognition, on-line handwritten text recognition, time series align-
ment, etc. Some approaches to shape matching represent contours with global
features such as Fourier descriptors or invariant moments [2]. Recently, DTW
has been applied to the comparison of Fourier descriptors [6]. Global features
comparison may detect a high similarity in shapes which are perceptually very
different, since no local information is taken into account. The Curvature Scale-
Space (CSS) description is a shape signature based on peaks detection in a space
of curvature inflection points that depends on gaussian smoothings of the con-
tour [9]. The CSS captures some local properties, such as the distribution of
“relevant” curvature points along the contour, but is difficult to code as a string
when some detail is needed.

Other approaches directly represent contours with cyclic strings (chaincodes,
sequences of edges and/or angles in polygons, the curvature along the contour,
� This work has been supported by the Spanish Ministerio de Ciencia y Tecnoloǵıa

and FEDER under grant TIC2002-02684.
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1
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1
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(a)

(b)

(c)

Fig. 1. (a) Two fish shapes. The black dots indicate starting points in their (clockwise)
contour coding as strings of curvature values. (b) Optimal alignment of the curvatures
starting at black dots. The absolute value of the distance between aligned points is
shown under the alignment. The DTW dissimilarity is the sum of these values. (c) A
more significant alignment is possible if the curvature string of the second shape starts
at 2′.

etc). These strings can be compared with the cyclic edit distance (CED) [7,8],
which is defined in terms of the edit distance [11], a well-known metric between
(non-cyclic) strings. Maes presented an O(mn lg m) algorithm to obtain the CED
by computing some non-crossing shortest paths in an “extended edit graph”.
In [1,4], Marzal et al. improved the running time of this algorithm by proposing
a Branch and Bound exploration of its search space. In [5], Bunke and Bühler
obtained an approximate value for the CED in O(mn) time. Mollineda et al.
proposed in [10] other heuristics to approximate the value of the CED.

In [8], Maes applied the (exact) cyclic edit distance computation to the recog-
nition of shapes described with polygons. As Maes pointed out, the edit distance
has some drawbacks when applied to this problem: it is sensitive to segmentation
inconsistencies in the polygons. Each primitive (edge or angle) of one polygon is
either aligned with one and only one primitive of the other polygon (a substitu-
tion), or deleted/inserted. This makes difficult to properly align similar regions
of polygons represented by a different number of edges. A DTW dissimilarity
measure seems more natural for optimally aligning contours. DTW aligns each
vertex of the contour with one or more points in the other contour: there is no
need to introduce insertion/deletion operations and, therefore, elastic deforma-
tions of the shapes are not penalized. There have been attempts to present a
DTW dissimilarity measure for cyclic strings: an approximate method has been
presented, for instance, in [3]. In this paper we introduce the Cyclic DTW dis-
similarity and show that it cannot be computed by just replacing edit operation
with alignments in the CED algorithm. An exact computation algorithm that
runs in O(mn lg m) time is presented and used in a silhouettes classification and
shape retrieval task on a publicly available database.
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2 Edit Distance and Dynamic Time Warping

Let A = a1a2 . . . am and B = b1b2 . . . bn be two strings in Σ∗, where Σ∗ is the
closure under concatenation of a set Σ, and let λ denote the empty string, i.e.,
a sequence of length 0. For any string A, let A1:i be the substring a1a2 . . . ai. An
edit operation is a pair of strings of length less than or equal to 1, (x, y) 	= (λ,λ),
denoted by x → y. Edit operations are classified as insertions (x → λ), deletions
(λ → y), and substitutions (x → y), where x, y ∈ Σ. A string B results from
another string A via the edit operation x → y if there are two strings C and
D such that A = CxD and B = CyD. An edit sequence is a sequence of edit
operations, e = e1e2 . . . ek, and it transforms A into B if B can be obtained
from A by successive application of the edit operations. Edit operations can be
weighted by means of a function γ : (Σ ∪ {λ}) × (Σ ∪ {λ}) → R

≥0 satisfying
γ(x → y) + γ(y → z) ≥ γ(x → z). The weight of an edit sequence e = e1e2 . . . ek

is defined as γ(e) =
∑

1≤i≤k γ(ei). An optimal edit sequence from A to B is an
edit sequence of minimum weight that transforms A into B. The (weighted) edit
distance (ED) between A and B will be denoted with d(A,B) and is defined
as the weight of an optimal edit sequence from A to B. Wagner and Fischer
presented this recursive equation [11]:

d(A1:m, B1:n) =

0, if n = m = 0;
d(A1:m−1, B1:n) + γ(am → λ), if m > 0 and n = 0;
d(A1:m, B1:n−1) + γ(λ → bn), if m = 0 and n > 0;

min
d(A1:m−1, B1:n−1) + γ(am → bn),
d(A1:m−1, B1:n) + γ(am → λ),
d(A1:m, B1:n−1) + γ(λ → bn)

if m > 0 and n > 0.

(1)
This equation formulates the d(A,B) computation problem as a shortest path

problem in the so-called edit-graph. This graph is an array of nodes (i, j), where
0 ≤ i ≤ m and 0 ≤ j ≤ n, connected by horizontal, vertical and diagonal arcs,
as can be seen in Fig. 2 (a). The horizontal arc arriving to node (i, j) represents
ai → λ, the vertical arc represents λ → bj , and the diagonal arc represents
ai → bj. Each path from (0, 0) to (m, n) is an edit path and its weight is the
weight of its associated edit sequence. The value of d(A,B) can be computed in
O(mn) time [11].

An alignment between two sequences A and B is a sequence of pairs (i0, j0),
(i1, j1), . . . , (ik−1, jk−1) such that (a) 1 ≤ i� ≤ m and 1 ≤ j� ≤ n; (b) 0 ≤
i�+1−i� ≤ 1 and 0 ≤ j�+1−j� ≤ 1; and (c) (i�, j�) 	= (i�+1, j�+1). The pair (i�, j�)
is said to align ai�

with bj�
. The weight of an alignment is

∑
0≤�<k γ(ai�

, bj�
). An

alignment between A and B is optimal if its weight is minimum. The Dynamic
Time Warping (DTW) dissimilarity measure of A and B will be denoted with
D(A,B) and is defined as the weight of the optimal alignment between both
sequences. The DTW dissimilarity computation is a restricted linear assignment
problem and can be solved with this recurrence:
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Fig. 2. (a) Edit graph for A = xxyy and B = xxyy. Thick arrows are on the optimal
edit path. (b) Warping graph for A and B and its optimal warping path (alignment).

D(A1:m, B1:n) =

γ(a1, b1), if n = m = 1;
D(A1:m−1, B1:n) + γ(am, b1), if m > 1 and n = 1;
D(A1:m, B1:n−1) + γ(a1, bn), if m = 1 and n > 1;

min
D(A1:m−1, B1:n−1),
D(A1:m−1, B1:n),
D(A1:m, B1:n−1)

+ γ(am, bn), if m > 1 and n > 1.

(2)
This recurrence is similar to (1) and solving it is equivalent to solving a shortest
path problem on a graph similar to the edit graph: the warping graph, which
is depicted in Fig. 2 (b). Arcs ending at node (i, j) are weighted with the same
value, γ(ai, bj). Warping paths start at node (1, 1) and end at node (m, n).
D(A,B) can be computed in O(mn) time.

Alignments of pairs of symbols in DTW can be assimilated to substitutions
in edit distances, but DTW allows for one-to-many correspondences. This makes
DTW appropriate to model “elastic distortions” of strings describing shapes or
time series. On the other hand, DTW alignments have no insertions or deletions
and seem preferable to edit distances when these operations do not naturally
arise. There are alternative definitions of the DTW (different arcs in the warping
graph or weighting functions that affect differently diagonal arcs). For the sake
of clarity, we will consider only DTW similarity as defined in (2).

3 Cyclic Edit Distance

A cyclic shift σ of a string A = a1a2 . . . am is a mapping σ : Σ∗ → Σ∗ defined
as σ(a1a2 . . . am) = a2 . . . ama1. Let σk denote the composition of k cyclic shifts
and let σ0 denote the identity. Two strings A and A′ are cyclically equivalent if
A = σk(A′), for some k. The equivalence class of A is [A] = {σk(A) : 0 ≤ k < m}
and it is called a cyclic string. The cyclic edit distance (CED) between [A] and
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[B] is defined as d([A], [B]) = min0≤k<m(min0≤�<n d(σk(A),σ�(B))). Maes [7]
showed:

Lemma 1 (Maes). d([A], [B]) = d([A],B) = min
0≤k<m

d(σk(A),B). �

Therefore, the value of d([A], [B]) can be obtained by computing m edit distances
in O(m2n) time. Maes proposed a more efficient procedure that computes m
shortest paths in an extended edit graph (see Fig. 3 (a)). Let P (k) be a shortest
path between nodes (k, 0) and (k+m, n) in the extended edit graph. The edit dis-
tance d(σk(A),B) is the weight of P (k). When computing d(σk(A),B), one can
take advantage of the “non-crossing” property of edit paths [7] (see Fig. 3 (b)):
“Let j, k, and l be three integers such that 0 ≤ j < k < l ≤ m, and let P (j) and
P (l) be two non-crossing minimum weighted paths in the extended edit graph.
There is a shortest path P (k) from (k, 0) to (k + m, n) that lies between P (j)
and P (l).” This property leads to a Divide and Conquer, recursive procedure:
when P (j) and P (l) are known, P ((j+ l)/2) is computed by only taking into ac-
count those nodes of the extended edit graph lying between P (j) and P (l); then,
optimal paths bounded by P (j) and P ((j + l)/2) and optimal paths bounded
by P ((j + l)/2) and P (l) can be recursively computed. The recursive procedure
starts after computing P (0) (by means of the standard edit distance) and P (m),
which is P (0) shifted m positions to the right. Each recursive call generates up
to two more recursive calls and all the calls at the same recursion depth amount
to O(mn) time. Total computation time is, therefore, O(mn lg m).

The suboptimal algorithm proposed by Bunke and Bühler in [5] to approx-
imate the CED finds the minimum cost path between any start node and any
terminal node in the extended edit graph. This edit path transforms a substring
of AA into B and can be computed in O(mn) time.
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Fig. 3. (a) Extended edit graph for A and B. The optimal path for the cyclic edit of
A and B is the optimal path starting and ending at nodes with the same colour. (b)
P (j) is the optimal edit path for σj(A) and B, and P (l) is the optimal path for σl(A)
and B. Crossing paths can be avoided: if the weight of q is greater than the weight of
q′, P (j) can be improved by taking q′ instead of q.
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4 Cyclic Dynamic Time Warping

A cyclic alignment between A and B is a sequence of pairs (i0, j0), (i1, j1), . . . ,
(ik−1, jk−1) such that, for 0 ≤ " < k, (a) 1 ≤ i� ≤ m and 1 ≤ j� ≤ n; (b)
0 ≤ i(�+1) mod m − i� ≤ 1 and 0 ≤ j(�+1) mod n − j� ≤ 1; and (c) (i�, j�) 	=
(i(�+1) mod m, j(�+1) mod n). The weight of a cyclic alignment (i0, j0), (i1, j1), . . . ,
(ik−1, jk−1) is defined as

∑
0≤�<k γ(ai�

, bj�
). An optimal cyclic alignment is a

cyclic alignment of minimum weight.

Lemma 2. If m > 1, n > 1, and (i0, j0), (i1, j1), . . . , (ik−1, jk−1) is an optimal
alignment between A and B, there is at least one " such that i� 	= i(�+1) mod m

and j� 	= j(�+1) mod n.

Proof: Any alignment including (i�, j�), (i� + 1, j�), and (i� + 1, j� + 1) can be
“improved” by removing (i� + 1, j�), since γ(ai�+1, bj�

) ≥ 0. Analogously, any
alignment including (i�, j�), (i�, j� + 1), and (i� + 1, j� + 1) can be “improved”
by removing (i�, j� + 1). �

Lemma 3. The Cyclic DTW dissimilarity between [A] and [B], D([A], [B]), can
be computed as D([A], [B]) = min0≤k<m

(
min0≤l<nD(σk(A),σl(B))

)
.

Proof: The demonstration is trivial when m = 1 or n = 1. Let us consider
that m > 1 and n > 1 and let (i0, j0), (i1, j1), . . . , (ik−1, jk−1) be an optimal
alignment between A and B. Let " be an index such that i� 	= i(�+1) mod m and
j� 	= j(�+1) mod n (Lemma 2). This cyclic alignment weight is

D(σ(i�+1) mod m(A),σ(j�+1) mod n(B)),

which is considered by the double minimisation. �
In general, it is not true that the Cyclic DTW distance D([A], [B]) equals

min0≤k<m D(σk(A),B) orexm min0≤k<nD(A,σk(B)), as the following counter-
example shows: let Σ = {x, y} and let γ(·, ·) be 0 if both arguments are equal,
and 1 in other case; the distance D([xyx], [yxy]) is 0, since D(xxy, xyy) = 0,
but D(xyx, yxy) = 3, D(yxx, yxy) = 1, D(xxy, yxy) = 1 D(xyx, xyy) = 1, and
D(xyx, yyx) = 1. Therefore, an equivalent of Lemma 1 does not hold for Cyclic
DTW dissimilarities and Maes algorithm cannot be directly applied.

Theorem 1. The Cyclic DTW between strings A and B, D([A], [B]), is

min
0≤k<m

(
min(D(σk(A),B),D(σk(A)ak+1,B))

)
.

Proof (sketch): Each alignment induces a segmentation on A and a segmentation
on B. All the symbols in a segment are aligned with the same symbol of the other
cyclic sequence. There is a problem when bn−pbn−p+1 . . . bn and b1b2 . . . b1+q, for
some p, q ≥ 0, belong to the same segment of B. In that case, the optimal path
cannot be obtained by simply shifting A, since bn must be aligned with the last
symbol of σk(A) and b1 must be aligned with its first symbol, i.e., they never
fall in the same segment. The string σk(A)ak+1, formed by appending to σk(A)
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its first symbol, permits to align bn−pbn−p+1 . . . bn and b1b2 . . . bq with the first
symbol of σk(A), since ak+1 also appears at the end of σk(A)ak+1. �

For each value of k, D(σk(A),B) can be obtained as a subproduct of the
computation ofD(σk(A)ak+1,B). The value of D(σk(A)ak+1,B), for each k, can
be obtained by computing a shortest path in an extended warping path similar
to the extended edit graph. Since the non-crossing property of edit paths also
holds for warping paths, the Divide and Conquer approach proposed by Maes
can be applied to Cyclic DTW. It should be taken into account that, differently
from Maes algorithm, the optimal path for P (k) can finish at node (k + m, n) o
(k + m + 1, n).

The running time of the algorithm is O(mn lg n): the recursion divides the
search space in two balanced halfs and all recursive operations at the same
recursion require total O(mn) time.

Bunke and Bühler approach to approximate the Cyclic Edit Distance can be
trivially extended to approximate the Cyclic DTW in O(mn) time. Hereafter,
this modified algorithm will be called Bunke and Bühler DTW.

5 Experiments

In order to assess the Cyclic DTW performance in classification and shape re-
trieval tasks, we have used the database publicly available at the web page
www.lems.brown.edu/vision/software/ [12]. It contains 1070 silhouettes. The
shapes belong to 41 categories representing animals, tools, bones, hands, etc.
Some categories contain only one image and others contain up to 601. The eight
directions chaincode of each contour was computed and the shape was repre-
sented as a series of coordinates (X(t),Y (t)). The starting point of the chain-
code was chosen arbitrarily. In order to avoid discretisation errors, the contours
were smoothed with a gaussian kernel, which depends on the standard deviation
(stdev). Then, the curvature of each smoothed contour was computed at each
point t as κ(t) = (Ẋ(t)Ÿ (t) − Ẍ(t)Ẏ (t))/(X(t)2 + Y (t)2)3/2. The curvature is
invariant with respect to translation and rotation. The γ function is defined as
γ(κA(t), κB(t′)) =

√|κA(t) − κB(t′)|.
In order to compare the DTW, the Bunke and Bühler DTW and the Cyclic

DTW dissimilarities, we performed nearest neighbour classification with each
dissimilarity measure and for different gaussian smoothings. Table 1 shows the
error rate for different gaussian smoothings of the curve. The Cyclic DTW always
outperformed the other comparison techniques. The best results were obtained
for stdev=10: a 5.52% error rate with the Cyclic DTW. Some classification errors
with the Cyclic DTW are shown in Fig. 4. It can be seen that most of them can
be explained in terms of actual shapes similarity.

We also performed a shape retrieval experiment and computed the precision
P (percentage of relevant shapes among the retrieved shapes) and the recall R

1 The “donkey” category contains only one image and has been joined to the “cattle”
category.



Dynamic Time Warping of Cyclic Strings for Shape Matching 651

Table 1. Classification error rate for DTW, Bunke and Bühler DTW (BB), and Cyclic
DTW (CDTW) and different gaussian smoothings.

stdev DTW BB CDTW
3 33.40% 32.55% 10.01%
5 23.39% 20.77% 6.55%

10 18.86% 16.46% 5.52%
15 21.05% 18.33% 5.89%
20 23.01% 22.36% 12.54%
30 29.28% 27.03% 13.47%

ray textbox horse dog elephant hand dinosaur cat crown brick cat cattle

cat dog cat dog classic brick bone hammer bird fish bird fish

bird fish bird fish bird fountain dog cattle dinosaur dog camel carriage

Fig. 4. Some classification errors. The left shape of each pair was misclassified and its
corresponding right shape is its nearest neighbour according to the curvatures CDTW
dissimilarity measure. Most classification errors are due to actual similarities between
shapes of different classes.

Fig. 5. Precision P (number of relevant shapes among the retrieved ones, in %) as a
function of recall R (% of relevant shapes recovered w.r.t. all relevant shapes in the
database) for stdev=10. DTW corresponds to the (non-cyclic) Dynamic Time Warping
dissimilarity, BB to Bunke and Bühler’s approximate algorithm, and CDTW to the
Cyclic Dynamic Time Warping distance.

(percentage of relevant shapes retrieved w.r.t. the relevant shapes in the data-
base) for queries with k retrieved documents, where k ranges from 1 to 1070.
The results for stdev=10 are shown in Fig. 5. It can be seen that the precision
is high for up to a 50% recall.
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6 Conclusions

We have defined the Cyclic Dynamic Time Warping dissimilarity and defined
to compute it in O(mn lg m). The method is based on the cyclic edit distance
algorithm proposed by Maes. We have shown that Maes algorithm cannot be
directly applied to cyclic DTW dissimilarities computation by just replacing the
edit operations by alignments of symbols: two conventional DTW dissimilarities
must be computed for each cyclic shift of one string. Fortunately, one of these
dissimilarities can be obtained as a subproduct of the other.

The cyclic DTW dissimilarity has been applied to shape classification/
retrieval and can be useful in other tasks, such as comparison of cyclic sequences
in bioinformatics [13]. The new comparison measure has shown to be useful in
shapes classification and retrieval tasks with a publicly available database.
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Abstract. In a video surveillance system, moving object detection is the most 
challenging problem especially if the system is applied to complex environ-
ments with variable lighting, dynamic and articulate scenes, etc. Furthermore, a 
video surveillance system is a real-time application, so discouraging the use of 
good, but computationally expensive, solutions. This paper presents a set of im-
provements of a basic background subtraction algorithm that are suitable for 
video surveillance applications. Besides we present a new performance evalua-
tion scheme never used in the context of moving object detection algorithms. 

1   Introduction 

Video surveillance applications need to work in the absence of detailed a priori 
knowledge about the objects of interest, and this reason makes preferable the use of  
segmentation algorithms working without models. These algorithms, usually, try to 
segment the frame of the video into two regions: foreground (pixels belonging to the 
objects of interest) and background. In a second phase the foreground pixels are 
grouped to determine the blobs representing the objects. In video surveillance sys-
tems, background subtraction is the most used approach for the object detection step. 
Frequently in literature background and reference image are synonymous. The basic 
idea is to obtain the foreground region comparing the current image to a reference 
image. The background pixels can be either represented by a single color value [9] or 
by a probabilistic distribution. In [6] the authors use a uniform distribution; this 
choice is effective only if the background model is always perfectly synchronized 
with scene changes. Alternatively, in order to reduce the sensitivity to the variation of 
the light conditions or to mitigate waving tree problems (they occurs when part of the 
background of the scene is detected as object of interest because it is performing little 
movements), a simple statistical model is used introducing a Gaussian description of 
the background pixels [15]. Although this solution mitigates errors due to a not per-
fectly synchronized reference image, on the other side it produces a system less sensi-
tive in the regions where a great variance of colors has been calculated (also for the 
detection of the objects of interest). To avoid this loss of sensitivity, a more  
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complicated statistical model for pixel representation, Mixture of Gaussian (MOG) 
has been proposed [12, 4,]. Friedman and Russell [4] introduced, for a traffic monitor-
ing system, the possibility of classifying pixels according to a Gaussian representation 
for each class (vehicle, shadow or road), Stauffer and Grimson [12], instead, used 
multiple Gaussians for representing different background illumination conditions. 

For outdoor scenes, illumination conditions, usually, change significantly during 
the day because of sun position or meteorological events; some false positives (ob-
jects detected by the system that do not truly exist) derive by these circumstances: this 
is the light of day problem [13]. In fact, if the background is not accurate or consistent 
with current scene condition, the detection cannot result reliable. The background 
model, essentially, may be updated using two different ways: non recursive [13, 8] 
and recursive techniques [6, 15, 7]. The first ones process, for each frame, a sliding 
window of N past frames and calculate the median value [8] or a linear prediction 
[13] of the background parameters. The recursive techniques update the background 
model using current frame and previous background information; it is used as input of 
a Wiener filter in the Pfinder system [15]. In [7], instead, the reference image is up-
dated using an Infinite Impulse Response filter. Although these algorithms reduce the 
errors due to slow illumination changes, they don’t result able to solve sudden illumi-
nation changes or structural background changes. In fact the recursive techniques, as 
well as the  non recursive ones, have to find a compromise for the choice of the up-
date rate: a too fast update rate may cause motionless object to be incorporated in the 
background, whereas a slow update rate causes the background to be not consistent 
with illumination changes. Others algorithms, similarly to our approach divide the 
frame into two or more regions in order to apply different policies for the background 
updating. In particular [6, 5, 1] apply fast update rate only for the pixels belonging to 
instantaneous background  region, while the regions belonging to the detected object 
are not updated. The drawback of these approaches is that errors in the objects detec-
tion may produce an erroneous reference image compromising the detection perform-
ance of the successive frames. A different approach was presented in [10]: the authors 
proposed a preprocessing step using the illumination eigenspace in order to make the 
frames to analyze independent from the lighting condition. 

Nowadays all the techniques of object detection supply good results under particu-
lar circumstances,  where the environment is completely controlled with respect to 
key factors such ad the lighting or the position of the camera. For video surveillance 
applications these conditions can not be assumed in the general case because the envi-
ronment in which the system has to work is typically characterized by variable light-
ing, dynamic and articulated scenes that affect the detection performance. In this 
paper we present an algorithm suitable for real time applications and robust enough 
for outdoor scenes. In real time applications more performance constraints have to be 
considered than in the case of post-processing applications. For these reasons an im-
provement of the algorithm of background maintenance has been developed and a set 
of heuristics have been added to the plain background based approach. Furthermore, 
the results of an extensive experimentation process (described in detail), are shown, in 
order to validate the effectiveness of the heuristics within real applications. The effec-
tiveness of our approach is validated by means of a new evaluation scheme (Section 
3). The experimentations are performed on the standard PETS database [3] which is 
recognized to be a benchmark for object detection. 
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2   Heuristics for Improving Detection 

A video analysis system for video surveillance application is generally composed of 
different functional blocks: object detection, object tracking and behavior analysis. 
The first block locates the objects of interest and describes them by means of their 
bounding box. The latter is evaluated as the smallest rectangle, whose sides are paral-
lel to the edges of the frame in which the object is inscribed. In the following the 
bounding boxes will simply called boxes. Then the object tracking block preserves the 
identity of objects across the frames assigning them unique IDs. In this way we obtain 
the trajectories of every object and, after a perspective correction, a classification of 
the objects behavior can be done. If some behaviors are classified as interesting 
events, the system reacts appropriately on the basis of the application context. 

The object detection is divided into three steps (Fig. 1): the pixel segmentation 
processes the input frames producing a foreground pixel mask, that is obtained 
thresholding the absolute difference between the current image frame and the refer-
ence image; then, a morphological dilatation filter is applied to the foreground pixel 
mask; finally, by a connected components labelling algorithm the blob segmentation 
step identifies semantically separated objects and localizes them. 

 

 

Fig. 1. Object Detection Phases 

In order to make the system robust also in outdoor conditions, in the following we 
will propose a set of improvements for an adaptive background based algorithm: 
adaptive threshold, noise filtering, shadow filtering, broken object recovery.  In the 
presented algorithm the reference image pixels are represented by their RGB values. 
The values of the parameters, required by each heuristic were chosen on the basis of a 
training phase. 

2.1   Adaptive Threshold and Noise Filtering  

In the simplest algorithms for the object detection [9] the threshold for the pixel seg-
mentation is chosen statically depending on the scene. As regards the definition of the 
threshold, we have chosen an algorithm that differs from the basic approach for the 
introduction of a dynamic strategy to update the threshold in order to adapt it to the 
reference image changes. The main idea is to increase or decrease the threshold on the 
basis of the brightness changes of the scene. A similar strategy is shown in Gupte et 
al. [5]. But, whereas in [5] the authors change the threshold on the basis of the static 
distribution of intensity levels in the current frame, we adapt the threshold on the 
basis of the variation of the intensity during the image sequence. The threshold is 
updated according to the following formula: 

Morphological filter Pixel segmentation Blob segmentation 
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Where Th is the current threshold; It is the average of the pixels intensity; Et-n[I] is 
the moving average of I calculated by the last n frames; χ is a percentage (we have 
chosen a value of 25%); ΔL and ΔH are the rate respectively of the decrement and 
increment of the threshold (we have chosen for both a value of 0.3). The value of the 
threshold has an upper and a lower bound.  

In the pixel analysis, often, some conditions cause little isolated background areas 
to be detected as foreground pixels. We have added a noise filter that operates at blob 
level to remove the spurious objects according to their dimensions and density respect 
to the bounding box area. 

2.2   Shadow Filtering 

In the pixel analysis, often, some conditions cause little isolated background areas to 
be detected as foreground pixels. We have added a noise filter that operates at blob 
level to remove the spurious objects according to their dimensions. 

       

Fig. 2. Foreground mask before (left) and after (right) shadow filtering 

The shadows problem is very hard to solve at pixel level. In [1] the authors try to 
detect the shadows considering the properties of the HSV color space. A very interest-
ing approach [11] considers three properties for the detection of the shadows: the 
presence of a uniform dark region, the luminance changes with respect to the previous 
frame and the shadow’s edges. We propose a technique for the shadow suppression 
that results very little time consuming but which performances are comparable to  
[1, 11] for the proposed application. For each object, bounded by its box, we define its 
histogram as the function that associate for a box abscissa x, the number of fore-
ground pixels over that column; this histogram is normalized by the relative box 
height. A foreground pixel is recognized as shadow pixel if: 

( ) ( ) ( ) ih TyxIyxBTxH >−∧< ,,  (2) 

Where H(x) is the histogram value at x abscissa, Th is the histogram threshold 
(equal to 0.4), B(x,y) and I(x,y) are the image reference and current frame intensity, 
and finally Ti (equal to 35) is the intensity threshold. So the recognized shadow pixels 
are eliminated from the foreground mask. When a foreground mask depurated from 
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shadows pixels has been obtained, the connected component labelling is executed 
again on the regions interested by shadow removal. In Fig. 2 wan example of the 
results of our algorithm. 

2.3   Background Maintenance Algorithm  

As regard the image reference updating strategy we use the algorithm proposed by 
Gupte et al. [5] with some improvements. After pixel segmentation, we have the bi-
nary object mask to distinguish the moving pixels from the others. We call instanta-
neous background those locations where the mask is 0 and detected objects region 
that location where the mask is 1. The basic updating formula (IIR filter) used as a 
starting point is: 

).,(*),(*)1(),(1 yxIyxByxB nn αα +−=+  (3) 

Where Bn(x,y) is a reference image pixel at time n and α is a coefficient represent-
ing the update speed. The first difference in comparison with the author of the work 
[5] is that we use two different updating speeds depending on the region: for the in-
stantaneous background pixels, the new values are updated very quickly using α=0.5. 
Instead for the detected objects region a very slow update policy is needed. The opti-
mal α value depends on the application, in our experiments, we chose it equal to 
0.0001. Even so a problem afflicts this approach: it is represented by the condition in 
which during a quick illumination change, such as the transit of a cloud in front of the 
sun, a slowly moving or stopped object is present in the scene. In this case the scene 
area under the stopped object is not updated. This inconsistency causes the creation of 
a wrong foreground blob when the above-mentioned object leaves its position. In [5] 
this problem is not solved, so we have introduced a new processing step, to improve 
the technique. Specifically, for each object, it is calculated, for the pixels adjacent to 
its bounding box, the average variation ( ) between the reference image at frame n 
and n+1. On the basis of this variation we update the background pixels behind the 
identified object according to the following formula: 

.),(),(1 Δ+=+ yxByxB nn  (4) 

2.4   Broken Object Recovery 

It is worth to notice that in a real context the problem of object camouflage is very 
frequent. In fact for a wrong detection it is not needed that the whole object camou-
flages itself with the scene. If only a part of it is similar to the background, it may be 
broken, after foreground detection, into two or more blobs. This causes a serious loss 
of precision for the detector and it may affect successive tracking and classification 
steps. The problem cannot be solved by any pixel level algorithm and only a little 
number of works faces this problem at higher levels. Marcenaro et al. [9] deal with 
this problem merging regions that are partially overlapped or near; the main drawback 
of this approach is that it can merge different objects in an unique blob. We present a 
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slight improvement that try to solve this drawback. The base hypothesis is that, if the 
video frame rate is higher than 6-7 fps, object dimensions cannot change suddenly. 

 

Fig. 3. Broken object heuristics: a, b, c) An example with object adjustment – a) Frame t-1 –  b) 
Frame t – c) Frame t after application of the heuristics; d, e, f) An example without object 
adjustment – d) Frame t-1 – b) Frame t – c) Frame t after application of the heuristics. 

If the current object height results lower by a fixed percentage than the average 
height, the system checks whether there is a new object (an object that is appeared in 
the current frame) within the bounding box of the object modified according to the 
calculated average height. If this check succeeds, the new object is removed and the 
old one is extended to enclose the corresponding region. In Fig. 3 there is an example 
of the described approach. 

3   Experimental Results 

Whereas there are several approaches to evaluate the performances of the tracking 
algorithms, it has not been made much effort (besides some exceptions [13, 2]) to 
evaluate the performances of the moving object detection step. One reason is the huge 
effort needed to produce the ground truth. In fact a detailed ground truth requires the 
evaluation of each pixel of each frame. Furthermore, an evaluation at pixel level, i.e. 
counting misdetected pixels (as in [13]), provides a measure that is not so meaningful. 
Here we use a quantitative method, widely used in other contexts, but never in the 
evaluation of this kind of algorithms. The method is described in the following. The 
ground truth is defined, for each frame, as the box coordinates representing the real 
moving objects present in the frame. We used an evaluation scheme (presented in [14] 
in the context of text detection in video sequences) which exploits geometrical infor-
mation (overlap) in the precision and recall measures. The goal of a detection evalua-
tion scheme is to take a list of ground truth boxes Gi = 1..|G| and a list of detected 
boxes Dj = 1..|D| and to measure the quality of the match between  the two lists. From 
the two lists G and D of detected boxes and ground truth boxes, two overlap matrices 

b a c 

d e f 
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σ and τ are created. The rows i = 1..|G| of the matrices correspond to the ground truth 
boxes and the columns j = 1..|D| correspond to the detected boxes. The values are 
calculated as follows: 

 
(5) 

The matrices can be analyzed in order to determine the correspondences between 
the two lists: 

one-to-one matches: Gi matches against Dj if row i of both matrices contains only 
one non-zero element  at column j and column j of both matrices contains only one 
non-zero element at row i. The overlap area needs to have a certain size compared to 
the rectangle in order to be considered successful (σij ≥ e1 and τij ≥ e2). 

 

 

Fig. 4. a) One-to-one matching; b) One-to-many matches with one detected box; c) One-to-
many matches with one ground truth box. 

one-to-many matches with one ground truth box: Gi matches against several de-
tected boxes if row i of the matrices contains only one non-zero element at column j. 
The two additional constraints of Σj σij ≥ e3 and ∀j : τij ≥ e4 ensure respectively that 
the single ground truth rectangle is sufficiently detected and that each of detected 
rectangles is precisely enough. 

one-to-many matches with one detected box: Dj matches against several ground 
truth boxes if column j of the matrices contains only one non-zero element at row i. 
Also here we add the constraints of Σi τij ≥ e5 and ∀i : σij ≥ e6. 

Based on this matching strategy, the recall and precision measures are given as  
follows: 

( ) ( )
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Fig. 5. Results on PETS dataset: a) Standard Algorithm; b) Improved Algorithm. 

The  value was chosen equal to 0,8 considering that for 80% of the condition of 
multiple matching the tracking step does not result damaged. The function MatchD(Dj) 
is defined accordingly. This evaluation takes into account one-to-many matches, but 
“punishes” them slightly. These measures provide an intuitive figure of how many 
boxes have been detected correctly and how many false alarms have been produced. 

Two sequences from PETS2001 dataset [3] have been chosen as testing set. Some 
other sequences from the same database have been used to tune our algorithm pa-
rameters. The two test sequences are: the “testing” sequence – dataset 2 – camera 1 
from 80 to 1487  and the “testing” sequence – dataset 4 – camera 1 from 1 to 1082. 

In Fig. 5 one example showing the foreground mask and the moving objects de-
tected by the basic and the improved algorithms on PETS dataset, is provided. In Fig. 
6 the results of the basic algorithm and the algorithm with the novel heuristics, added 
step by step, are shown. 

First of all we want to remark that the absolute values cannot be taken into account 
in a comparison with other algorithms because of the different evaluation schema 
used. You can notice that the original algorithm has performances surely improvable, 
especially for the precision index. Adding the improvement on the threshold the in-
dexes increase a lot. This proves the effectiveness of the novel improvement. The 
noise filter raises enormously the precision index because of the reduction of numer-
ous false positive. The drawback is a slight reduction of the recall index. 

Finally, with the other heuristics (shadow filtering and broken object resolution) 
the precision index continue to increase. Here we want to underline that in a video 
surveillance system we are interested to recognize the events occurring in the scene  
 

(a) 

(b) 
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avoiding false alarms (i.e. inexistent events). Therefore the effort to try new solution 
for the last  two problems has been justified by the most favorable precision index 
obtained. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Results on PETS 2001: a) Dataset 2 Camera 1; b) Dataset 4 Camera 1. 

4   Conclusions 

In this paper we discussed some improvements of a classical background subtraction 
algorithm. Furthermore we have shown the application of an evaluation scheme never 
used in moving object detection algorithms. The results, within the video surveillance 
framework, are promising. In the future we want to assess the performances of our 
approach carrying out a comparison with other algorithms using the presented evalua-
tion scheme. Moreover we want to evaluate the sensitivity of the algorithm varying 
the heuristics parameters on a large number of sequences. 
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Abstract. A novel real-time approach for classification or identification of ob-
jects is presented here that is suitable for visual attention system of mobile ro-
bots. The proposed method constructs convex hulls for regions found in an im-
age using a new external scanning technique. Then a cleaning step produces re-
fined polygons that are in turn used for extracting shape signatures for the re-
gions. In the training phase, shape signatures are collected from test data to find 
a mean signature for a particular object. A small database is created for all ob-
jects related to a specific context in which classification is to be performed. In 
classifying phase, signatures obtained from objects found in a given image are 
compared with those present in the database for identification. Nearest signature 
from the database to a given one is taken as identity of the later.  Results have 
proved efficiency and accuracy of this method.  

1   Introduction 

Classification and recognition of objects present in static or dynamic scenes are cen-
tral issues in computer vision. Techniques usually start with a segmentation process 
and then analysis of the obtained regions is performed. Different approaches have 
been applied to deal with shape analysis of regions. These techniques can be divided 
into two major categories. The first one involves all pixels of the region while the 
other processes only the boundary pixels.  The later is computationally efficient as 
less number of pixels is involved.  

The research presented in this paper in one of the milestones towards a broader 
goal of real-time visual attention model for mobile robots. Visual attention aims to 
mimic the ability of natural vision systems to select just the relevant aspects from an 
image [5]. In this context, quick and approximate classification of regions extracted 
from images is required in the early stages of processing. For this purpose, amount of 
data to be processed has to be minimized in order to achieve real-time output. On the 
other hand, involved objects can appear in different orientations and scales during 
movement of camera(s) installed on a robot. Hence the method of classification has 
to be tolerant to scale and orientation of attended objects. 
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2   Problem Definition 

Visual attention starts with computation of saliencies in an image due to different 
features such as eccentricity, color contrast, orientation, and symmetry [16] etc.  An 
array of saliency maps is constructed for these features that are finally combined into 
a master map. Salient regions of the image appear prominently after this process. The 
shape of highlighted regions does not essentially match with that of the actual ones. 
Figure – 1 demonstrates some feature maps and the master map. The said problem 
can be observed in the master map shown in Fig.1 – e.  

 

 

             (a)            (b)           (c)        (d)     (e) 

Fig. 1. Some of the steps in process of visual attention (a) Input Image (b) Eccentricity (c) Col-
our contrast (d) Symmetry (e) Master map. 

In the next step of visual attention process, a mechanism for inhibition of return 
(IOR) explores through the salient portions of image as a biological vision system 
would do. For this purpose an attention window moves inside the image to attend one 
area at a time. It is responsibility of the IOR process to provide equal opportunity to 
all objects and not to keep attending a single object while ignoring others. Hence an 
object once attended has to be identified so that its priority is inhibited in the next 
cycle of attention. As most of the object shape is distorted in master saliency maps of 
currently available attention models hence shape based object identification is diffi-
cult at this stage.  

Our approach of attention is to compute saliency maps and master map according 
to the shape of actual regions and include a shape-based object identification mecha-
nism for implementation of IOR. The set of objects to be classified will be con-
strained to occurrences of objects in a sequence of video frames from camera head of 
a robot. The second aspect of the problem is that the hardware installed on mobile 
robots has limited computational resources and sometimes algorithms need to be 
hardwired. This paper addresses the problem of object identification at IOR stage of 
artificial visual attention. 

We require a shape matching technique that may not necessarily be an accurate 
classifier for a large set of arbitrary objects but should be fast and practically suitable 
to recognize instances of objects in a sequence of frames. Secondly, in order to main-
tain low complexity and cost of hardware, the solution has to be simple and small 
preferably involving straightforward mathematical computations with minimum itera-
tions through the image.  

We choose mechanism of identification using shape signatures from convex hulls 
of regions for solution of the problem in hand. So the following sections will give a 
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brief overview of the literature related to this area and then present a method tailored 
to meet the requirements of above mentioned problem domain. The developed method 
is experimented on software test-bed to find its feasibility for actual hardware  
platform. 

3   Related Work 

The concept of convex hulls has been a problem of computational geometry and many 
methods have been developed for building convex hulls for finite clusters of points. 
There has been significant amount of work to make the algorithms as efficient as pos-
sible. In general the Convex Hull, for a finite set of points P, is defined as the smallest 
convex set that contains P [18]. The resulting subset can be imagined as a group of 
points that would lie on a stretched rubber band around the given set of points. Shape 
of the rubber band will be convex and will enclose all the points.  

Convex hulls have been used in some machine vision based applications such as 
computation of convexity feature [26] in objects or finding concavities in order to 
separate two overlapping regions [22] and pattern recognition in pixelized images 
[2].Its use has been avoided in real time applications due to the requirement of heavy 
computational resources even by the quickest of the available methods.  

Several methods were devised over the period of time to improve the processing 
speed. Graham’s scan [12] tries to eliminate processing of unnecessary points in de-
termining whether the points lie inside some triangle. It finds extreme points in linear 
time by performing a lexicographic sorting step first. The method of Jarvis [17], 
called Jarvis’ march, is based on the objective to identify hull edges instead of isolat-
ing the extreme points. The method declares the lexicographically lowest point p1 as a 
hull vertex. The next vertex p2 of the edge will be the one that has the least polar an-
gle with respect to p1. The algorithm marches around the hull finding extreme points 
on the hull in order, one at a time. The techniques influenced by the basic idea of 
Quick Sort are popular with the group name of Quick Hull techniques. These tech-
niques partition the cluster of points into two subsets. Each of these subsets will con-
tain one of the two polygonal chains that will be concatenated to form the convex hull 
polygon. This idea has been utilized in techniques presented in [8] and [6] etc.  

The group of techniques using the divide and conquer rule divide the computa-
tional problem into sub problems of nearly equal size. The main feature is to apply the 
principle of balancing [1]. If the original set of points is divided into two sets S1 and 
S2, the convex hull (CH) of original set will be given as 

CH(S1 ∪ S2) = CH(CH(S1) ∪ CH(S2)) 

The work on convex hull construction with pixelized images includes solutions such 
as [2]. More work is also available in effort to improve time and memory efficiency for 
example [3] and [19]. Some of the recent works on the convex hull include [14] where 
an algorithm is presented with O(|C°| log δ(C)). Here C is supposed to be a signifi-
cantly round object, |C°| is the number of vertices in discrete hull C°, and δ(C) is di-
ameter of given object. The method proposed by Franck Nielsen et al [21] is based 
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on marriage-before-conquest paradigm. Another method by Helmut Ratschek et al 
[23] is based upon a version of Graham’s scan. An algorithm by Wei Chen et al [7] 
constructs a convex superhull for unsorted points. A more recent algorithm was pre-
sented in [4] where convex hull of polygonal line is computed in linear time of  
O(log n). 

For the purpose of object identification through convex hulls, methods such as 
those given in [11] and [25] use affine invariants of convex hulls for shape matching. 
Feature extraction from convex shapes for similarity measure have been proposed in 
[15] using Minkowski addition. The features mentioned in it are useful in our work 
but their method goes through heavy mathematical procedures hence we will derive 
some of these features algorithmatically to reduce requirements of computational re-
sources.  

It is difficult to select a single algorithm of convex hull construction from above 
mentioned methods, which is appropriate for the constrained situation described in 
section – 2. Classical solutions are obviously far too heavy for the limited hardware 
resources of a mobile robot. The faster algorithms also have drawbacks accompanied 
with their advantages. Some require input of polygonal line, already convex region, or 
online feeding of points. Others involve heavy mathematical calculations before they 
decide that a point is part of convex hull or not. Similarly recursive procedure calls 
can easily overflow system stack for a reasonably sized input image. Involvement of 
heavy mathematical operations and/or recursive calls can increase cost and complex-
ity of hardware. Hence we propose a simplified approach towards the problem that 
can be implemented practically on the prescribed resources. 

4   Proposed Method 

The proposed method begins with segmentation of the given image using a con-
strained region growing algorithm. The constraints that control the production of re-
gions are threshold of color range (to accept a pixel as part of a region), minimum 
acceptable size of region, and maximum size of region. Convex hulls are constructed 
for the obtained regions and then a cleaning step is performed. A transformation tol-
erant shape signature is extracted from cleaned convex hulls for identification of ob-
jects. Figure 2 shows this architecture diagrammatically. 

4.1   Convex Hull Construction 

The central concept in convex hull construction is to scan the region externally by 
scan lines emitting from hull points and wrapping around the region circularly. A 
bounding rectangle will be considered around the region that will provide the other 
ends for the scan lines. A scan line will emit from a hull point and stop at a point on 
the bounding rectangle. If no region pixel is found on its way, then the next consecu-
tive point from the rectangle will be selected and scan will start from the same hull 
point to the new target on the rectangle edge. Any pixel, belonging to the region, in-
tercepting the scan line could be a candidate for being a convex hull vertex. The pixel 
 



 Classification Using Scale and Rotation Tolerant Shape Signatures 667 

 

nearest to the rectangle will be kept as the hull-point while others on the same line 
will be rejected. On finding the successive hull point, the scan lines will be originated 
from the newly found hull point towards the un-used points of the rectangle. 

The initial step includes finding the minimum and maximum extents of the region 
in horizontal and vertical directions, locating the first (topmost) hull point, and find-
ing dimensions of the bounding rectangle. This process starts with scanning through 
points of the region and finding the topmost point (xt, yt), rightmost point (xr, yr), bot-
tommost point (xb, yb), and leftmost point (xl, yl) where  

yt = Min(yi),  xl = Min(xi), yb = Max(yi), xr = Max(xi) ∀ (xi, yi) ∈ Region 

Minimum and maximum values for y-coordinates are according to the default top 
to bottom growth of Y-coordinates in computer display systems. The topmost point 
(xt, yt) of the region is obviously also the topmost point of the convex hull. Hence the 
first hull point (xh

i, y
h
i) is (xt, yt) where i is set to 1 in this initialization step. 

The left, right, top and bottom extents of the bounding rectangle Xl, Xr, Yt, and Yb 
respectively are calculated as 

Xl = xl – k, Xr = xr + k, Yt =  yt – k, Yb = yb + k 

The constant increment k is made at each side of the rectangle in order to provide 
necessary room for the scan lines to wrap around, especially at the extreme points of 
the region. Figure 3 shows the extents of a region and the extended bounding  
rectangle. 

The algorithm generates scan-lines in four parts. In the first part, scan lines emit 
from the first point (xh

1, yh
1) towards left side of the bounding rectangle. A simple 

method that produces discrete coordinates of points on a scan line is the parametric 
equation of line 

P = (B – A) t + A 

In this form of line equation, a point P on the line between two given points A and 
B is a t times displacement from the point A along the vector B – A. An interval of 0 to 
1 for t produces points on the segment from A to B.  

Process of scan line generation is done in four parts. The first scan lines emit from 
(xh

1, y
h
1) and their other ends are taken as (Xl, y) where y iterates from Yt to Yb. Each 

point on the scan line is examined whether it is part of the given region or not. When 
a region point intercepts a scan line then it is saved as hull point (xh

i, y
h
i) and after 

incrementing the value of i. If more region points occur on the same scan line then 
only the last one towards the side of rectangle is kept. As soon as a hull point is 
found, it is set as origin for further scan lines. Figure 4 shows this process for detec-
tion of two hull points. 

In the second part, scan lines will emit from (xh
i, y

h
i) with current value of i towards 

points (x, Yb) where x iterates from Xl to Xr. In the third part, same process will be 
repeated with scan lines emitting towards (Xr, y) where y iterates from Yb to Yt. Fi-
nally, similar scanning is done from latest hull point to (x, Yt) where x iterates from Xr 
to Xl. 
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      (a) Region extents    (b) Bounding rectangle 

Fig. 3.  

 

 

Fig. 2. Architecture of proposed method 

 

Fig. 4. Scan lines detecting hull points 

4.2   Convex Hull Cleaning 

The regions extracted from real-life images have lots of distortions. When convex hull 
is constructed for such regions, many unwanted hull vertices can emerge. Similarly 
stair-case effect in digital images causes production of some erroneous hull points, 
especially in case of zoomed images. These vertices do not contribute much in the 
shape of the hull but can cause significant disruptions in quantities of feature vectors 
that are computed using them.  Hence a cleaning algorithm is necessary to remove 
such vertices with the objective to obtain similar hulls for different occurrences of the 
same region. 

The cleaning algorithm performs two types of cleaning. Firstly it deletes vertices 
that are intersection of such edges that are incident on each other with an angle close 
to 180°. Hence for hull points (xh

i, y
h

i), i iterates from 2 to n where n is the number of 
hull vertices. Let φ be the angle between the line joining (xh

i-1, y
h
i-1) and (xh

i, y
h

i) and 
the line joining (xh

i, y
h

i) and (xh
i+1, y

h
i+1). If   φ – 180  is less than a threshold then 

delete (xh
i, y

h
i). For i = n, the first hull point (xh

1, y
h

1) is used in place of (xh
i+1, y

h
i+1). 

In second phase of cleaning, those vertices are deleted that have very small dis-
tance from the line joining the vertices before and after it. Let D be the distance be-
tween the hull vertex (xh

i, y
h

i) and the line joining the neighboring vertices (xh
i-1, y

h
i-1) 

and (xh
i+1, y

h
i+1) then the vertex (xh

i, y
h

i) will be deleted if D is less than a threshold. 
Figure 4 shows some input segments to the algorithm and the resultant convex hulls 
along with cleaned convex hulls.  
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4.3   Computation of Shape Signature 

Before we describe the shape signature, we define the features that formulate it. Let 
Dmaj denote the length of major axis of convex hull and Dmin be the length of minor 
axis. Let n is the number of vertices in the convex polygon. If we divide the vertices 
of convex hull using its minor axis then some of the vertices will be at one side of the 
line and the rest at the other side. We find distance of each vertex at one side of minor 
axis to the line of minor axis and then take maximum of these distances as d1. Simi-
larly the maximum of distances for vertices lying on the other side of minor axis will 
be d2. Likewise, d3 and d4 are the two maximum distances from the major axis. Now 
the proposed shape signature can be defined as follows: 

Vf = [η, ρ , rd , Rd ] 
where η = 1 / n, ρ = Dmaj / Dmin, rd = d1 / d2, and Rd = d3 / d4 

This vector is composed of ratios that are independent of locations of polygon ver-
tices hence it remains tolerant to orientation and scale of input regions. 

4.4   Object Classification 

Shape signatures are extracted for a number of samples of a particular object. Mean 
of these signatures are stored as object identity in a small context related database. 
For classification of a given object, distance between its signature and those in the 
database is computed. Minimum of these distances decides the class / identity of the 
given object.  

5   Experiments 

The proposed method was implemented in a C++ program on Linux platform running 
on a Pentium-IV machine. Images having different objects, belonging to two different 
contexts, in different sizes and orientations were used as input for the program. In 
order to evaluate effectiveness of the method, artificial images were used so that 
shades and shadows may not create unwanted regions to degrade the testing. Shape 
signatures for these objects were collected and mean signature was obtained for each. 
Figure – 5 shows the steps performed for one sample for each context. The left col-
umn shows the input and the second one shows the produced convex hulls. Cleaned 
convex hulls can be seen in the third column, and the last column displays shape sig-
natures for each object.  

In the second part of experimentation, a different set of images was presented to 
the system in order to classify the objects in them. Each image contained occurrences 
of these objects in varying orientations and sizes. Figure – 6 show results of this clas-
sification for two sets of images belonging to above mentioned contexts. For the sake 
of summarization, classification of two objects per context is shown. The system 
picked the identified objects from the given images and marked them by circles. Each 
column of figure – 6 demonstrates selection (identification) of a specific object from  
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various images. Computation time for processing of these images was also recorded. 
Figure 7 shows the average time consumed against number of objects present in a 
given image.  

 

    

   

Fig. 5. (Left to Right) Input Images, Normal Convex Hulls, Cleaned Convex Hulls, and Shape 
Signatures of objects 

 

   

   

   

   
(a) Input (b) Kettle      (c) Bottle (c) Input          (d) Spanner     (e) Hammer 

Fig. 6. Classification in two different contexts of objects 

6   Discussion 

One of the exceptions that may arise for this algorithm is the input of objects with 
convex curved boundaries. The resulting convex hull for such objects will have many 
vertices but, from those, non-useful ones will be automatically removed in the clean-
ing step described in section 4.2. Hence the final product will be reasonable for fur-
ther processing. This effect can be observed on convex hull of ball in figure – 5. This 
cleaning step is also useful in creating similar polygons from different variants of the 
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same shape as minor deviances in shape are removed before proceeding further. An-
other advantage that supports success of the proposed method in this problem is the 
theme in which it is applied (see section – 2). Occurrences of the same set of objects 
in different frames of a video sequence do not have much fluctuations of shape. Due 
to this restriction on input data, this method remains suitable for the problem in hand 
even when it does not guarantee a high discrimination power.  

7   Conclusion 

It has been successfully shown that convex hulls can lead to useful feature vectors 
that are able to classify objects on basis of shape. An innovative convex hull construc-
tion method was introduced that can process a complete image in real-time. Figure – 7 
shows that an image, containing a moderate number of objects, can be processed (in-
cluding the segmentation step) in 9 to 16 milliseconds. The proposed shape signatures 
from cleaned convex hulls have shown accuracy of classification in the given context. 
Figure – 8 shows the average deviation of different occurrences of objects from the 
mean vector. It is obvious that this deviation is higher when objects are greatly trans-
formed, but it still stays under a certain level so that objects remain distinguishable, 
using a threshold on vector distance, as demonstrated in figure – 6. The approach has 
been experimented successfully on the software test-bed and now it can be utilized as 
a building block for object identification in inhibition of return stage of artificial  
visual attention.  
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Abstract. In this paper, we investigate how to preprocess bad input face images 
for robust face recognition, under uneven illumination environments. Proposed 
filter combination shows nice performance under varying illumination, 
however, it can not provide the highest performance under normal illumination. 
We found that the performance of each preprocessing method for compensating 
illumination is highly affected by working illumination environment. Changing 
illumination poses a most challenging problem in face recognition. A previous 
research for illumination compensation has been investigated. This paper 
proposes a filter block for efficient face recognition. Since no priori knowledge 
of system working environment can be assumed. The proposed method can 
decide an optimal configuration of filter block by exploring the filter 
combination and the associated parameters to unknown illumination conditions. 
The illumination filter includes Retinex filter, end-in contrast stretching and 
histogram equalization filter. The proposed method has been tested to robust 
face recognition in varying illumination conditions (Inha DB, FERET DB). We 
made in illumination cluster using combined FART. Extensive experiment 
shows that the proposed system can achieve very encouraging performance in 
varying illumination environments. We furthermore show how this algorithm 
can be extended towards face recognition across illumination.  

1   Introduction  

Face recognition becomes an important task in computer vision and one of the most 
successful application areas recently. Face recognition technologies have been 
motivated from the application area of physical access, face image surveillance, 
people activity awareness, visual interaction for human computer interaction, and 
humanized vision. Even though many algorithms and techniques are invented, the 
task of face recognition still remains a difficult problem yet, and existing technologies 
are not sufficiently reliable. Dynamically changing illumination in a real world 
application poses one of the most challenging problem in face recognition systems. 

The most crucial problem in a face recognition is to eliminate or bypass the effect 
of changing illumination [1]. As shown in Fig.1, the same person looks very much 
different with varying illumination environments. Recently, several researchers have 
tried to attack this problem. Liu and Wechsler have introduced EP (Evolutionary 
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Persuit) for face image encoding, and have shown its successful application. 
However, EP needs too large search space to be employed in real world applications.     

The illumination cone approach has proposed a generative model that can be used 
to render face images under novel illumination conditions. The illumination cone for 
sample pose space is approximated by a linear subspace. The illumination cone 
approach, however, assumes the pose of face images is fixed. In practical situation, 
face location may not be accurate enough, and the illumination cone approach leads to 
dramatic corruption of its performance due to the landmark mismatches. 

 

     

Fig. 1. The face images which shows the variances in varying illumination(FERET DB) 

In this paper, the filter fusion guided by an evolutionary approach has been 
employed to adapt the system for variations in illumination. The proposed approach 
employs filter fusion, which is generated from the retinex algorithm. Even though the 
Gabor wavelet provides the nice properties for face recognition as discussed above, 
they cannot provide sufficiently reliable solution in changing environments such as 
variations in illumination. The proposed recognition system adopts the adaptive 
strategy. The illumination filter fusion adapts itself by reorganizing its structure and 
parameters. The proposed system has been tested using face images which exposed to 
different illumination environments. The feasibility and effectiveness of the proposed 
face recognition system are investigated. We achieved very encouraging experimental 
results. The outline of this paper is as follows. In section 2, we present the previous 
problems of preprocessing under uneven illumination environment. In section 3, we 
present the proposed Face Recognition using Selective Preprocessing and Adaptive 
Gabor Feature Space. We give experimental results in section 4. Finally, we give 
concluding remarks.  

2   Problems of Preprocessing Under Uneven Illumination  
     Environment 

Recently, Retnix filtering method shows high performance in handling bad illuminant 
images. However, it cannot provide an optimal image preprocessing normal 
illuminant images. We will examine the above dilemma in solving. 

2.1   Histogram Equalization Filter 

To improve contrast of image, histogram equalization is used. If the distribution of 
gray level was biased to one direction or scaled value was not uniformly distributed, 
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histogram equalization is a good solution for image enhancement. The result of 
histogram equalization is achieved by following three steps [5]. 

1) Count the number of occurrence for each gray scale levels and draw histogram.  
2) Find the normalized cumulative histogram. 
3) Find the new contrast value by mapping normalized cumulative histogram to 

gray scale. 

2.2   Ends-in Contrast Stretching  

The contrast stretching of the image is distribution of light and dark pixels and 
applied to an image to stretch a histogram to fill the full dynamic range of the  
image [5].  
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for 255
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2.3   Retinex   

Color constancy is excellent for all forms of the retinex but color rendition was 
elusive as a result of the gray world assumption implicit to the retinex computation. A 
color restoration was developed and applied after the multi scale retinex in order to 
overcome this color loss but with a modest dilution in color constancy. 

The single-scale retinex is given by [4,5,6,7]. 
 

)],(),(log[),(log),( yxIyxFyxIyxR ii ×−=  (2) 

 
Where, 

),( yxI i  : Image distribution, 

thi  : Color band, 

),( yxF  : The normalized surround function. 

2.4   The Recognition Results by Preprocessing 

Facial landmarks are encoded with sets of complex Gabor wavelet coefficients  
called jets. 

Table 1 and 2 show examples from the database before and after processing with 
our proposed method. We find that normal images show a best performance Retinex 
algorithm and histogram equalization. A bad illuminant images (fafc dataset) show 
best performance in Retinex preprocessing system. 
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Fig. 2. The nine features selection for face recognition 

Table 1. Face recognition for 9 feature points each person  

Database No filter H.E. Retinex 

Inha Database 
1200 / 1259 

(95.31%) 
1220 / 1259 

(96.9%) 
1142/ 1259 
(90.07%) 

FERET fafb 
876 / 1195 

(73.3%) 
900 / 1195 
(75.31%) 

231 / 1195 
(19.33%) 

FERET fafc 
5 / 194 
(2.5%) 

27 / 194 
(13.91%) 

162 /194 
(83.50%) 

Table 2. Face recognition ratio using multiple preprocessing methods 

Dataset\Methods Retinex + H.E H.E + Retinex Contrast stretching 

FERET fafc dataset 
(bad illumination) 

20.00% 72.68% 28.35% 

Our lab dataset 97.30% 92% 97.06% 

FERET fafb 
(normal illumination) 

80% 78.03% 78% 

 

3   Face Recognition Using Selective Preprocessing and Adaptive  
     Gabor Feature Space 

3.1   Proposed Method for Face Image Preprocessing 

The proposed method has been tested to adapt the system for image processing in 
varying illumination condition. The system learns the changing environment, and 
adapts by restructuring its structure and parameters. Illumination condition is 
generated using genetic algorithm. Filter fusion is gain enhanced face recognition 
ratio. 

FuzzyART is a variant of ART system derived from the first generation of ART, 
namely ART1 [14]. The feature space of object instance with multiple viewing angles 
must be clustered properly so that the location error can be minimized. In this paper, 
clustering's performance improves by studying repeatedly about done data. Fig. 4 
shows the clustering result by FART. 
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Fig. 3. Filter fusion based face recognition architecture 

Cluster Image number Examples 

Region 0 228 
 

Region 1 157 
 

Region 2 131 
 

Region 3 148 
 

Region 4 157 
 

Region 5 217 
 

 
Fig. 4. Face illumination clustering by proposed method 

 
As shown Fig.4, the details of face recognition process using the proposed adaptive 

filter fusion is given in the following:  

1. Perform filtering, and derives Gabor representation  for each fiducial point, 
and normalized it.  

2. Concatenate the Gabor representations for fiducial points to generate total Gabor 
vector. 
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 (3) 

3. Begin the classifier architecture optimization until a criterion is met, where the 
criterion is the performance does not improve anymore or the predefined 
maximum trial limitation is encountered.  

 
1) Generate an initial filter block configuration and parameters.  
2) Evaluate the performance evaluation function,  for the 

newly adapted filter block.  
3) Search for the new filter block configuration and parameters that maximize 

the evaluation function.  
4) Applying GA's genetic operators to generate new population of Gabor 

feature space. Go to Step 3.  
4. Perform recognition using the constructed new filter block from Step 3.  

 
Preprocessing is performed for providing nice quality images as much as possible 

using image filtering techniques discussed in the previous session [11]. 

3.2   Feature Description Using Gabor Wavelet  

Feature space is represented by Gabor wavelet. Gabor wavelet efficiently extracts 
orientation selectivity, spatial frequency, and spatial localization. It is a simulation or 
approximation to the experimental filter response profiles in visual neurons [8]. Gabor 
wavelet is used for image recognition due to its biological relevance and 
computational properties. Gabor wavelet is one of the successful models that simulate 
biologically motivated receptive fields. A receptive function can be defined for 
different classes of visual neurons. The receptive fields of the neurons in the primary 
visual cortex of mammals are oriented and have characteristic frequencies. These 
could be modeled 2-D Gabor filter. The Gabor filter is known to be efficient in 
reducing redundancy and noise in images [9]. Gabor wavelet is biologically motivated 
convolution kernels in the shape of plane waves restricted by Gabor kernel. The 
Gabor wavelet has shown to be particularly fit to image decomposition and 
representation. The convolution coefficients for kernels of different frequencies and 
orientations starting at a particular fiducial point are calculated. The Gabor kernels for 
a fiducial point are defined as follows:  

 
(4) 

where  μ and  ν denote the orientation and dilation of the gabor kernels, ,  
denotes the norm operator, and the wave vector   is defined as follows:  

 

 
(5) 

 
where  and . 
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The family of Gabor kernels is similar each other since they are generated from one 
mother wavelet by dilation and rotation using the wave vector . Each kernel is a 
product of a Gaussian envelope and a plane wave. The first term in the brackets in Eq. 
(5) determines frequency part of the kernel and the second term compensates for the 
DC value, which makes the kernels DC-free. The effect of the DC term vanishes 
when the parameter σ has sufficiently high values, where σ determines the ratio of the 
Gaussian window width to wavelength. 

Gabor wavelet is usually used at five different frequencies, ν = 0, . . . , 4, and eight 
orientations, μ = 0, . . . , 7 [10]. The kernels show desirable characteristics of spatial 
locality and orientation selectivity, a suitable choice for face image feature extraction 
for classification.  

4   Experimental Results 

In this paper, image which we use where face images are exposed to lighting variant 
fafc dataset of FERET DB [12] as show to Fig.10.  Fig.10 gives an example of images 
under varying illuminant. 

 

 

Fig. 5. Experimental dataset 

The dataset1 is the fafc dataset of FERET database is gray scale facial image and 
dataset2 is our lab dataset where face images are exposed to illumination variation 
and noise. As shown in Fig.7, we extracted 9 feature points. Therefore, size of the 
feature vector is 9× 40. We change two dimensions to one dimension of 1×360 size. 
Table 3 shows face recognition using filter fusion each cluster by discrimination 
FART. 

As shown Table 3 and 4, proposed method shows good performance in bad 
illumination and filter fusion is good performance other illumination. This paper 
could correct recognition rate of occasion that handle Retinex and histogram 
equalization paratactically was high each different dataset under varying illumination, 
that Retinex algorithm is effective in performance in image for illumination. The 
experimental result of proposed method shows the recognition rate of 83% in fafc 
dataset and 97.3% in Inha database.  
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Table 3. Face recognition ratio for each 5 cluster (as shown Fig.4) 

Cluster Filter fusion Voting Performance 

Region 0 95.2 93.5% 

Region 1 93 93.5% 

Region 2 97.3 93.5% 

Region 3 95.6 94% 

Region 4 98.2 94% 

Region 5 97 90% 

Table 4. Face recognition ratio using proposed method 

Dataset\Methods Propose preprocessing method 

FERET fafc dataset 
(bad illumination) 

83.5% 

Inha dataset 97.3% 

FERET fafb 
(normal illumination) 

80.48% 

 
 

 

Fig. 6. Bad illumination FERET fafc database CMC curve 

Different algorithm or sequence that compare with experiment result in system is as 
following [15]. From Tables, it becomes apparent that selected image filter method 
shows good recognition performance while general illuminant filter single filter do. 
This can interpret use existence and nonexistence and parameter of each image filter 
using genetic algorithm, because general filtering may appear result that flow image 
filter unconditionally, and drops preferably quality of original above zero because 
suitable parameter control is impossible. 
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Table 5. Performance of the proposed system comparing with other approaches 

Algorithm FERET fafc

arl_cor 0.052 
arl_ef 0.186 
ef_hist_dev_ang 0.072 
ef_hist_dev_anm 0.237 
ef_hist_dev_l1 0.258 
ef_hist_dev_l2 0.041 
ef_hist_dev_md 0.232 
ef_hist_dev_ml1 0.392 
ef_hist_dev_ml2 0.309 
Excalibur 0.216 
mit_mar_95 0.155 
mit_sep_96 0.32 
umd_mar_97 0.588 
usc_mar_97 0.82 
Proposed method 0.835 

5   Concluding Remarks 

In this paper, we address an efficient processing filter for efficient face recognition 
under varying illumination. Changing illumination poses a most challenging problem 
in face recognition. Most existing image processing technologies for robust face 
recognition are not sufficiently reliable under changing illumination. The proposed 
method image preprocessing performs well especially in changing illumination 
environments since it can adapt itself to external environment. The proposed method 
can decide an optimal configuration of filter fusion by exploring the filter 
combination and the associated parameters to unknown illumination conditions. 
Extensive experiment shows that the proposed system can achieve very encouraging 
performance in varying illumination environments. 
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Abstract. Fusion is basically extraction of best of inputs and convey-
ing it to the output. In this paper, we present an image fusion technique
using the concept of perceptual information across the bands. This algo-
rithm is relevant to visual sensitivity and tested by merging multisensor,
multispectral and defoucused images. Fusion is achieved through the
formation of one fused pyramid using the DWT coefficients from the de-
composed pyramids of the source images. The fused image is obtained
through conventional discrete wavelet transform (DWT) reconstruction
process. Results obtained using the proposed method show a significant
reduction of distortion artifacts and a large preservation of spectral in-
formation.

1 Introduction

Image fusion has become important due to increasing number of sensors in re-
mote sensing, photogrammetry and computer vision with complementary infor-
mation. Images with high spatial information (Panchromatic) are required to be
merged with high spectral information (Landsat) images. Fused image contains
spatial and spectral information optimally. The goal of image fusion is to inte-
grate complementary information from multisensor data such that the new image
is more suitable for the purpose of human perception and computer processing
tasks such as segmentation, feature extraction and object recognition. An obvi-
ous application of multisensor data fusion is to provide better target detection
and identification than a single wide band sensor. An important step in image
fusion is image registration. Image registration ensures that the information from
each sensor is referring to the same physical structures in the environment[16].
Comprehensive research of the image registration problem can be found in [2,7]
and some work on feature based image registration schemes have been presented
[11,12,13]. In this paper, we assume that the images to be combined are already
perfectly registered. Multisensor data often represents, complementary informa-
tion about the region surveyed; thus image fusion provides an effective method
to enable comparison and analysis of such data. One disadvantage with multisen-
sors is the difficulty faced in registering the. Various methodologies adapted for
fusion are Averaging, Multiresolution, Kalman Filtering[8], Fuzzy Logic[18] and
Kalman-Fuzzy[9] based. Multiresolution based approach is widely used in liter-
ature. It has an advantage that edges which are hard to be seen at one level are
easy to be seen at other level. In defense applications, sometimes images which
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are hard to be seen in visual (due to low contrast) are well seen in IR and vice
versa. In concealed weapon detection (CWD) arms are easy to be seen in mil-
limeter wave image than in CCD image [6]. In certain critical applications, where
signals are required to be analyzed in real time, fusion plays an important role.
Current definition of sensor fusion is very broad and the fusion can take place in
at the signal, pixel, feature and symbol level[14,5,24]. Signal level fusion basically
refers to a signal with more reliability. Pixel level requires that the fusion has to
be done without extracting any information about the objects . Feature levels
requires that features have to be extracted from the input images and then fused.
Area based approaches are also adapted. Essential problem in fusion is to find the
important information from the input images without discarding any of them.
This information has to be transferred to the output image. Simple methods
(e.g., cutting and pasting) cause edge artifacts. Zhang and Blum [25] presented
a thorough investigation into several multiresolution fusion methodologies for a
digital camera application. Simple image fusion requires averaging of information
from inputs but generally it leaves us with loss of contrast. Multisensor image fu-
sion using the wavelet transform [14] as introduced by Mitra has provided great
utility. Mitra has adapted select max approach for coefficient selection. Petrovic
[19] has provided gradient based image fusion. In this information is fused at the
gradient domain itself before decomposition. Burt [3] has provided image fusion
based on similarity measure.Fusion schemes are categorized according to their
basic multiresolution/pyramid image representation approach and mechanisms
for pyramid coefficient fusion. Multiresolution signal level image fusion, initially
proposed by Toet[22,23] is based on the Ratio of Low Pass (RoLP), or contrast
pyramid representation. A contrast pyramid is formed by dividing each level of
the Gaussian low-pass pyramid[4] with the expanded version of the next coarser
level. The Laplacian pyramid representation has been used by Akerman[1] and
Liu and Yang[15]. This pyramid is formed by the difference between correspond-
ing pyramid with their expanded low pass approximations.

This paper presents an image fusion technique based on perceptual informa-
tion across the bands using the wavelet transform domain. Coefficients are appro-
priately combined, as explained later. In this paper different scenarios of images
are considered like multisensor, multispectral and defocused images. Performance
is quantitatively evaluated using objective measures proposed by Petrovic[20],
universal quality measure proposed by Bovic[26], alongwith Root mean square
(RMS) error of the fused image with respect to original spectral image.

2 Fusion Schemes

Multiresolution structure as used in conventional DWT based on Quadrature
mirror filter (QMF) decomposition bank has been successfully employed in signal
level image fusion[17]. Image is decomposed in four bands at each level. Lower
band contains approximation (LL band) while the other bands contain detail
information (LH , HL and HH bands). LL band is constructed by Low pass
filtering row wise followed by low pass filtering column wise on original images.
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Fig. 1. Schematic diagram for wavelet based basic image fusion

Similarly, LH (Vertical band) band is constructed by High pass filtering row
wise followed by Low pass filtering column wise. HL (Horizontal band) band
consists of Low pass filtering row wise followed by High pass filtering column
wise. HH (Diagonal band) band consists of High pass filtering row wise followed
by high pass filtering column wise. Schematic diagram of wavelet based basic
image fusion is shown in Fig. 1.

Fusion of information is preferred in high frequency domain. This is based upon
the perception that human visual system is more sensitive to local luminance con-
trast. Number of decomposition level depends upon the resolution demanded.

The Fusion Procedure Contains the Following Steps:

1. Decomposition: Decompose the multisensor/multispectral input images us-
ing Mallat decomposition [17] and find approximation (LL) and detail (LH , HL
and HH) bands. Repeat the same process for other input image.
2. Pyramid formation: Decomposition is further applied over the approxima-
tion. This creates sequence of different resolution pyramids.
3. Baseband Fusion: Baseband consists of low frequency information. Most of
the energy in an image is concentrated in the low frequency region. Typically, an
image is supposed to have an spectrum that decays with increasing frequency.
Various base band fusion techniques are as follows.

I. Simple Approach: In this approach pyramids are averaged. Consider A
and B as the input images and F the fused image. F k

LL represents low level
information of kth decomposition of fused image.

F k
LL =

Ak
LL +Bk

LL

2
It gives poor results for multisensor images but reasonably good results for mul-
tispectral and defocused images.
II. Spectral Replacement: This is based on the theory that IR camera pre-
serves more low pass information as compared to visual (CCD) camera. Assume
A is the IR image.

F k
LL = Ak

LL

This method gives better results for multisensor images.
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III. Offset Zero Mean Adding: This method is proposed by Petrovic [19], it
provides optimal results for both multisensor as well as defocused images.

F k
LL(i, j) = Ak

LL(i, j) +Bk
LL(i, j) − μA(i, j) + μA(i, j)

2

μA and μB are the mean values of the two input base band images. (i, j) rep-
resents a spatial location in the image. Like other arithmetic fusion, the fusion
defined above is susceptible to destructive superposition, especially when base
bands have opposing illumination levels. If the amount of zero mean information
is low this causes only limited degradation in the fused image.
IV. Correlation Based: This approach is proposed by Burt [3]. Here, corre-
lation among image pyramids is used as selection criteria. If correlation among
image pyramids is more than certain threshold, they are averaged out. Otherwise
based on energy proportion a weighted combination is used. This technique is
more effective for defocused images.

4. Detail Band Fusion
It consists of High pass information of the image. Performance of fusion methods
mainly depends on how well the high pass information is transferred to the fused
image. This is because the human visual system is more sensitive to edge infor-
mation. Various approaches for detail band fusion are described below:

I. Simple Approach: In this apporach detail pyramids are averaged as follows

FLH =
(ALH +BLH)

2

FHL =
(AHL +BHL)

2

FHH =
(AHH +BHH)

2
It gives poor visual quality of fused image, because edges get blurred.
II. Select Max Approach: This method is proposed by Mitra [14]. In this
method the coefficient absolute value is considered as an indication of saliency.
Preference is given to a pixel with more saliency.

F k
LH(i, j) =

{
Ak

LH(i, j), If |ALH(i, j)| > |BLH(i, j)|
Bk

LH(i, j), otherwise

F k
HL(i, j) =

{
Ak

HL(i, j), If |AHL(i, j)| > |BHL(i, j)|
Bk

HL(i, j), otherwise

F k
HH(i, j) =

{
Ak

HH(i, j), If |AHH(i, j)| > |BHH(i, j)|
Bk

HH(i, j), otherwise

The coefficients having maximum absolute value is transferred to the fused im-
age. Mitra[14] has also proposed an area based saliency measure followed by
Consistency verification.
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III. Cross Band Fusion: This method is proposed by Petrovic [21]. Sum of
absolute value across the bands is considered as a selection criteria.

F k
LH(i, j) =

⎧⎨
⎩
Ak

LH(i, j), If |ALH(i, j)| + |AHL(i, j)| + |AHH (i, j)|
> |BLH(i, j)| + |BHL(I, j)| + |BHH(I, j)|

Bk
LH(i, j), otherwise

He has proposed horizontal and vertical direction band fusion.
IV. Proposed Method: We have exploited the fact that image has a spectrum
which decays with increasing the frequency.

Suppose that we have n level of decomposition. Then level one would repre-
sent the highest frequency sub band and would be finest level of resolution. The
nth level would correspond to the lowest frequency sub band and would be at
coarsest resolution. So, as we move from highest to lowest resolution level there is
a decrease in energy content. These levels are related by father child relationship.
As we move to higher decomposition levels, the magnitude of DWT coefficient at
the same spatial position reduces. This rate of reduction in magnitude of coeffi-
cient with respect to the child is the basis of our selection criteria. Absolute value
of coefficient is considered as the importance associated with that coefficient. A
child becomes significant, if it’s father is also significant. So, actual significance
depends upon child’s importance with respect to father’s importance.

Consider two sets of images. For a particular band the coefficient chosen from
the pyramids of both input images is the one, which shows higher rate of change
of coefficient ratio with respect to it’s father. Following steps are involved for
the formation of fused image pyramid at kth level. Suppose F k

HL(i, j) coefficient
has to be selected among Ak

HL(i, j) and Bk
HL(i, j) coefficients.

1. Determine the (k + 1)th level pyramid, and find the suitable parent for coef-
ficients Ak

HL(i, j) and Bk
HL(i, j).

2. Take the ratio of the difference between absolute values of (k)th level and
(k + 1)th level to the (k)th level coefficient for both images.
3. Choose coefficient for which this ratio is more.

Repeat the same process for other bands.

F k
HL(i, j) =

⎧⎪⎪⎨
⎪⎪⎩
Ak

HL(i, j), If |Ak
HL(i,j)|−|Ak+1

HL (i,j)|
|Ak

HL(i,j)|
>

|Bk
HL(i,j)|−|Bk+1

HL (i,j)|
|Bk

HL(i,j)|
Bk

HL(i, j), otherwise

F k
LH(i, j) =

⎧⎪⎪⎨
⎪⎪⎩
Ak

LH(i, j), If |Ak
LH(i,j)|−|Ak+1

LH (i,j)|
|Ak

LH(i,j)|
>

|Bk
LH(i,j)|−|Bk+1

LH (i,j)|
|Bk

LH(i,j)|
Bk

LH(i, j), otherwise

F k
HH(i, j) =

⎧⎪⎪⎨
⎪⎪⎩
Ak

HH(i, j), If |Ak
HH (i,j)|−|Ak+1

HH (i,j)|
|Ak

HH(i,j)|
>

|Bk
HH(i,j)|−|Bk+1

HH (i,j)|
|Bk

HH (i,j)|
Bk

HH(i, j), otherwise
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This method basically emphasizes importance of particular coefficient across the
bands in vertical direction. The level of decomposition is decided by the desired
resolution. Fused image is reconstructed using standard DWT pyramid method.

3 Performance Measure

Measuring the quality of fused image is a very difficult task. It can be termed as
application dependent. In literature, a few quantitative and qualitative measures
are available. Petrovic [20] has suggested a quality measure based on emphasis
to high frequency information in the image. Bovic [26] has provided an Universal
approach to image quality measure. Petrovic quality measure is based upon edge
preservation property. Universal quality measure works upon first and second or-
der statistic of input and fused image. Both of the methods measure amount of
information transferred from input images to the fused image. Quality measure
close to 1 indicate ideally fused image whereas close to 0 indicate poor fused
image. Spatial relation between input image with fused image is another mea-
sure. RMS error is used as a measure of spatial relation between fused image
and spectral image. RMS error close to zero indicate best preservation of spec-
tral information in fused image. Fused image obtained using Proposed method
is compared with the fused image obtained using Select max approach. The per-
formance of proposed technique is further tested and compared with respect to
Mitra[14] select max with consistency verification technique using wavelet de-
composition.

Additional quantitative measures are Mutual information based objective
measure[10] and spatial or spectral correlation. MI measure exploits Kull-back
criteria. Spatial correlation indicate how well CCD image is transferred to fused
image whereas spectral correlation says how well spectral image is transferred
to output fused image. Bar chart in Figure 4 shows Fusion quality improvement
using proposed method compared to select max method[14]. Visual representa-
tion of input images(CCD and IR) with fused image using proposed across band
and select max method[14] are given in figure 5.

4 Results and Discussion

The performance of proposed technique is tested and compared with respect to
more conventional select max approach using wavelet decomposition [14]. Table
I shows the results. The input image pairs are chosen from widest possible range
of fusion applications like multisensor, multispectral and defocused images. Root
mean square (RMS) error is taken as a criteria to measure how well input spec-
tral information is transferred to the fused image. RMS error of select max is
taken as a reference and set to unity. Reduction in RMS error using proposed
method clearly indicates improved performance over select max approach. In
table I, Set 1 consists of Multisensor images of AMB (CCD and IR). Fused
image is shown in Figure 2. Set 2 consists Multisensor images of AMB (CCD
and MMW). Set 3 consists of Multi Spectral Satellite image fusion performance.
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Fig. 2. Multisensor CCD (Left top) and IR (Right top) Image, Fused image using
Selectmax(Left bottom) and fused image using Proposed Across band(Right bottom)

Fig. 3. Multispectral Band 1 (Left top) and Band 2 (Right top) Image, Fused image
using Select max(Left bottom) and fused image using Proposed Across band(Right
bottom)
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Fig. 4. Multisensor Runway image fusion Performance evaluation using Petrovic,
Bovic, Mutual information and Spatial/spectral correlation measures

Fig. 5. Multisensor Runway CCD (Left top) and MW (Right top) Image, Fused image
using Selectmax(Left bottom) and fused image using Proposed Across band(Right
bottom)
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Fused image is shown in Figure 3. Set 4 consists of defocused images of same
sensor. RMS error has significantly reduced for this set.

Proposed method is compuationally more efficient compared to select max
approach introduced by Mitra[14]. Select max method[14], requires consistency
verification on decision map, which implies filtering with a majority filter. Con-
sistency verified decision map is used for selecting coefficients from input image
pyramids. In contrast to Select max[14], proposed across band fusion does not
require consistency verification. In the proposed method consistency verification
is inherent due to parent child relationship. Thus proposed method is clearly
computationally inexpensive as compared to Select max approach [14]. It has
drawback that for kth level of resolution there is a need of an additional (k+1)th

level pyramid decomposition.

Table 1. Performance measurement

Images Approach Bovic Petrovic RMS error
1. AMB Select max 0.36 0.49 1

(CCD IR) Proposed 0.41 0.5 0.98
2. AMB Select max 0.42 0.52 1

(CCD MMW) Proposed 0.44 0.52 0.97
3. Spectral Select max 0.82 0.88 1

Proposed 0.84 0.88 0.94
4. Defocused Select max 0.80 0.8 1

Proposed 0.83 0.8 0.818

5 Conclusion

Proposed method provides definite reduction in RMS error with an improved
Bovic and/or Petrovic quality measures. In addition, we are able to preserve
more spectral information in the fused image. Proposed method is based upon
assumption that images are fully registered but in practical scenario they may
be unregistered. So, registering multisensor images is another research area.
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Abstract. Manually labeling video data is not only a labor intensive and time-
consuming task, but also subject to human errors.  In this paper, we present an 
automatic video annotation system. The system uses spatial attributions such as 
color, texture, shape, motion, and temporal hierarchical attributes among video 
objects. The system includes a new method of automatic video segmentation, 
object recognition and object-tracking scheme, and hierarchical object-based 
video representation model. 

1   Introduction 

Recent initiatives in digital video technology have significant applications in many 
areas, including digital libraries, video surveillance, law enforcement, automatic tar-
get recognition, traffic management, command and control etc. Large amounts of 
video data is being captured, produced and stored. However, without appropriate 
techniques that can make the video content more accessible, such data is becoming 
more and more difficult to manage. Video annotation (labeling of objects in frames) is 
important for spatio-temporal modeling that plays an important role in its semantic 
understanding and retrieval (Chauhan et al., 2004). An entirely manual annotation of 
video data (labeling of objects in each frame) is not possible with the rapidly increas-
ing volume of video data, since it is not only a labor intensive and time-consuming 
task, but also subject to human errors. To manipulate a large video database, effective 
video annotation and object tracking are required by their content. In this paper, we 
describe an automatic video annotation system based on active learning and multi-
objects tracking to automatically recognize and label video objects. 
    In this paper, we make four major contributions. Firstly, we propose a novel texture 
feature based on colour co-occurrence, which extends the concept of co-occurrence 
texture features (Haralick et al 1973). Secondly, automatic region grouping is an open 
problem in computer vision. In this paper, we propose a new approach by identifying 
sub-regions by supervised learning and then merge these neighbors with the same 
label sub-regions into video object. Thirdly, we present an extension of traditional 
point feature tracking mechanism, called “region tracking”. Since all point tracking 
mechanisms always fail due to ambiguities in the visual data, fast motion, illumina-
tion and occlusion problems, we introduce model knowledge in the form of con-
straints on spatial neighborhood and temporal inheritance to groups of feature points. 
We also propose the use of color image Bezier enhancement to improve these images. 
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    The remainder of the paper is organized as follows: In the next section, we briefly 
detail related work and in section 3 we outline how our system works.  Section 4 
shows our experimental results.  Finally, conclusions follow in section 5. 

2   Related Work 

Extensive research efforts have been made with regard to the retrieval and annotation 
of video data. The simplest way to do that is by using free text based manual annota-
tion. An example is the ‘stratification’ approach (Smith and Davenport, 1994), with a 
few extensions such as video algebra operations (Weiss et al., 1992) with examples 
including OVID (Oomata and Tanaka, 1994) and CVOT (Li et al., 1997).  The goal of 
our research is to address the problem of manual video data labeling by developing 
automated labeling methods within an active learning and tracking framework based 
on spatio-temporal relationships among video objects. The concept of a video object 
can be associated to the frame region that conveys useful information, while the rela-
tionships among these objects changes during whole sequences can be defined as 
events. Modeling of these high-level concepts (objects and events) makes it possible 
to describe and capture objects in space and time and capture movements of objects, 
to allow high-level video retrieval (such as shape and semantic object level retrieval).   
    Similar attempts include NeTra-V (Deng and Manjunath 1998]) and VideoQ 
(Chang et al. 1998).  NeTra-V deals with sub-region level video representation rather 
than object level. Tracking with NeTra-V gives low accuracy and fails on fast motion, 
illumination variation, etc.  VideoQ simply matches the trajectory of an object by 
binary image similarity comparison. This kind of temporal interpretation fails with 
variation in time intervals. If the same action is played at different speeds it cannot be 
correctly interpreted. Oren et al. (1999) track pedestrians using wavelet templates 
which define the shape of an object in terms of a subset of the wavelet coefficients of 
the image. However, such techniques only work if the object shape is fully presented. 
It would be fail on cluttered scenes with object occlusion. Comaniciu and Meer 
(2003) proposed kernel-based (mean-shift) object tracking using a feature histogram-
based target representation. This approach is used to track specific objects by compar-
ing their data density.      

3   Video Automatic Annotation System 

We propose the following algorithm for automated annotation of objects in video 
sequences. 

1. Video V is first segmented to identify key frames ),...,( 1 MKFKF  (section 3.1). 

2. Segment key-frame iKF  into regions (section 3.2).  

3. Label each sub-region in frame iKF  using a classifier trained on discriminatory 

color and texture features (section 3.2). 
4. Merge the adjoining sub-regions with the same object label in frame iKF . Spa-

tially merge small adjacent isolated regions with δ<area , where δ  is threshold 
for maximum area to merge. 
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5. Check the mean intensity level and contrast of the frame after the key frame 
( iKF +1) to decide whether enhancement is required (section 3.3.1). 

6. Select good feature points (section 3.3.2) such as ( )yxAi ,  in region A to track 

them to the next frame ( iKF +1) as point ( )yxi yxA νν +++ ,1
 within shot (Figure 1). 

[ ]Tyx vνν =  is the displacement vector. Pyramidal tracking is performed to 

simultaneously track multiple objects (section 3.3). 
7. If the region to which tracking point ( )yxi yxA νν +++ ,1

 belongs has the same 

color and texture property as the region to which ( )yxAi ,   belongs (say object 

X), then the region to which ( )yxi yxA νν +++ ,1
 belongs  will be labeled  as X 

(section 3.3.3). 
8. Repeat the above steps for tracking all frames within shot (between key frames 

iKF and ( iKF +1). 

 
 

 
 
 
 
 
 
 
 

Fig. 1. Region tracking between successive frames, feature point iA  in frame 
iF  becomes point 

1+iA  in frame 
1+iF . 

    The different stages of the above algorithm are described in more detail below. 

3.1   Automatic Video Segmentation and Key Frame Selection 

For efficient video indexing and retrieval, video segmentation is the crucial first step 
towards a concise and comprehensive content based video representation for brows-
ing and retrieval purpose. In video segmentation, video is divided into a number of 
shots.   A shot represents a physically temporal interval by camera movement. We 
automatically detect video transitions such as “cuts” to find key frames for annotation. 
The frames that lie between the key frames are then automatically annotated using 
this information as detailed later. 
    We use a total of 24 features through comparison difference of frame pair for color, 
shape, texture, motion and statistical characteristics after feature selection. Machine 
learning techniques such as neural network and knn (Nearest Neighbour) are used to 
automatically detect transition between video scenes, such as {cut, fade-in, fade-out, 
dissolve}. At the same time, camera movements such as panning-left, panning-right, 
tilting-up, and tilting-down are detected.  We achieved an overall recognition rate of 
98.1% with neural networks and 95.8% with knn(k=5). 
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3.2   Automatic Object Identification by Supervised Learning 

After video segmentation and detection of key frames, key frames are batch seg-
mented as sub-regions using fuzzy c-means clustering algorithm. Color, texture, and 
shape features are extracted from these regions to be fed into a trained machine learn-
ing system to automatically predict these object labels.  In our system, we extract a 
total of 60 features: 23 color features from different color space, 5 texture features 
from color co-occurrence matrix, and 27 LLT features and 5 color moment features 
(Mindru et al., 1999). We extend Haralick’s co-occurrence matrix algorithm (Haralick 
et al., 1973) to work on color images and extract five color texture features, i.e. color 
co-occurrence matrix features.  

3.3   Multi-object Tracking 

Since automatic segmentation and region grouping is a difficult process for every 
frame, we use object tracking for annotating frames in between key frames (Figure 2).   

 

 

 

 

Fig. 2. Tracking an object across multiple frames 

Object tracking takes full advantage of the temporal and logical structure of the 
video and temporal hierarchical relationships between video objects.  For instance, an 
object may move in or out of a scene and its feature based classification will be uncer-
tain due to the variable number of pixels of this object in different frames (the number 
of pixels may not be enough to extract unique features). However, object tracking is 
much more reliable and computationally cheaper task as classification of objects need 
not be performed in every frame. It is certainly not a straightforward task to track 
objects reliably and simple process that directly projects region contours to next 
frames (O'Connor et al., 2003). The main challenge in visual tracking is to robustly 
determine the image position of a target region (or features) of an object as it moves 
through a camera’s field of view. What makes tracking difficult is the extreme vari-
ability often present in the images of an object over time.         

3.3.1   Image Enhancement 
A number of point tracking mechanisms fail due to ambiguities in the visual data, fast 
motion, illumination, and occlusion. We find that tracking points can be better re-
tained if the images have good contrast quality.  In our system, we first adopted a 
Bézier curve enhancement approach to enhance the total intensity level and improve 
texture representation by increasing the intensity variation. As the result, the tracking 
error and lost feature points are greatly reduced.   

2F  2−nF3F iF 1−nF1F  nF  
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3.3.2   Target Points Selection and Target Localization  
Once the objects have been identified in the key frames, they are next tracked using 
landmark points. Good target points selected are high frequency textured points, cor-
ner or texture edge points.    
 Let I and J be two successive images in a video sequence. We define the image 

windows displacement  d
r

 as being the vector.  To find the location corresponding to 
the target feature point in the current frame, the following residual function ε  should 
be minimized:  

( ) −−+= W dxxw
d
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xJd )(
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ε  

where )(xw  is the weighting function and W is integration window size. 

    Efficient tracking is performed using a pyramid image representation where multi-
ple image representations are used at different resolutions. An image at pyramidal 
level K is given as: 
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    This is a recursive function. Compute 1I from 0I , then compute 2I  from 1I , and 

so on. Let 1, 2, ..., , ...,K i N=  be a generic pyramidal level and let iI  be the image at 
level i . 
    We employ a pyramidal implementation of the classical Lucas-Kanade algorithm 
and extend Shi and Tomasi (1994) point feature tracking algorithm to region tracking 
as described below. Pyramidal tracking is performed as follows. First, optic flow is 
computed at the deepest pyramid level K. Then, the result of that computation is 
propagated to the higher level 1K −  in a form of an initial guess for the pixel dis-
placement (at level 1K − ). Given that initial guess, the refined optical flow is com-
puted at level 1−K , and the result is propagated to level 2−K  and so on until 
level 0 (the original image). After computing the optic flow at level K , we find the 
residual pixel displacement vector ,K K K

x yd d d=  and minimize the new image 

match error function ( )dε .  In practice the values of K is chosen to be 2, 3, or 4. 

3.3.3   Target Region Characterization 
Let ( ) 1...i i n

x
=

 be an arbitrary set of n points in the d-dimensional space of color and 

texture features. Target region is characterized by multivariate kernel density estimate 
(Comaniciu and Meer 2002): 
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We use Epanechnikov kernel (Scott 1992):                                                                                       
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    We compare the similarity between two regions using Mahalanobis distance be-
tween density functions of two regions which is thresholded to match regions. 

4   Experimental Result 

We use a total of 59 video clips for testing our automated annotation system. Each 
video clip has about 1000~5000 frames and includes 4~6 scenes (shots). The camera 
transitions between scenes include cut, fade-in, fade-out, and dissolve. Temporal 
video transition and camera movement prediction uses leave-one-out strategy, where 
one video is for test and another video is for validation purpose. The remaining videos 
are used for training. In each trial, ten neural networks were trained and optimized for 
architecture. The validation video was used for deciding on the best network to make 
final decisions on test data.   
    In the key-frames labeling stage, training data for region labeling of key frames are 
still images. 30 videos are used for testing and the remaining 29 are used for training. 
We obtained 82.0% recognition rate using neural networks. In the tracking stage, 
object labels are propagated from key-frames of successive frames within each shot. 
Figure 3 shows the accuracy in tracking pixels correctly for our proposed system 
(each pixel’s predicted object label in the successive frame is compared with manual 
ground-truth information for that pixel and error is calculated). The proportion of 
pixels correctly tracked is shown for the first 10 videos. It can be clearly seen that 
more than 97% of pixels are correctly tracked and labeled. 
    Figure 4 shows the comparison between our proposed method and a machine learn-
ing approach to labeling each frame without tracking. The computational cost with the 
neural network based system is up to 10 to 15 times more compared to our proposed 
system. In addition, the time taken by our tracking based approach is less variable 
across the ten videos tested. 
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Fig. 3. Plots of tracking process accuracy evaluation on pixel level for first ten videos 
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Fig. 4. The time taken in seconds for the ten videos for our proposed system (tracking) vs. 
neural network based classification of pixels in each frame (predict) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

Fig. 5. Example results of automated annotation 
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5   Conclusion 

In this paper we proposed an automated system for video annotation that accurately 
annotates videos for object labels (example results are shown in Figure 5). This in-
formation is very important for content-based video retrieval. Our system is much-
faster than the traditional approach and uses a range of color and texture features for 
object classification and tracking. It depends critically on how well the key frames are 
labeled and rather than using automated classification for key frames, manual labels 
can also be tracked for objects in the same manner. 
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Abstract. A moving target produces a coherent cluster of feature points in the 
image plane. This motivates our novel method of tracking multiple targets by 
cluster analysis of feature points and multiple particle filters. First, feature 
points are detected by a Harris corner detector and tracked by a Lucas-Kanade 
tracker. Clusters of moving targets are then initialized by grouping spatially co-
located points with similar motion using the EM algorithm. Due to the non-
Gaussian distribution of the points in a cluster and the multi-modality resulting 
from multiple targets, multiple particle filters are applied to track all the clusters 
simultaneously: one particle filter is started for one cluster. The proposed 
method is well suited for the typical video surveillance configuration where the 
cameras are still and targets of interest appear relatively small in the image. We 
demonstrate the effectiveness of our method on different PETS datasets. 

1   Introduction 

Tracking of moving targets is an elementary task in many computer vision applica-
tions such as video surveillance, sports analysis, human computer interaction, etc. 
Many different types of features have been used for tracking including points, edges, 
color, and templates. In this paper, we explore point features as they are ubiquitous 
and can be easily detected by e.g. the popular Harris corner detector [1]. 

Most previous work on point tracking focused on reconstructing individual point 
trajectories as long as possible. For instance, the Kanade-Lucas-Tomasi (KLT) algo-
rithm [2] matches points by minimizing the sum of squared intensity differences. As 
minimization is sensitive to local extrema, KLT fails easily in case of occlusions and 
target deformation. In Arnaud et al [3], a stochastic filtering framework that blends a 
dynamic prior model and measurements provided by a matching technique was intro-
duced and proved capable of dealing with abrupt motion changes and partial occlu-
sions. In Shafique et al [4], optimal matching was adopted to exploit similarity infor-
mation of feature points in multiple frames so that tracking is done by means of k-
frame point correspondence using graph theory. However, the key problem remains: 
when a target is occluded or deforms, feature points become less stable - corners dis-
appear during occlusion or turn to edges during deformation - making tracking or 
matching individual points difficult. 
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In this paper, a novel method that attacks the instability problem with a different 
methodology is presented. The ultimate goal for most trackers is to detect and track 
moving targets, and the tracking of points is the means to achieve this goal. By ob-
serving that a moving target produces a coherent cluster of feature points in the image 
plane, tracking is converted to cluster analysis of feature points. First, feature points 
are detected by a Harris corner detector and tracked by a KLT tracker. Clusters of 
moving targets are then initialized by grouping spatially co-located points with similar 
motion using the EM algorithm [5]. Due to the non-Gaussian distribution of the points 
in a cluster and the multi-modality resulting from multiple targets, multiple particle 
filters [6] are applied to track the clusters in the following sequences. Therefore, in-
stead of tracking individual points, we capture the stochastic properties of the clusters 
of feature points during tracking so that missing or unstable feature points don’t affect 
the tracking results very much. Our method is well suited for the typical video surveil-
lance configuration where the cameras are still and targets of interest appear relatively 
small in the image, thus feature points on them show strong coherence in space  
and motion. We demonstrate the effectiveness of our method on different PETS  
datasets [7]. 

The idea of tracking by cluster analysis was introduced by Pece [8] and borrowed 
into this work. Our contributions are, first, to apply it to points instead of regions, thus 
avoiding background modeling which is sensitive to illumination changes; second, to 
take motion coherence into account when computing measurements of clusters, which 
improves the robustness of cluster analysis; third, to integrate cluster analysis in the 
framework of particle filtering, which stabilizes the estimation of the cluster parame-
ters significantly. 

Section 2 describes the overview of our method and states the problem. Automatic 
initialization by EM based cluster analysis is given in Section 3. Section 4 introduces 
multiple target tracking using multiple particle filters. Results on sequences from 
PETS 2001 are illustrated in Section 5. 

2   Overview 

The motivation of this work is to develop a multitarget tracker for video surveillance 
applications. By detecting Harris corners and applying KLT in each frame, all the 
feature points with their associated velocities in the sequence are obtained, as shown 
in Figure 1. Points on moving targets exhibit large displacements, whereas points on 
the static background are characterized by very little motion. 

An intuitive solution of tracking targets via feature points is to cluster coherent 
points using the EM algorithm [9]. However, the problems of using EM directly are, 
first, the number of points in a cluster varies from target to target and over time, de-
pending on the size and appearance of the target. Sometimes few points in a cluster 
are detected due to the lack of texture information. Then, the spatial distribution of 
points in a cluster is not well represented by a Gaussian model; a finite uniform distri-
bution is more appropriate. In contrast, the motion distribution of a cluster is well 
approximated by a Gaussian. 

We apply multiple particle filters to solve these problems, as particle filters are 
well known for their ability to handle clutter and non-Gaussianity [10]. The main idea  
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behind it is simple: Since feature points in a cluster are too sparse to model its distri-
bution, a set of particles are sampled in a cluster. Each particle is evaluated according 
to some distance function so that it receives a weight reflecting the likelihood that the 
particle originates from the cluster. The cluster parameters are then updated from the 
weighted particles. Based on a prior motion model, the cluster distribution is propa-
gated in the sequence so that the target is tracked. Multiple particle filters are applied 
to track multiple targets simultaneously. New filters are started when a large number 
of feature points exist that are not associated with any existing filters. Their parame-
ters are initialized by clustering points using the EM algorithm. Existing filters are 
terminated when the total weights of their particles drop below a threshold. This hap-
pens in case of occlusions and targets leaving the scene. 

                                           

Fig. 1. Result of the Harris corner detection and the KLT tracking. In the left panel, point dis-
tributions of clusters are shown in the image plane. All the corners in the sequence are dis-
played in the spatio-temporal space in the right panel. After removing background points, the 
structure of the trajectories of moving targets can be clearly seen. 

2.1   Problem Statement 

A feature point ix  is represented by its image coordinates iu  and its velocity is . A 

cluster of a target iO  is represented by a set of coherent feature points 

}...1),,({ ijjj njsux == , and is parameterized by a Gaussian ),,,( v
ii

o
ii vo ΣΣ , 

where io  is the spatial center, o
iΣ  is the spatial covariance, iv  is the average veloc-

ity, and v
iΣ  is the velocity covariance. The spatial and motion distributions of the 

points in a cluster are assumed independent. 
Therefore, the problem of tracking is stated as: given the parameters of clusters in 

the previous frame, detect how many clusters are present in the current frame and 
assign each feature point to a cluster. In the following sections, we show how it is 
solved by initializing with EM based cluster analysis and tracking with multiple  
particle filters. 
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3   EM Based Cluster Analysis 

Automatic initialization is crucial to the success of a video surveillance system. Tar-
gets should be located when they first appear. An EM based cluster analysis algorithm 
is applied when a large number of feature points exist that are not associated with any 
existing clusters. Note that new targets may not only occur at the borders but any-
where within the image. 

Deciding the number of clusters in the data is usually the hardest problem in cluster 
analysis. A voting technique was devised to solve this problem. Intuitively, each point 
spreads a weight to its neighbors based on the distance between them. After voting, 
each point computes its weight by collecting all the votes received. Points near the 
center of a cluster tend to have a larger weight. This method is incidentally the first 
phase (“sparse voting”) of tensor voting [11]. By looking for local maxima, the num-
ber of new clusters and their centers are detected. 

Using these results for initialization, an EM algorithm is applied to estimate the 
cluster parameters. The probability that a feature point i originates from a cluster j can 
be estimated from its location and the velocity, defined as 

))),(distexp()( jij Oxif −∝ , where the distance between a point and a cluster is 
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    According to Bayes’ theorem, the posterior probability that point i is generated by 

one of the clusters j is 
∑

=
)(
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ifw

ifw
ip

jj

jj
j , where jw  is the prior probability of 

cluster j defined as the fraction of image pixels generated from cluster j. Points are 
associated with the cluster that maximizes the posterior probability. Once all the 
points are assigned, the parameters of each cluster are re-estimated by summing the 
evidence over all its points. This is iterated until EM converges to a local maximum 
of the likelihood of the observed data. A phase of K-Means clustering is inserted to 
obtain a better initialization so that the EM algorithm converges with fewer iterations. 
In fact, in cases where the targets are well separated, EM does not change the output 
of K-Means at all. Results are shown in Figure 2. 

4   Multiple Particle Filters 

Multiple particle filters are a simplified implementation of the mixture particle filter 
which is capable of maintaining the multi-modality of the posterior distribution and of 
tracking multiple targets simultaneously [6, 12, 13]. With a similar idea, we model 
each cluster with an individual particle filter, start a filter when a cluster is detected 
and terminate it when the cluster disappears. 
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Fig. 2. Results of initialization of clusters in the first frame. Feature points detected by the 
Harris corner detector and tracked by KLT are grouped into clusters representing targets. 

4.1   Initialization of a Particle Filter 

Given the initial parameters of a cluster obtained from the cluster analysis step, a 
particle filter is started. Two sets of particles are sampled in each filter: one from the 
initial distribution of the cluster and the other around each feature point in the cluster, 
shown in Figure 3.  

 

               

Fig. 3. Results of initialization of multiple particle filters. The green dots are sampled particles. 
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where ki Ox ∈ , uε  and sε  are random variables modeling respectively the changes 

in space and motion. 
The reason of sampling 2 sets of particles is because of the non-Gaussianity of the 

feature points in a cluster. In this way, the particles are scattered in the cluster and the 
distribution is fully and well approximated. In all experiments, 100 particles are sam-
pled around a feature point, and the number of particles sampled from the cluster 
distribution is proportional to the size of the cluster. 

4.2   Tracking by Multiple Particle Filters 

A particle in filter k is propagated in the sequence based on the constant velocity as-
sumption, 
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and weighted by a function of the distances between the particle and the feature points 
around it, defined as 
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u∑  and s∑  are set to balance the influence of the distance in space and in velocity. 

The parameters of cluster k are then estimated from the weighted particles. 
The computed parameters are not good enough because of the possible target de-

formation and the unstable feature point detection. For instance, the way that the 
weight is computed in Equation 4 tends to attract particles to the closest feature point. 
As a result, when new feature points appear in a frame, there may be few particles of 
large weights near them (especially when these new feature points are near the border 
of the cluster) so that their contributions to the estimation of the cluster parameters are 
unfortunately ignored. 

To solve this problem, a one-step clustering is inserted to assign all the feature 
points to one of the clusters using their current parameters based on the distance de-
fined by Equation 1. New particles are sampled around each feature point. The new 
sampled particles plus all the existing particles in a cluster are then reweighted by a 
function that averages the previously computed weight and the distances between 
particles and their clusters, defined as 
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The first term of the above equation describes the similarity measurement of the parti-
cle with its neighboring feature points, while the second term penalizes how coherent 
the particle is with the cluster. Finally, the parameters of the cluster are refined from 
its reweighted particle set. 

The final step of a particle filter is to resample particles based on their weights so 
that particles with small weights are likely to be discarded and those with large 
weights are duplicated. Note that a fixed number of particles in a filter are resampled 
during tracking. 

In summary, the tracker consists of the following steps: (1) Prediction: particles are 
propagated using Equation 3. (2) Weighting: their importance weights are computed 
using Equation 4. (3) Clustering: assign feature points in the current frame to a clus-
ter; new particles are sampled around each feature point. (4) Reweighting: particles 
are reweighted using Equation 6, and the parameters of the clusters are refined.  
(5) Resampling: resample particles using the Monte Carlo Sampling technique. These 
steps are iterated to propagate the distributions of the clusters in the sequence. 

At the Clustering step, if a large number of feature points exist that are not associ-
ated with any existing filters, a new particle filter will be started and initialized by the 
EM based cluster analysis, as is stated in Section 3. At the Weighting step, if the total 
weight of all the particles in a filter drops below a threshold, the filter will be termi-
nated. This happens when the target is occluded or leaves the scene. 

5   Results 

The proposed method is evaluated on different sequences from PETS2001. Figure 4 
shows the result of tracking a subsequence of 300 frames in the sequence of Camera 1 
of Dataset 1. Note that two crossing targets in the sequence are tracked separately 
during the occlusion, shown in the right panel of Figure 4, since they exhibit different 
motion. 

Four challenging subsequences from the noisy sequence of Camera 1 of Dataset 3 
are selected to evaluate the robustness of the method, as is demonstrated in Figure 5. 
They contain substantial and rapid illumination changes, shadows, severe occlusions 
and groups of people entering and leaving. The algorithm proves robust to substantial 
changes in illumination since the Harris corner detector is relatively insensitive to 
lighting changes. As shadows move along with the targets that cast them, they are 
tracked as a part of the targets and introduce only small jitter in the trajectories. The 
algorithm has problems maintaining a stable number of clusters in case of severe 
occlusions, because shadows connect distinct clusters and people move from one 
cluster to another. We are currently studying complementary methods for tracking 
individual targets using model-based approaches. 

Figure 6 and 7 illustrate the results of the comparison of our method with direct 
KLT tracking and our previous background-subtraction method [14]. The first com-
parison shows that KLT tracker fails during target deformation and occlusions, be-
cause when corners turn to edges, the tracks of points slide along edges, and when 
occluded, points drift from one target to another; meanwhile, our method is able to 
capture the stochastic properties of targets and is not affected by unstable feature 
points. The second comparison shows that background models are difficult to  
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maintain in the presence of rapid lighting changes and fail in such situations (consult 
Piater et al [14] for more details), whereas our method is less sensitive and continues 
to track. The only problem is that shadows show up or disappear when illumination 
changes rapidly, which affects the parameters of clusters. 

Nevertheless, a practical drawback of our method is that tracks of targets tend to be 
lost if they move slowly or possess little texture. Another drawback is that the method 
is only capable of dealing with partial occlusions. In case of complete occlusion, new 
targets are detected and are not linked to their correspondences before occlusion due 
to the lack of other information such as the appearance of the targets. However, an 
advantage of our method is that the errors will not be propagated in the sequence so 
that interactive reinitialization is unnecessary. 

     

Fig. 4. Results of tracking. All the particles in the sequence are displayed in the spatio-temporal 
space in the middle panel. 

       

      

Fig. 5. Results of tracking four noisy sequences to evaluate the robustness of our method. Note 
that only long trajectories with large certainties are displayed. 
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Fig. 6. Comparison of the method with direct KLT tracking. 3 KLT tracks are displayed in the 
middle panel. Note that the red one drifts from the group of people to the vehicle during occlu-
sion (the first row of the right panel), and the blue one jumps from one leg of a pedestrian to 
another during deformation (the second row of the right panel). As our method captures the 
stochastic properties of the clusters of feature points, these unstable feature points don’t affect 
the tracking results very much, shown in the left panel. 

                                

Fig. 7. Comparison of the method with our previous work which integrates background sub-
traction and motion history detection in the framework of a Kalman filter [14]. As expected, the 
track of the pedestrian is lost during the rapid illumination changes, shown in the right panel, 
whereas our new method succeeds in tracking in such situations, shown in the left panel. In the 
middle panel, two subimages of the same pedestrian at different time are displayed to show 
how the parameters of the cluster are affected by the shadow. 

6   Conclusions and Future Work 

This paper presents a novel method of tracking moving targets via feature points. The 
method is suitable for the video surveillance configuration where the cameras are still 
and targets are relatively small in the image so that feature points on a target form 
coherent spatio-temporal clusters. The EM algorithm and multiple particle filters are 
applied to cluster feature points and to track all the targets simultaneously. As demon-
strated, the method is robust and capable of dealing with partial occlusions, shadows 
and illumination changes. We are currently focusing on tracking in difficult situations 
such as severe occlusions. Complementary methods for tracking individual targets 
over long sequences are being developed using model-based approaches and probabil-
istic data association. An extension of the current work to moving cameras is also 
ongoing and will broaden its application to e.g. sports analysis. 
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Abstract. Image scene classification is an integral part of many aspects
of image processing. Indoor and Outdoor classification is a fundamental
part of scene processing as it is the starting point of many semantic scene
evaluation approaches. Many novel techniques have been developed to
tackle this problem, but each technique relies on its own database of
images thus reducing the confidence in the success of each method. We
attempt here to look at the current field of indoor / outdoor scene classi-
fication and develop a benchmark model for evaluating current methods.

1 Introduction

Semantic image scene classification is a fundamental part of many areas of im-
age processing such as Content-Based Indexing[1] and Image Retrieval [2], Dig-
ital Libraries[3], Vision-based Robotics Applications[4] and Digital Photogra-
phy [5,6]. Indoor and outdoor scene classification is the basis for further image
grouping, such as cityscape versus landscape classification[7,8]. The comparison
of these methods is made difficult by the lack of a unified database of images
for this purpose. A lot of the work in this area uses either images collected
from other databases (e.g. the Kodak stock image database[9]), images collected
for the specific algorithm from the Internet, or personal photographs[10]. For
each method, the amount of data is highly variable. In this paper, we present a
benchmark for image scene classification and evaluate some methods of indoor /
outdoor classification on this data.

2 Background

The task of scene classification is a difficult problem because the high-level en-
tities taken as typical of one type of scene may be a part of another type. For
example, in indoor / outdoor classification, similar objects such as plants can
exist in either class. Several methods for automatic classification have been pro-
posed with varying degrees of success and most rely on low-level colour space
and texture features. Very few rely on any single type of feature as they are

S. Singh et al. (Eds.): ICAPR 2005, LNCS 3687, pp. 711–718, 2005.
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typically not strong enough to separate the two classes and need to be boosted
with high-level semantic features[9,11,12].

Once a set of features is determined, there is still a question of how to inte-
grate the features into a classifier. Szummer and Picard[9] and Serrano et al.[13]
use two pass systems in which the image is broken into several equal image sub-
blocks. In the first pass, each block is labelled as indoor or outdoor based on the
low-level colour and texture features separately. The second pass combines the
results of the first pass to make a final image classification. Generally, this type
of classification system produces the best results over this type of problem as
colour and texture features are more likely to be uniform over smaller regions of
the image. It might be noted that an image of too small a resolution will not be
well broken into smaller image sub-blocks.

Colour features are used throughout the literature as an initial low-level
feature. Szummer and Picard [9] and Serrano et al. [11,13] use colour space his-
tograms based on the Ohta and LST colour spaces respectively. The intersection
distance in their experiments showed better results than the Euclidean distance.
Likewise, Miene et al. [14] use first order statistical features of distributions
based on colour and greyscale histograms. Qiu et al.[3] conducted an extensive
comparison of the different colour histogram features including opponent colour
histogram, colour correlogram, MPEG-7 colour structure descriptor, colour pat-
tern appearance histogram, and layered colour indexing. They found that there
was no single feature set that works on all types of images, but that significant
amounts of redundancy in histograms can be removed.

Texture features are also often used. Wavelet texture features determined
using a two-level decomposition have been used by Serrano et al. [11,13] and
they have shown these features to perform better than other texture features.
The first feature is determined by filtering low-frequency coefficients with a
Laplacian filter. The other features are found using the sub-band energy for
all wavelet coefficients. Guerin-Dugue and Olivia[2] use local dominant orien-
tation (LDO) distributions representing the entire image. This is based on the
power spectrum of the image from which features are extracted to classify in-
door from outdoor. In the indoor images there is a more balanced 0◦to 90◦

orientation than the outdoor images which have a greater horizontal anisotropy.
Fitzpatrick[15] proposes that in indoor images, the degree of vertical change in
brightness is low whereas the degree of vertical orientation is high. In outdoor
images, the degree of vertical change in brightness is high, where the degree
of vertical orientation is low. Traherne and Singh[5] and Payne and Singh[6]
rely on shape description of the texture of edges proposing that indoor (syn-
thetic) images have a higher content of straighter edges than in outdoor (organic)
images.

The role of semantic information is also well established and applied in this
context. Some studies have combined the low-level colour and texture features
with semantic information (such as the a priori knowledge that sky appears at the
top of an outdoor image) in order to boost classification results. The basic idea
is that by using the mid-level semantic information through a Bayesian network,
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the performance of a system will be improved [11,12]. Semantic information can
also be gathered based on perceptual grouping, for example, on edge features
such as straight line segments, longer linear lines, coterminations, “L” and “U”
junctions, parallel lines, parallel groups and polygons. Iqbal and Aggarwal[16]
demonstrate this concept for the detection of man-made objects in images. The
use of text-based descriptions of scenes has also been used as a semantic cue
about the class of an image[17].

3 Benchmark

Though other image databases exist with consumer photographs scenes (e.g. the
Kodak and Corel databases), they are hard to acquire, had too few photographs
or do not have any ground truth information. Considering the scene classifi-
cation problem, we define the following constraints on a benchmark for this
purpose:

1. The image data should be well categorised. Classification systems can only
be well verified if the ground truth data is well placed into categories. Data
should be collected to fill these groupings.

2. The categories should represent real-world types of images without retouch-
ing and preprocessing of a professional photographic nature. The images
captured for each category should be taken of real scenes of a diverse na-
ture.

3. There should be a sufficient number of images in each category. This point is
considerably difficult to ascertain as each method suggests a different base-
line number of images set by the specifics of the task at hand. Some meth-
ods report as few as 500 images in total, whereas others report thousands of
image in their data set. We believe that 500 images in each category is a rep-
resentative portion suitable for laboratory evaluation of novel classification
techniques.

4. The dimensions of the images should be suitable for most image processing
techniques with consideration taken for storage size. Images smaller than
640x480 pixels tend to loose the quality in detail that is required by higher-
level semantic analysis.

5. The images should be stored in a suitable format. That is, the images should
not be over-compressed thus introducing artifacts into the scene that might
be interpreted as a part of the scene.

Our benchmark comprises 1000 images categorised into 500 indoor images and
500 outdoor images. The outdoor images are broken into the sub-categories of
landscape images and city scenes and the landscape images are further broken
down into mountains, beach, snow, and general outdoor scenes. Each image is
640x480 pixels and stored in a low compression JPEG format compatible with
that used on-board in commercial digital cameras. Examples of the benchmark
images can be seen in Figure 1.
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Fig. 1. Example images from the benchmark. Images 1-8 represent the indoor images.
Images 9-16 represent outdoor images.



A Benchmark for Indoor/Outdoor Scene Classification 715

4 Validation

In [6], we proposed a method of indoor / outdoor scene classification based on
contour tracking and straightness through a 2-pass classification system. For
completeness, we have used this method and other comparative methods to de-
termine how well they would perform on our proposed benchmark. Four methods
are compared on the benchmark set: contour straightness, Ohta colour histogram
distance[9], sub-band energy of wavelet coefficients and LST colour histogram
with wavelet coefficients[13]. The results in Table 1 have been achieved from
these methods.

Table 1. Results for methods on the benchmark set. It is interesting to note that the
Serrano et al. second method (combining wavelet texture features and colour) has a
lower overall classification rate, but a more consistent rate between the two classes.

method indoor outdoor combined
Payne/Singh 88.30% 87.36% 87.70%

Szummer/Picard 60.65% 60.61% 60.33%
Serrano et al. 1 93.45% 58.26% 72.78%
Serrano et al. 2 70.11% 60.43% 64.41%

In our experiments, we used the Ohta colour space, the axes of which are the
3 largest eigenvectors of the RGB space. It is defined in [9] as:

I1 = R+G+B

I2 = R−B

I3 = R− 2G+B

Moreover, the histogram distance, rather than being calculated with the
Euclidean norm, is calculated using the histogram intersection norm:

dist(h1, h2) =
N∑

i=1

[h1
i − min(h1

i , h
2
i )]

where h1and h2 are the two histograms. The result is a measure of the amount
of overlap between the two histograms.

In [13], a two-level wavelet decomposition is used to obtain texture features of
an image. The features, the sub-band energies of the decomposition, are defined
by:

ek =
1

MN

M∑
i=1

N∑
j=1

| ck(i, j) |2

where M and N are the image dimensions of the coefficient ck. The coefficient
number k ranges from 2 to 4K, where K is the number of decomposition levels.
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When compared to the MSAR features originally used in [9], the wavelet decom-
position out-performed them as well as being half the dimensionality. The LST
colour space described in this work is similar to the Ohta colour space except
for scaling factors.

L =
k√
3
I1

S =
k√
2
I2

T =
k√
6
I3

where k = 255/max(R,G,B). The colour and textures features are combined
using a two stage classification system where the colour and texture are inde-
pendently used to determine region classification and the results are combined
in the second stage by a 3rd classifier.

Misclassification between the two classes occurs on images where it is difficult
to differentiate the overall structure of the image contents. For example, an
indoor image with clutter or a large amount of organic material can be confused
with an outdoor image. Similarly, an outdoor image with a large amount of
synthetic elements will be misclassified by the tested approaches as an indoor
image. Figure 2 demonstrates examples of this.

Fig. 2. Misclassified indoor and outdoor images. The first two images show cluttered
indoor scenes misclassified as an outdoor scene. The second image pair shows outdoor
scenes misclassified as indoor scenes.
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5 Conclusion

In this paper we have presented a framework benchmark for indoor / outdoor
scene classification. Through our validation experiment we have shown that not
only is it possible to classify the images in the database, but it is also a chal-
lenging exercise for novel methods. The intention is that it will provide a test-
bed for the comparison of different scene classification techniques. We would
encourage the use of this benchmark by the academic community and report
their results with it. Details of how to download the benchmark are found at
http://www.paaonline.net/benchmarks/minerva
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Abstract. We propose a new technique for automatic spinal deformity detection 
from moire topographic images. Normally the moire stripes of a human body 
show a symmetric pattern. According to the progress of the deformity of a 
spine, asymmetry becomes larger. Numerical representation of the degree of 
asymmetry is therefore useful in evaluating the deformity. Displacement of 
local centroids and difference of gray value are calculated between the left-hand 
side and the right-hand side regions of the moire images with respect to the ex-
tracted middle line. Extracted 4 feature vectors (mean value and standard devia-
tion from the each displacement) from the left-hand side and right-hand side 
rectangle areas apply to train a neural network. An experiment was performed 
employing 1,200 real moire images and 90.3% of the images were classified 
correctly. 

1   Introduction 

Spinal deformity is a disease mainly suffered by teenagers during their growth stage. 
There are many causes of spinal deformity, but all of them are unknown. The most 
common type is termed “idiopathic” that show 80% of the spinal deformity. There are 
two basic types of spinal deformity, which called structural and nonstructural spinal 
deformity (also called functional). To detect the deformity syndrome of the spine, 
moire method (i.e. moire images) has been applied in the mass screening in Japan. In 
the image screening, approximately 370000 moire images are obtained every year. 
Two doctors inspect about 200 to 300 moire images as per one hour in the visual 
screening. It is very tough work in practice and may lead them to misjudgment in 
these processes. 
    Normally human spine forms a straight line when viewed in the anterior or poste-
rior. But, if one has spinal deformity, his spine is crooked and the ribs may stick out 
more on one side than the other side. When one afflicted with spinal deformity, spine 
often deforms in the shape of letter ‘S’ or ‘C’. To checking the spinal deformity, 
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moire method [1-3] has been proposed which takes moire topographic images of 
human backs. It checks symmetry/asymmetry of the moire patterns in a two-
dimensional (2-D) way. 
    Automating judgment of spinal deformity by computer has been reported [4-9] 
employing moire images of human backs. To evaluate spatial distortion of human 
back, Idesawa et al. [4], Batoushe [5] and Ishikawa et al. [9] reconstructed 3-D shape 
of a human back from the moire images. Kim et al. [12] propose a technique for 
automatic spinal deformity detection based on evaluation of middle line’s displace-
ment. By the experiment employing only 120 real moire image, they achieve the clas-
sification rate of 83.2% by the linear discriminant function. Despite these efforts, their 
approaches did not succeed, because of the difficulty of image processing in extract-
ing the moire stripes exactly. Thus they did not reach to the stage of classification 
experiments employing real data and yet there is no report concerning automatic de-
tection or diagnosis of spinal deformity. In this paper, to classify the moire image into 
two categories i.e., normal or abnormal cases, we propose a new method employing 
neural network. 

2   Geometric Index Representing the Degree of Asymmetry 

Normally the moire stripes show symmetric patterns on the human body. But when 
one becomes spinal deformity, human spine has asymmetric moire pattern. Numerical 
representation of the degree of asymmetry may therefore be useful in the evaluating 
the spinal deformity. In order to analyze such shapes with approximate symmetry, 
some techniques are proposed [10]. Ishikawa et al. [11] proposed a technique for 
detecting symmetry axes on an approximately symmetric shape and applied it to ex-
tracting the middle line of a human back from its moire image. 

2.1   Extraction of the ROI 

To evaluate the asymmetric degree, we extract the middle line on the given moire 
image employing the approximate symmetry analysis [10]. The middle line is ex-
tracted in the following way. 
    We assume an original image is f(x,y) where x and y are bounded positive integers, 
and its reflected image is represented by f 

r(x,y), (x,y)∈Rr. The (p+q)th-order moment 
of f(x,y) is defined by 

( , )

( , )p q
pq

x y R

m x y f x y
∈

=                                         (1) 

where R is a specified region. From the eq.(1), the centroid denoted by (xc,yc)  is cal-
culated. 

    The f 
r(x,y) is superposed onto the f(x,y) by parallel translation ( , )x yc c c≡  and 

rotation θ  to find the best match. Note that the following geometrical restriction is 
taken into account with respect to cx, cy and θ ; 
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2

θ
tancc xy =  .                                              (2) 

    In this paper, we assume the θ =0, because the moire images are captured normally 
straight using position-supporter so that their middle lines keep vertical. 

In the next stage, we extract the region of interest (ROI) from a given moire image. 
The ROI is extracted in the following way.  
    Let us denote a moire image of a human back by I(x,y). The origin O of the xy-
coordinate system is located at the lower left corner of the image. The ranges of the 

coordinates are 0 ex x≤ ≤  and 0 ex y≤ ≤ . The middle line is defined in the first 

place on I(x,y). Since the moire pattern of a human back usually exhibits asymmetry, 
an approximate symmetry axis is extracted from I(x,y) and the axis is regarded as the 
middle line of the back. The middle line is located at x=m. 
    The ROI denoted by R is defined on I(x,y) in the following way. Image I(x,y) is 
binarized and histogram of the binarized pixels onto x-axis is calculated. The loca-
tions having the minimum frequency on the histogram are searched within 

0 x m≤ ≤  and em x x≤ ≤ , and two such locations, x=x0 and x=x1, that are the 

nearest to the middle line are chosen from the respective ranges. The area R excludes 
arms of the subject and takes subject’s physical dimensions into account. The ROI are 
automatically selected by this processing. 

2.2   Degree of Asymmetry 

Within the region R and at a certain position y=i, two rectangle areas are defined, at 
symmetric locations with respect to the middle line x=m. The width a of the rectangle 
area is defined by 

a=min{m-l, r-m}.                                                  (3) 

    Here m is extracted middle line, l is minimum frequency of the left-hand side and r 
is minimum frequency of the right-hand side on the histogram. On the other hand, 
height of the area is defined empirically. The degree of asymmetry is calculated by 
following way. 
    Let us denote the rectangle areas of the left-hand side and right-hand side at y=i by 
Ai

l and Ai
r, respectively. Here i=1,2,…,N. The centroids of Ai

l and Ai
r are denoted by 

Gl(xl,yl) and Gr(xr,yr), respectively. The centroid Gl(xl,yl) is reflected with respect to 
the middle line x=m into the region Ai

r and denoted by Gl
*(xl

*,yl
*). The distance G 

between Gl
*(xl

*,yl
*) and Gr(xr,yr) is calculated by 

* *2 2( ) ( )l r l rG x x y y= − + − .                                (4) 

    The mean gμ  and the standard deviation gσ  of the values G (i=1,2,…,N) are 

employed as the features representing the degree of asymmetry of the moire image in 
R. They are obtained from 
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    Furthermore, in the same rectangle area difference of gray value D is calculated by 

l rD D D= − .                                                      (6) 

    Here Dl, Dr are mean vale of left-hand side and right-hand side rectangle area in the 
ROI. From the eq.(6) mean and standard deviation of the values D (i=1,2,…,N) are 
employed as the features representing the degree asymmetry of the moire image in R 
(See eq.(7)). 

1

2

1

1

1
( )

N

d
i

N

d d
i

D
N

D
N

μ

σ μ

=

=

=

= −
                                    (7) 

3   Classification Method 

Neural networks have been proven in many researches as having a good discriminant 
property, which means excellent for pattern classification. Neural networks accept 
numerical inputs and provide classification based on these inputs by segregating the 
inputs. This application to automatic spinal deformity can provide the necessary in-
puts, which are numerical in nature to the neural network. The implementation is very 
easy, as we only need to train the neural network based on past data or even current 
data. In this case we find that the back propagation algorithm which is a supervised 
learning neural network to be very appropriate to solve this classification application 
of automatic spinal deformity detection. 
    A direct application would be to take the 4 feature vectors from the left-hand side 

and right-hand side rectangle areas ( gμ , dμ , gσ , dσ  in eq.(5) and eq.(7)) and apply 

them to train a NN employing back propagation algorithm for automatic spinal de-
formity detection. 
    Employed NN is consists of 3 layers, which included four input layers, five hidden 
layers and one output layers for training. Finally, unknown moire images are dis-
criminated as normal or abnormal case automatically. 

4   Experimental Results 

According to the above-mentioned procedure, experiment was done employing 1200 
real moire images. The employed moire images are separated into two groups such as 
training and test data sets. As a training data for this study, we selected randomly 800 
(400 normal cases and 400 abnormal cases) moire images in the neural networks. 
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Remaining 400 moire images are used for classification. 200 out of 400 images are 
normal cases, whereas 200 are abnormal cases. The leave out method is employed in 
the classification to exclude biased data sampling. Classification rate r[%] is defined 
as follows: 

100
k

r
n

= × .                                                         (8) 

    Here k is the number of the data which classified correctly, n is number of the em-
ployed data. The image size is 256X256 pixels with 256 gray levels. Figure 1 illus-
trates experimental results. In Figure 1, (a) shows a normal moire image and (b) 
shows an abnormal moire image. Table 1 shows obtained classification rates. In aver-
age, classification rate of 90.3% was achieved. The processing time of a singe moire 
image is 3.4 second in average on a Pentium III (1GHz) personal computer running 
FreeBSD. 

5   Discussions and Conclusion 

In this paper, we developed a system to analyze a moire image of a human back in a 
2-D way in order to automate the primary screening of spinal deformity detection 
based on neural network. This approach seems promising compared with existent 
other attempts which analyze moire images in a 3-D way. In fact, the present tech-
nique achieved the classification rate of 90.3% in the experiment employing 1200 real 
moire images, whereas other techniques based on 3-D analysis have not even per-
formed such experiments. The present technique offers simpler 2-D image processing. 
This also can be reduces computation time. In more details, 87.5% (175 cases out of 
200) of normal cases were recognized correctly and 93% (186 cases out of 200) of 
abnormal cases were recognized correctly in leave out method.  

From this database, the results were a sensitivity of 0.93 at a specificity of 0.88. 
Furthermore, false positive fraction (FP) of the 0.13 and false negative fraction (FN) 
of the 0.07, positive predictive values (PPV) of 0.88, negative predictive value (NPV) 
of 0.93 were achieved under the receiver operating characteristic (ROC) analysis. 

 
 
 
 
 
 
 
 
 

(a)                                                       (b) 

Fig. 1. Experimental results: (a) A normal case; (b) An abnormal case. 

    Figure 2 illustrates examples of misclassification. In Figure 2(a), a normal case is 
classified into abnormal, whereas an abnormal case is classified into normal in (b). In 
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Figure 2(a), gray values subtly differ in the vicinity of an edge particularly on the 
shoulder part. Some misclassified cases are found asymmetry of moire patterns. This 
is because gray values distribution in the rectangle regions unfortunately affected 
symmetrically when the local centroids and difference gray value were calculated. To 
escape from this difficulty, some other asymmetry features independent to local cen-
troids displacement might be taken into account in conjunction with it. To obtain 
higher classification rates, the issue remains for further study. 
 

Table 1. Obtained classification rates (%) 

Training data set Test data set % 
D1 D2UD3 89 
D2 D1UD3 89.3 
D3 D1UD2 92.5 
 Average 90.3 

 
 

 
 
 
 
 
 
 
 
 

(a)                                                       (b) 

Fig. 2. Examples of misclassification: (a) A normal case classified into abnormal; (b) An ab-
normal case classified into normal. 
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Abstract. A robust, efficient segmentation algorithm for automatic segmenta-
tion of MR images of the metacarpophalangeal joint is presented. A preliminary 
segmentation detects bones in MR scans and uses histogram analysis, morpho-
logical operations and knowledge based rules to classify various tissues in the 
joint. The second part of the algorithm improves the segmentation mask and re-
fines boundaries of bones using minimization of a sum of square deviations, 
automatic signal segmentation into an optimum number of segments, graph the-
ory, and statistical analysis. The algorithm has been tested on 9 MR patient 
studies and detects 97% of all existing bones correctly with an average exceed-
ing 80% mutual overlap between ground truth and detected regions 

1   Introduction 

Segmentation of various tissues in Magnetic Resonance (MR) Imaging is very valu-
able in further image analyses and has a wide range of applications, including data 
compression, visualization, and image registration. Successful segmentation is a criti-
cal pre-processing step towards high-level image analysis. In analyzing MR data, one 
needs to consider complications due to the inherent noise in the imaging process, 
partial volume effects (where more than one tissue is inside a pixel volume) as well as 
the wide range of imaging control parameters which affect the imaged tissue intensi-
ties. There is a significant inter-patient variance of these signal intensities for the 
same tissue. This makes it necessary to design adaptive signal processing algorithms 
which are robust for this wide range of variance in the data. 

Image segmentation in general is a very difficult problem to automate. There is a 
variety of interactive methods [1, 2] which provide good results, but such solutions 
are not feasible for analyzing large amounts of data, and results are difficult to repro-
duce due to the subjective nature of human experts. Apart from being independent, 
automatic segmentation algorithms should provide reliable and robust segmentation, 
and be efficient in terms of usage of computational time and storage space.  

This paper presents an efficient algorithm which combines heuristics about the 
general anatomy of the metacarpophalangeal (MCP) joint with image processing tools 
and pattern recognition techniques. The algorithm is designed to automatically detect 
rigid boundaries in MR slices of the joint.  
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Fig. 1a. Location of the MCP joint; Fig. 1b. One of the MR scans of the joint. Brightareas in 
the scan represent fat and water inside the bone.  

2   Terminology and Data Set 

The images are used in the procedure to monitor development of rheumatoid arthritis. 
A typical MR scan (Fig. 1b) represents an MCP joint with 4 brighter regions, which is 
fat and water inside the bone. The boundaries of these regions are rigid, being the 
bone interior; hereafter, we refer to these regions as “bone”. Each bone is surrounded 
by darker areas, which represent cartilage. 

The work described here is to support a procedure in which 20 6-scan MR images 
are taken of the joints over a period of approximately 7 seconds. 

 

 

Fig. 2a. Structure of the 4D MR images dataset  

About the 7th time instant, gadolinium is introduced with the effect of enhancing 
the intensity of parts of the image: in particular, the blood vessels and arthritically 
diseased areas neighbouring the joints. Analysis of dynamic contrast enhanced MR 
data sets involves calculation of signal intensity against time curve for each pixel in 
the image, because the shape of such curves carries information about the tissue. In 
such analysis it is assumed that each pixel represents the same area of tissue through-
out the acquisition, and so if there is patient motion there will be errors in the calcu-
lated curves. To avoid such errors, each image in the temporal sequence should be 
registered to the first slice acquired. Characteristics of changes in enhancement are of 
interest, but their extraction can be complicated by slight movements of the patient 
during data capture, necessitating registration of scans with that captured in the first 
instant. 



728 O. Kubassova, R.D. Boyle, and M. Pyatnizkiy 

 

In this paper, the first stage in performing such a registration is described. This in-
volves the segmentation of the bone structures, which will be used as features for 
rigid registration. 

Bones may not be visible in every scan due to the poor resolution of the image, or 
the physical location of the scan. The phalanges of the joint are organized as shown in 
Fig. 3a. A scan can be taken between them, and some bones could be detected par-
tially or missed as in Fig. 3b. The thumb is not included in this study, thus each scan 
shows 4 or fewer joints, which will be labelled 2-5, with 2 being the index finger and 
5 being the little finger. 

 

Fig. 3a. 6 Scans of 4 phalanges of the joint. A coronal plan of the phalanges; Fig. 3b. An axial 
MR section. Scan 5: 3 only bones are detected; Fig. 3c. Structure of the joint: Trabecular Bone, 
Cortical Shell, Articular Cartilage, Synovial Fluid, and Joint Cavity. 

It is assumed that if a bone is visible in one scan in the time series for a slice, then 
it should be visible throughout the time series. 

3   Segmentation 

The algorithm consists of two main stages: a preliminary segmentation, which derives 
a mask for a bone boundary; and an adaptive segmentation, which improves the qual-
ity of the mask by extending or shrinking its boundaries towards the actual boundary. 
The preliminary segmentation uses a simple, robust, and efficient algorithm [8], 
which consists of a sequence of adaptive histogram analysis, thresholding, morpho-
logical operations and knowledge based rules for classifying bones from other tissues. 
Adaptive segmentation involves the minimization of a sum of square deviations about 
a mean (MLS) [4] in order to analyse the signal obtained; automatic signal segmenta-
tion into an optimum number of segments, using the L-method [12]; graph theory, and 
statistical analysis [6]; and  median smoothing within a sliding window [10].  

3.1   Preliminary Segmentation 

Scans are pre-processed using a low-pass adaptive noise removal Wiener2 filter [9].  
Each 2D scan is composed of light foreground and dark background, in such a way 
that regions of interest and background pixels have intensity levels grouped into two 
modes. An obvious way to extract the regions of interest from the background is to 
select a threshold value that separates these modes – this has been done using a simple 
algorithm [11]. Results can be seen in Fig. 4b. 
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Fig. 4a. Original MR scan (one of the scans from the input slice); Fig. 4b. Results of the global 
thresholding on the scan in Fig. 4a. 

Outlier regions have been removed using morphological opening [13] and a loca-
tion classifier. The classifier has been trained using more than 1000 regions in a nor-
malized coordinate system in order to define for each bone a coordinate interval in 
which it is presumed to appear. 

 

 

Fig. 5a. Results of local thresholding on the first 10 scans from one of the slices; regions repre-
sentation bones are shown in white. 

This initial segmentation is clearly usually inaccurate. We re-threshold locally to 
the regions and apply simple shape classification to reject regions of unlikely convex-
ity, shape, etc. The classification is based on the assumption that the bones in scans 
can be approximated by ellipses and do not contain holes. Blood vessels, which also 
satisfy this assumption, are much smaller and normally appear closer to the sides of 
the joint, making their removal straightforward.  

 

Fig. 6a. Final mask for one of the slices; Fig. 6b. Magnified final mask of the first bone in 
white. The black boundary is the actual boundary of the bone; Fig. 6c. Magnified final mask of 
the third bone in white. The black boundary is the actual boundary of the bone. 

The procedure can cause different parts of the same bone to have different loca-
tions and intensities within one slice, and therefore differently detected in different 
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scans.  A union of all detected regions provides a 'segmentation mask' that is a super-
set of information about the bone. Such a mask derived from 20 scans of one of the 
slices is shown in Fig. 6a. The actual boundaries of the first and the third bones are 
shown in Fig. 6b and Fig. 6c in black. It is, of course, unlikely that the final mask 
boundary will coincide precisely with the actual boundary of the bone.  

3.2   Adaptive Segmentation 

The purpose of the adaptive segmentation is to detect a boundary of each bone within 
the whole slice as accurately as. As shown in Fig. 6b and Fig. 6c the preliminary re-
gions can overlap the actual bones, but the boundaries of these regions do not coin-
cide precisely. The adaptive segmentation starts by locating the centroid of the mask, 
and determining the diagonal length of the its bounding box. Half this diagonal is 
used as a ‘radius’, which is rotated in a [0, 2  ] interval. While rotating the radius, the  ] interval. While rotating the radius, the 
corresponding image pixels’ intensity profile along each radius has been considered. 
The profile, corresponding to the radius of the bounding box of the final mask shown 
in Fig. 7a, is shown in Fig. 7c. Darker tissues of the joint correspond to the lower 
intensities in the profile; brighter tissues (fat and water) correspond to the higher in-
tensities.  
 

Fig. 7a.  MR scan with the final mask of the fourth bone. The white rectangle is a bounding box 
of the mask; Fig. 7b. Magnified final mask of the fourth bone; Fig. 7c. Signal profile of the 
‘radius’ shown in black in Fig. 7a. 

Thus, the problem of 2D image segmentation can be substituted by the problem of 
efficient 1D signal segmentation. The underlying model here assumes that the bound-
ary pixel should separate a bright inner area (bone) from a darker outer area. Ideally, 
the profile of the radius, drawn for a boundary pixel, would appear as in Fig. 8b.  

 

 
Fig. 8a. A bone with 4 radii in different directions. A boundary of the segmentation mask is 
shown by the dotted curve; Fig. 8b. The ‘ideal’ signal profile, corresponding to the radius (1) in 
Fig. 8a, and its approximation. 
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Boundaries of bones are fuzzy and sometimes discontinuous. Several different 
types of signal profiles have been observed; the most typical ones are shown in Fig. 
9a, Fig. 9b and Fig. 9c. 

 

Fig. 9a. A signal profile corresponding to the radius (2) in Fig. 8a; Fig. 9b. A signal profile 
corresponding to the radius (3) in Fig. 8a; Fig. 9c. A signal profile corresponding to the radius 
(4) in Fig. 8a. 

Each signal has been modelled as a sequence of segments formed by pixels of 
equal intensity. A sharp change between bright and dark areas is the optimum bound-
ary pixel. If a current boundary pixel does not coincide with the optimum boundary 
pixel, the boundary along the radius is moved towards the optimum boundary pixel. 

A minimization of least squares (MLS) algorithm [4], which minimizes the sum of 
squared deviations of the signal segments, has been chosen to analyze the signal. The 
MLS is calculated for various numbers of segments, and an optimum number selected 
via the L-method [12]. 

Signal profiles along each radius are analyzed and the optimal segment break-
points located, allowing a suitable shift in the estimate for the “best” boundary pixel.  
This procedure is not perfect, and we remove outliers by applying median filtering 
with a sliding window, which analyzes the connectivity between neighbours. The 
result of signal segmentation before and after median filtering has been applied is 
shown in Fig. 10a and Fig. 10b, respectively.  

 

Fig. 10a. The results of adaptive segmentation, after each of the signal profiles has been seg-
mented, before median filtering has been applied. Outliers are highlighted by white circles;  
Fig. 10b. The boundary after median filtering has been applied. 

Median filtering is not sensitive to outliers; it accepts only those pixels which have 
the desired level of connectivity. Since the radius has been rotated in [0, 2 ] with a ] with a 
very small angle of rotation, the density of pixels near the actual boundary is high, the 
outliers instead appear sparsely.   

The most challenging images with a lot of noise caused by the patient’s move-
ments and high contrast have been chosen in order to demonstrate the adaptive seg-
mentation process. The proposed adaptive segmentation does not require a bone being 
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smooth or of uniform intensity, since it operates along each radius independently; and 
it does not put any constraints on the shape or location of the region obtained as a 
result of the preliminary segmentation.  

4   Experimental Results 

4.1   Overview 

We have presented an algorithm which locates region in slices which we expect to 
correspond to the rigid interior of bones with the aim of locating the boundaries as 
precisely as possible. Recalling that in some slices not all four bones will be observ-
able, there are two separate evaluations to be performed; 

• Determining with what reliability we can judge whether or not a bone is present.  
Clinical judgement has provided ground truth which is in most cases a “yes/no” 
judgement (that is, each of bones 2-5 is or is not observable).  In a small number of 
cases, the expert is unsure.  We are able to compare our results with this clinical 
judgement. 

• Determining the quality of boundaries the segmentation delivers.  We have manu-
ally determined best possible boundaries in 167 slices drawn randomly from the 
data set, and compare our results to what we will assume is the “correct” solution.  
Following most established practice [3] we present this judgement as the quality of 
region overlap, normalised by the region area.  In fact, this metric can produce mis-
leading results as they might mask the quality of the location of boundaries, which 
is the property that we seek to optimise for the subsequent registration tasks.  
Evaluation with a different, more suitable, edge-based metric is work in hand. 

4.2   Presence / Absence of Bone Regions 

The algorithm has been tested on 9 MRI datasets; and bones in each of 54 scans (6 per 
dataset) have been detected. If due to the reasons mentioned above a bone is missing, 
the algorithm is not expected to detect anything in this location. The results of the 
preliminary segmentation for 9 MR patient studies are shown in Table 1.  In just a few 
cases the algorithm recognized cartilage as a bone. Cartilage and bone have a subtle 
difference in intensity and similar shape and location, making it difficult to distin-
guish between them. We detect the presence of 97% of all bones correctly.  

Table 1. Results of the preliminary segmentation part of the algorithm.  P1,…,P9 indicate the 9 
patients; the slices are numbered 1-6.  In each cell, A/B indicate the number of bones detected 
by an expert [A] and the number indicated by our algorithm [B]. 

N P1 P2 P3 P4 P5 P6 P7 P8 P9 
1 4/4 4/4 4/4 4/4 4/4 4/4 4/4 3/3 4/4 
2 3/3 3/3 3/3 4/4 4/4 3/3 3/3 3/3 3/3 
3 4/4 4/4 2/2 2/2 2/3 3/3 4/4 2/2 2/2 
4 2/2 2/2 3/3 3/3 3/3 2/2 2/2 2/2 2/2 
5 3/3 3/3 3/3 2/2 2/2 3/2 3/3 3/3 3/3 
6 4/4 4/4 4/4 4/4 4/4 4/4 4/4 3/3 4/4 
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4.3   Quality of Segmented Regions 

We have also conducted experiments with other popular segmentation techniques 
such as snakes [7] and region growing [5]. These other techniques have in most cases 
generated disappointing results, usually due to their sensitivity to parameter selection 
(for example, the internal/external force ratio for snakes and growth criterion for re-
gion growing). The approach we have developed is largely free of this parameter 
selection problem. Fig. 11a, Fig. 11b, Fig. 11c and Fig. 11d show examples of these 
techniques' performance. 

As a measure of adaptive segmentation performance the percentage of the mutual 
overlap between the finally obtained and ground truth regions has been used [3]. With 
predefined initial boundaries we see good performance on all regions. In the example 
of Fig. 11d, the percent of mutual overlap with the detected and ground truth regions 
is more than 90%.  This example is taken from the first time step; as the procedure 
progresses, the contrast within scans changes and makes segmentation more challeng-
ing; results earlier in the sequence are usually better. 

 

Fig. 11a. Results of the preliminary segmentation. Boundaries of the bones are shown in white; 
Fig. 11b. Example performance of a region growing technique on an MR scan; Fig. 11c.  Ex-
ample performance of snakes on an MR scan; Fig. 11d. Example performance of the adaptive 
segmentation technique on an MR scan. 

The average performance of the adaptive segmentation measured over regions 
from all time steps for each study is shown in Table 2.  

Table 2. Average mutual overlap percentage between ground truth and detected regions for 9 
MR patient studies (P1,…, P9) 

Patient P1 P2 P3 P4 P5 P6 P7 P8 P9 
% overlap 79 77 80 86 83 81 74 81 82 
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In our experiments less than 18% percent of all regions exhibit less than 70% mu-
tual overlap, and less than 1% of regions have less than 60% mutual overlap, while 
about 16% of regions have more than 90% mutual overlap. 

5   Conclusions 

In this paper we have proposed an automatic algorithm for accurate segmentation of 
bone regions from MR data of the MCP joint. The algorithm is a two-step procedure, 
which brings together statistical and morphological image analysis, the MLS, signal 
processing methods and dynamic programming. Firstly, the algorithm detects the 
regions of the metacarpophalangeal joint which represent bones; 97% of all existing 
bones evident in images have been detected correctly. Secondly, the algorithm refines 
the boundaries of the regions using an adaptive segmentation technique. Refined 
boundaries of the bones will be used in the further analysis of the MR scans such as 
registration. 

The mutual overlap between ground truth and detected regions is used as the per-
formance evaluation measure for the adaptive segmentation. On average the resulting 
regions show more than 80% of mutual overlap with ground truth regions. Perceptual 
evaluation by medical experts confirms the approach generates results of value.   
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Abstract. This paper describes a lung field segmentation method,
working on digital Postero-Anterior chest radiographs. The lung border
is detected by integrating the results obtained by two simple and classi-
cal edge detectors, thus exploiting their complementary advantages. The
method makes no assumption regarding the chest position, size and ori-
entation; it has been tested on a non-trivial set of real life cases, composed
of 412 radiographs belonging to two different databases. The obtained
results and the comparison with more complicate techniques presented
in the literature, prove the robustness of the algorithm and demonstrate
that rather simple and general methods, properly combined to fit the
requirements of a specific application, can provide better results.

1 Introduction

At the present time, chest radiography is the most common type of screening pro-
cedure for the initial detection of every type of abnormal pulmonary condition,
due to its ability of revealing some unsuspected pathologic alterations, its non-
invasivity characteristics, radiation dose and economic considerations. Neverthe-
less this is the most difficult radiograph to produce technically and to interpret
diagnostically, as discussed in [1]. The first and mandatory step of an automatic
system aimed at any type of computerized analysis on chest radiographs, is the
lung field segmentation. At the state of the art, several lung segmentation meth-
ods based on classical techniques have been presented (e.g. [2], [3], [4], [5], [6], [7]
[8], [9], [10]), and reviewed in [11]. Their weakness is due to the fact that they are
based on assumptions regarding the chest position, size and orientation, and often
violated in real life situations. Other methods have been proposed (e.g. [12], [13]),
which get better results without making these strong assumptions, but by simply
including some necessary knowledge about the generic chest shape.

Considering that the loss of (even small) parts of the lung area may cause the
loss of some nodules, precision is a strong requirement when the segmentation
mask defines the processing area of an automatic system aimed at the detection
of subtle pathologies such as lung tumors. None of the known methods obtain
� Work partially financed by CIMAINA and PRIN 2004: “Novel clustering techniques

in biomedical image segmentation”.
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precise results; moreover all of them detect the most visible parts of the left and
right lung (visible lung areas), excluding those hidden behind the diaphragm, the
heart and the spinal column (hidden lung areas), where tumors could be found.

All these reasons motivate the development of the segmentation method de-
scribed in this paper, which is the first step of a lung nodules detection system.
The algorithm avoids all the assumptions regarding the chest position, size and
orientation, and it includes in the segmentation mask also the hidden lung areas.
A precise contour is obtained by properly combining the results of two simple
image segmentation techniques (sec. 2). Their appropriate integration takes into
account the generic chest shape and can therefore recognize and repair their
complementary errors, by exploiting the good characteristics of their individual
results. For the same reason, the following step (sec. 3) separates the hidden
from the visible lung areas by combining the results of simple derivative filters
and those of a gray level clustering method.

The method has been developed and tested on 247 radiographs (154 of pa-
tients with lung nodules) in the standard JSRT database [14], which is the only
known standard database publicly available. The images have been digitized
with a 0.165 mm pixel size, a matrix size of 2048 × 2048, and 4096 gray levels.
Before processing, they have been down-sampled to a dimension of 256 × 256
pixels (and will be referred as the Images): this experimental choice reduces the
computational costs of the algorithm without worsening its performance. The
algorithm has been also tested on 165 radiographs acquired from the N iguarda
Hospital in Milan. They have a 0.160 mm pixel size, and a not fixed squared
size. The comparison with the segmentation results obtained by the method de-
scribed in [12], and applied to the JSRT database, proves that this is a better
initialization step for a lung nodule detection system.

2 Segmentation of the Full Lung Area

In this section we will present the technique used for determining the external
lung contour and the segmentation mask. The method that detects the external
lung contour is based on the integration of the results obtained by two different
algorithms. The first one detects the most visible lung edges, by means of steer-
able first derivative of Gaussian filters (sec. 2.1). These edges are also used to
find the vertical lung axis and to initialize the second algorithm, which needs a
starting point to track the lung edges and to detect a continuous contour along
the external lung border (sec. 2.2). In order to define the segmentation mask,
the obtained results are integrated, and other simple techniques are employed
to define the bottom borders and those nearby the spine (sec. 2.3). A schematic
diagram with the main steps of the method is shown in the top row of fig. 1.

2.1 Edge Detection by Derivatives of Gaussian Filters

The most visible lung edges are obtained by filtering the Image with first deriva-
tives of Gaussian filters [15] at scale σ = 1, oriented along four directions (0, π/4,
π/2, 3π/4); for each direction, the top 10% of the output pixels are selected to
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Fig. 1. Top row: Schematic diagram of the method; Middle row: Image, Initial Edge
image and Partial Edge image, Edge image; Bottom row: the binary images Lσ(σ =
1, 2, 3), capturing different levels of detail of the original image.

get four different Binary images, Bi. Their union (Initial Edge image) contains
all the detected edges, while the union of Bπ/2, Bπ/4 and B3π/4 (Partial Edge
image) contains the main external rib cage borders and it is then used to find
the vertical lung axis. To this aim each one of its rows is scanned to find the
pixel at the center of the segment connecting the leftmost and rightmost pix-
els. A polynomial fitting method, that minimizes the χ− square error statistic,
is used to fit all the found points with a line that defines the axis of the lung
field (fig. 1, middle row). The axis is approximately located at the center of the
spine, and it is therefore used to recognize and delete those edge regions, in the
Initial Edge image, which belong to the dorsal column: they are the connected
regions located in a “band” around the axis whose width is equal to 1/30 of the
maximum width of the chest (this estimate is given by the maximum distance
between the leftmost and rightmost pixels found in each row of the Partial Edge
image, and used to find the axis). Other spurious details in the Initial Edge
image correspond to little regions external to the lung; they are discarded by
eliminating all the connected regions whose area is less than 0.05% of the total
image area. The Edge image thus obtained contains a discontinuous outline of
the lung borders (fig. 1, rightmost in the middle row); to get a continuous con-
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tour a second edge detection method is presented in the next section and the
two results are then integrated (sec. 2.3).

2.2 External Contour Creation by Edge Tracking

In this section we describe a multi-scale method to get a continuous border of
the lung field. As noted in [16], “an inherent property of objects in the world is
that they only exist as meaningful entities over certain ranges of scale”. In the
case of lung borders their analysis at a small scale provides their more accurate
representation, but the segmentation could be mislead by other fine details be-
longing to different structures. Alternatively a large scale guarantees smoothness
and continuity of the contour. For this reason we choose to process the image at
different scales, and finally combine the results; the combining procedure exploits
the precision of the results obtained at the smallest scale, but at the same time
produces reliable results thanks to the information obtained at larger scales. Our
method works on three binary images Lσ (σ = 1, 2, 3) each capturing different
levels of detail of the lung borders (fig. 1, bottom row); each Lσ is created by
applying to the Image the Laplacian of Gaussian operator at scales σ = 1, 2, 3
experimentally set, and by selecting the output pixels with positive values. An
edge tracking algorithm is applied to each Lσ image, in order to detect a con-
tinuous path describing the lung border at that scale; afterwards the different
paths are fused to produce a robust external lung contour. The method works
separately on the left and right lung; in the following we will describe it, for the
generic image Lσ, and just for the left lung1.

The starting point, PB
S , for the edge tracking procedure must belong to the

external border of the left lung, and it is therefore selected from the Partial
edge image; PB

S is the topmost point between those at the minimum distance
from a line oriented at 3π/4, and passing trough the origin of the coordinate
system. This simple method finds a point located approximately on the top of
the lateral part of the lung boundaries, where the lung border curvature changes
greatly, since the edge orientation changes from horizontal (on the top border)
to vertical (on the lateral border). If the pixel in position PB

S is not set to 1 in
the Lσ image2, it is replaced by another point; the new PB

S is the first point
set to 1, and found by scanning a search area in the Lσ (fig. 2, left of top row),
which is a parallelogram located below the old PB

S , and on its left side. If no
point is found, the algorithm reaches the end without creating any contour.

The edge tracking procedure creates two continuous contours along the ex-
ternal border of the considered lung: the Bpath is a contour starting from PB

S

and running towards the bottom of the chest, meanwhile the Tpath goes from
PB

S towards the top.

1 The coordinate system has the origin in the top left corner of the image, the positive
Y axis corresponding to the height and the positive X axis to the width. The lungs
are distinguished by the axis found, w.r.t. their position in the image.

2 Note that this point was chosen from the Partial Edge image.
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Fig. 2. top row: search area for the left path going to the bottom; Steps for the creation
of the DSetB(P B

S ): the pixels with the cross are not inserted since set to 0; neighbors
checked to created the ASetB(QU

S ); bottom row: paths created on the images Lσ (σ =
1, 2, 3) and Border Paths created by combining the three paths.

The Bpath is created by first defining a set of pixels, DSetB(PB
S ), that may

belong do the “descending” path. To this aim PB
S is inserted in the set and its

three 8−neighbors, in the row below (PL, PC and PR, see fig. 2), are considered.
Those that are set to 1, are inserted in the set DSetB(PB

S ), and their three
neighbors (in the row below) are recursively checked for insertion; this process
goes on until at least one point is inserted in the DSetB(PB

S ). To have a more
precise contour definition, this algorithm is also run in a bottom-up direction,
using as starting point, QU

S , the bottommost pixel in the DSetB(PB
S ). Note that

the neighborhood to be considered must be opportunely reversed (it is shown
in fig. 2, rightmost on the top row). Once the “ascending” set ASetB(QU

S ) is
created, a unique chain of pixels (the Bpath) is created by taking, for each row,
the rightmost pixel of the intersection of the DSetB(PB

S ) and the ASetB(QU
S ).

The procedure used to create the Tpath starts from the point PB
S and applies

a similar recursive algorithm, just in ascending order, to the input image; as
before, its output is a set of points TSetT (PB

S ). For each point considered, and
already included in the set, the algorithm considers the pixel located above it and
on its right side3. Both these neighbors are inserted in the TSetT (PB

S ) if they are
set to 1, and the algorithm is recursively launched using them as starting points.
The Tpath is created by taking, for each row, the rightmost among the pixels
in the TSetT (PB

S ). The topmost pixel in the Tpath delineated is often above
the apex point (i.e. the real lung top). Since the apex point is located where
the lung border is horizontal, this point is found in the Tpath by computing its
derivative; it is the first point, tσ, whose derivative value is less than a threshold,

3 These directions are chosen according to the shape of the lung top borders.
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experimentally set to 0.05. The Bpath and Tpath form a final contour running
from the top till the bottom of the chest.

The contours created on each image Lσ are shown in fig. 2. On the left, one
example of a too short path is shown. Note that this is not a problem since a
final contour can always be recovered by integrating the available paths. Indeed
at least two paths have always been found for the 412 test images.

Since the top points tσ = (xtσ , ytσ) (σ = 1, 2, 3) of the three paths may not
be located at the same vertical position, the vertical coordinate of the topmost
point, YTop, in the final border, is set to be the median of the ytσ . The left
contour (Left border path) is then created starting from the row indexed by
YTop, by selecting for each row the leftmost among all the pixels belonging to
the different paths available at that row.

2.3 Definition of the Segmentation Mask

As noticed in sec. 2.1, even if the borders in the Edge image contain lots of
edge pixels that are precisely adhering to the real lung borders, they are not
continuous, the edges nearby the costophrenic angles could be missing and some
edge pixels could be present that do not belong to the external borders of the lung
field. On the other hand the contour obtained with the edge tracking algorithm,
even though less precise, is always continuous and runs from a vertical position,
that is a good approximation of the apex point of the lung, to the bottom of the
image4. Therefore we developed a method that composes the correct information
given by the two techniques, and defines a continuous Lateral contour ; in this
section we describe it for the left lung.

The integration procedure starts from the topmost point in the Edge image,
and below YTop, and follows its external border to search for a continuous edge;
when a hole is found, it is filled in by taking the pixels in the Left border path,
whose advantage is to be always continuous. When the bottommost point, Langle,
in the Edge image is reached, the procedure ends after having included into
the Left Lateral contour the part of Left border path below Langle. To define a
bottom boundary for the lung field, the positions of the costophrenic angles must
be defined. These points are located at the intersection of the lateral contours
and the bottom edges of the lung, due to the presence of the diaphragm. These
are selected from the Edge image by searching for the region, on the right side
of the pixel in the position of Langle, whose bottommost point is the nearest to
Langle itself. The 5 leftmost and bottommost points of this region, are fitted with
the method used in sec. 2.1, to find a line l interpolating them. The intersection
between l (green colored in fig. 3) and the Lateral contour detected defines the
point where the costophrenic angle is located. Repeating the same procedure for
the right side the right costophrenic angle is found. A segment connecting the
two costophrenic points closes the contour at the bottom. Nearby the spine, a
4 Observe that the points characterizing the costophrenic angles are still uncertain

since the contour, built by the edge tracking algorithm often runs till the bottom
margin of the image, meanwhile the bottommost points in the left side of the Edge
image may not correspond to the location of the costophrenic angle.
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line parallel to the lung axis is created for each lung; it passes through the point
in the Edge image that is the nearest to the axis.

3 Segmentation of the Visible Lung Area

In this section we describe the steps that detect the contours of the spine, the
diaphragm and the heart, to separate the visible from the hidden areas. Since
those two areas differ mainly for their pixels gray level, the separation is per-
formed by a contour following procedure whose result is integrated with the one
produced by a gray level clustering method [17]. This separation step has been
helpful to detect and correct some errors of the previously described segmenta-
tion algorithm; furthermore it has been used to better characterize the candidate
regions extracted by our computerized lung nodules detection system [18].

3.1 Edges Detected with Derivative Filters

To detect the vertical edges of the spine we filter the Image, on the left and right
lung separately, with the horizontal Sobel filter, and apply a contour following
procedure to the results. For each lung the starting point is selected between the
5% of the points with the highest value of the derivative and it is the nearest
to the axis of the lung. The contour following procedure runs in descending
and ascending direction separately. It proceeds by checking, for each row, the
derivative value of the 3 points which are the 8-neighbors of the one selected at
the line before, to find the one with the maximum value. It stops when the last
point found is located on the border of the mask.

To detect the horizontal edges of the diaphragm, the Image is filtered,
in the left and right lung separately, with a vertical Sobel filter and a similar
contour following procedure is applied to the result; in the following we will
describe the procedure just for the left lung. To select the starting point for
the contour following procedure we consider the regions corresponding to the
5% of the pixels with the highest derivative value. Those edge regions always
contain the bottom borders of the visible lung area, but may also contain some
unwanted edges, belonging to the intestinal gases or other external structures.
These undesired regions can be easily recognized for their shape; thus, we proceed
discarding the connected regions with a convex shape, and the ones with a
rectangularity5 bigger then 0.33. The left bottom edge of the left visible lung
area is then selected, for each lung, by taking the bottommost region located at
the leftmost position. The starting point for the contour following procedure is
selected from the bottom edge region; it is the point with the maximum value
of the derivative. The procedure runs separately towards the right till it reaches
the axis; running towards the left it reaches the lateral border and eventually
defines a new costophrenic angle point; this allows to correct some errors due to
extra parts wrongly included by the method described in sec. 2.
5 The rectangularity is calculated as the fraction of the area of the region itself and

the area of the maximum bounding box including it.
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Fig. 3. Segments used to define the costophrenic angles; masks of the visible areas to
be integrated.

3.2 Clustering Method

The second method used to define the visible areas is a clustering algorithm,
which searches for three clusters in the Image. Each pixel is assigned to a certain
cluster according to a distance measure based on the gray level of the pixel itself.
The regions formed by the pixels belonging to the cluster whose representative
has the highest gray value are then selected to give a rough definition of the
hidden areas ; fig. 3 shows the regions thus detected (red colored), together with
the ones obtained by the derivative filters (blue colored). Note that the clustering
wrongly excludes from the visible areas some regions attached to the external
borders of the mask. They are ignored since we consider as external borders
those created by the segmentation algorithm described in sec. 2. The two border
lines that must be considered are the ones going from the top till the bottom
of each lung and near to the axis; they are integrated by choosing for each row,
the edge point which is the furthest from the axis.

4 Results

We tested our segmentation method on a rather substantial, relevant and non-
trivial database of real life cases composed of the 247 images, in the JSRT
database, and the 165 images, in the N iguarda database. To judge the obtained
results, we compared the segmentation masks, created by our algorithm, with the
true lung masks (the ground truth), manually defined by a human observer who
traced the lung field borders. In this way we could detect the pixels wrongly
included or excluded by each segmentation mask (the wrong pixels), and we
defined as “error measure” the ratio between the number of the wrong pixels
and the number of pixels in the true lung mask. This measure takes into account
the big variations between the size of the chest of different patients. We detected
errors when the error measure is bigger than 0.003.

According to this performance evaluation method, all the images in the
JSRT database have been correctly segmented; meanwhile in the N iguarda
database an error is detected in 6 images, shown in fig. 4 (i.e. the 4% of the
total number of images in this database). Table 1 lists, for the 6 images, the
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Fig. 4. results on the Niguarda (more critical) database: Top row - Image1, Image2,
Image3, Bottom row - Image4, Image5, Image6.

Table 1. The errors in the six images

Image1 Image2 Image3 Image4 Image5 Image6

# of the wrong pixels 368 897 2289 5818 3902 4100
True lung mask area 25672 28558 31074 30107 18407 17544
Error measure 0.01 0.03 0.07 0.19 0.21 0.23

number of wrong pixels, the pixel area of the true lung mask and the error mea-
sure. Notice that this is a good performance especially because the images in the
N iguarda database are of low quality: they are noisy and often characterized
by low contrast. Beside, lots of them contain chests with structural abnormal-
ities, the patients are often tilted or rotated, the position of the chest in the
radiograph is not always at the center and there is a lot of variation in the size
of the thoraxes. Regarding the separation between the visible and the hidden
areas, it is always precise.

To have a further proof of the efficacy of our method with respect to the
existing strategies, we compared it to the lung segmentation method that has
been reported as one of the best performing [12], and it has been applied to
the JSRT database. Since its segmentation masks do not include the hidden
areas they have been extended nearby the spine and at the bottom, as described
in sec. 2.3. We used the same quantitative criteria to judge those results and
we found 50 images with errors, their mean error measure is 0.1, and almost
all of them are due to missing parts. Note that, if we should use this method



Lung Field Segmentation in Digital Postero-Anterior Chest Radiographs 745

to initialize a lung nodule detection system working on the JSRT database, 13
nodules would be lost; on the contrary, none of them are lost by our segmenta-
tion masks, confirming that this is a good initialization step for a lung nodule
detection system.
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Abstract. Breast area segmentation or skin-line extraction in mammograms is 
very important in many aspects. Prior segmentation can reduce the effects of 
background noise and artifacts on the analysis of mammograms. In this paper, 
we investigate a novel method to estimate the breast skin-line in mammograms. 
Adaptive thresholding [1] yields a nearly perfect skin-line at the center of the 
image and around the nipple area with images from the MIAS database [2], but 
the upper and lower portions of the extracted boundary have been observed to 
be erroneous due to noise and artifacts. Because the distance from the edge of 
the stroma to the actual skin-line is usually uniform, we propose a method to es-
timate the skin-line from the edge of the stroma, with the information provided 
by the center portion around the nipple from adaptive thresholding. The results 
are compared with the ground-truth boundaries drawn by a radiologist [3] using 
polyline distance measure and shape smoothness measure. The results on 83 
mammograms from the MIAS database are demonstrated. The proposed meth-
ods led to a decrease in a shape smoothness measure based upon curvature, on 
the average, from 65.6 to 20.0 over the 83 mammograms tested, resulting in an 
improvement of 69.5%. 

1   Introduction 

Accurate skin-line extraction is an important prerequisite for the enhancement and 
display of mammographic features, and for computer-aided diagnosis (CAD) of breast 
cancers. There has been considerable work on the development of skin-line extraction 
algorithms in the past decade [1, 3-7]. Bick et al. [4] used localized analysis based on 
modified histogram analysis, which consisted of global thresholding, region growing 
and morphological filtering. Abdel-Mottaleb et al. [5] used multiple thresholding to 
get different breast masks in order to locate the final skin-line. Ojala et al. [1] devel-
oped a robust thresholding method based on an analysis of image histogram that con-
sisted of histogram thresholding, morphological filtering, and contour fitting. 
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Mcloughlin and Bones [6] used a greedy snake algorithm to locate the skin-line after 
initial segmentation. Wirth and Stapinski [7] developed a breast region segmentation 
method using active contours. A given mammogram was initially segmented using 
the threshold determined by Rosin’s method, and the initial boundary was extracted. 
A modified greedy active contour algorithm was then used to locate the final smooth 
boundary on the original mammogram. The algorithm achieved acceptable results on 
25 mammograms from the MIAS database [2]. Ferrari et al. [3] implemented a modi-
fied active contour model to obtain the skin-line. The initial segmentation was ob-
tained using a threshold determined by the Lloyd-Max quantizer. The final breast 
skin-line was obtained using an adaptive active deformable contour model. The 
method was tested on 84 medio-lateral oblique (MLO) mammograms from the MIAS 
database with acceptable results. 

We present a novel skin-line estimation method in this paper. The novelty of the 
proposed method is that we utilize the anatomical information to extract the breast 
skin-line, in comparison with other approaches only utilizes image intensities. The 
method is designed for robust extraction of the breast skin-line in mammograms with 
strong background noise, which may fail some other approaches. First, we use adap-
tive thresholding [1] to extract a nearly perfect skin-line around the nipple. The 
stroma edge (or the edge of the parenchyma) is not susceptible to noise due to its 
high contrast and brightness. The stroma edge is then extracted using Otsu’s method 
[8]. A dependency is built between the stroma edge and the central portion of the 
skin-line using a distance measure based on the observation that the distances be-
tween the edge of the stroma and the actual skin-line in screening mammograms are 
usually uniform.  
The paper is organized as follows: Section 2 presents the overall system. Section 3 
provides a description of adaptive thresholding. In Section 4, the methods for the 
extraction of the edge of the stroma and spline fitting are presented. We have imple-
mented several performance evaluation techniques, as described in Section 5, includ-
ing the Constant Distance Curve (CDC), the shape smoothness measure from curva-
ture, and the Polyline Distance Measure (PDM). The results of our analysis are shown 
in Section 6. We conclude the paper in Section 7. 

2   Overall System 

The overall design of our study is presented in Figure 1. We develop a method to 
obtain the final skin-line from the dependency between the edges of the stroma and 
the breast skin-lines. The edge of the stroma is extracted using Otsu’s thresholding 
method [8], and then smoothed by spline fitting. We use an adaptive thresholding 
based on the work by Ojala et al. [1] to extract the initial boundary. Then, the central 
portion of the boundary near the nipple is used as the control segment to obtain the 
final skin-line from the edge of the stroma.  Ground-truth breast skin-lines of the 
mammograms were traced by a radiologist [3]. A CDC computed from each ground-
truth boundary is used for evaluation of the performance. 
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Fig. 1. The block diagram of our system 

3   Adaptive Thresholding and Initial Skin-Line Extraction  

In this section, we describe the extraction of initial skin-line boundary use adaptive 
thresholding. 

3.1    Adaptive Thresholding 

The selection of the threshold is based on an analysis of the histogram [1]. The calcu-
lation of the automatic threshold t0 is based on the assumption that there is a “discon-
tinuity” of histogram values between the breast mode Pbr and the background mode 
Pbg [1]. The mammogram is thus thresholded using t0.  

3.2    Morphological Filtering 

Due to uneven contrast along the breast boundary and noise near the boundary, the 
morphological closing and opening operators are used to clean thresholded binary 
image. The binary image is first processed by the closing operation with a disk-
shaped structure element (SE) of diameter d1. Then, the binary image is processed by 
an opening operation with a disk-shaped SE of diameter d2. The parameters d1 and d2 

are determined experimentally [2]. We used d1 = 5 pixels and d2 = 21 pixels. 

3.3    Connected Component Analysis and Boundary Extraction 

The connected component analysis method [9] is used to find the largest binary re-
gion, which corresponds to the breast region, from the morphologically filtered  
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image. Connected component analysis works by scanning, pixel by pixel, from the top 
to the bottom to find the connected pixel region in an 8-connectivity system.  

The breast skin-line is extracted from the breast region using 8-connectivity. The 
image is scanned from the bottom row upward to find the first non-zero pixel, which 
is the beginning of the breast boundary. The scanning procedure proceeds in the anti-
clockwise direction to extract the next skin-line point.  

4   Stroma Edge Extraction 

The edge of the stroma is extracted by using Otsu’s thresholding [8] and then 
smoothed by using spline fitting. 

4.1    Stroma Edge by Otsu’s Method 

As described in Figure 1, the stroma edge is computed as a dependency. Otsu [8] 
developed an automatic method to segment an image into two regions based upon a 
bimodal histogram. Because the fatty peripheral area has low intensity near back-
ground intensities, and the stroma has a bright edge, we can use Otsu’s method to 
obtain stroma segmentation and extract the edge. After obtaining the initial thresh-
olded binary image using Otsu’s thresholding method, morphological filtering, con-
nected component analysis, and chain code boundary extraction are used to obtain the 
edge of the stroma.  

4.2    Spline Fitting  

Because the edge of the stroma is not usually smooth, a smoothing/fitting step is 
needed to establish a uniform dependency between the edge of the stroma and the 
skin-line. A spline fitting procedure is used to obtain the smoothed stroma edge. 
Splines are piecewise polynomials with pieces smoothly connected together [10]. In 
the present work, we used cubic spline fitting to obtain smoothed edge of the stroma. 
Figure 2 shows an example of spline fitting to the edge of stroma. Two zoomed views 
show the comparison before and after spline fitting. 

5   Performance Evaluation 

5.1    Constant Distance Curve (CDC) 

A CDC is obtained by shifting the ground-truth (GT) boundary toward the fitted 
stroma edge with a certain distance. The distance is computed as the Euclidean dis-
tance from the center of the GT to the stroma edge. In the study, we compare the 
stroma edge and its spline-fitted boundary with the CDC, instead of the GT boundary. 
The CDC is closer to the stroma edge and its spline-fitted boundary, which makes the 
comparison more meaningful.  
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                                                          (a)  Stroma Edge        (b) Spline Fitted Edge 
 

Fig. 2. Stroma edge extraction and fitting: (a) extracted stroma edge, (b) fitted stroma edge. 

5.2    Shape Smoothness Measure 

In order to compare the breast stroma edge and its spline-fitted edge, a measure of 
shape smoothness defined from the curvature is investigated. For a plane curve C, the 
curvature at a given point P has a magnitude equal to the reciprocal of the radius of an 
osculating circle [11]. The result is that where a curve is "nearly straight", the 
curvature will be close to zero, and where the curve undergoes a tight turn, the 
curvature will be large in magnitude. For a plane curve written in the form y=f(x), the 
curvature  is defined as:  

( )[ ] 2/32

2

2

1 dx
dy

dx

yd

+
=κ  

The shape smoothness measure (ς) of a plane curve C is then defined as the integra-
tion of the magnitude of the curvature over the length of the curve:  

ds
L

=
0

κς  

where L is the length of the plane curve C and s is the arc length. We expect that the 
value of ς of a spline-fitted edge to be much smaller than that of the stroma edge.  

5.3    Polyline Distance Measure (PDM) 

In order to compare two boundaries, a quantitative error measure based on the aver-
age polyline distance of each boundary point was developed by Suri et al. [12]. Let B1 
be the first boundary, and B2 be the second boundary. Let A be a point on B1, and B, C 
be consecutive points on B2. The polyline distance d(A, BC) is defined as the mini-
mum distance from A to line interval BC.  

A quantitative error measure between the ideal boundary and the computer-
estimated boundary can then be defined as the average polyline distance of all bound-
ary points of the estimated and ideal boundaries. We will denote the measure as 

Error
polyd , which is derived as follows: 
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Figure 3 shows an example of the PDM. The PDM between the two boundaries is 

≈= 963.0Error
polyd 1 pixel. 

        

Fig. 3. The PDM between an ideal boundary (RED) and its estimated boundary (GREEN) is 
0.963 pixel 

6   Results 

We tested the proposed method with a dataset of 83 mammograms from the MIAS 
database [2]. The ground-truth skin-lines were traced by a radiologist [3]. Figure 4 
shows the clusters of thresholds automatically selected by the methods of Otsu (for  
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Fig. 4. The clusters of thresholds automatically selected by the methods of Otsu and of Ojala  
et al.. The mean value of Ojala threshold is 2.75, and mean value of Otsu threshold is 80.25. 
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stroma edge) and of Ojala et al. (for the initial skin-line). Table 1 shows the average 
PDM and standard deviation measures of the stroma edge and its spline-fitted edge in 
comparison to CDC. The standard deviation of the fitted edges is much lower. Hence, 
the fitted edge is much smoother. 

 

Table 1. Average PDM and standard deviation on 83 Images 

 Stroma vs. 
CDC 

Fitted vs. 
CDC 

Change 

Average PDM (Pixels) 24.37 24.22 0.61% 
Standard Deviation (Pixels) 9.63 9.36 2.82% 

 

Shape smoothness can be measured from the curvature of the edge of the stroma 
and the fitted stroma boundary. Table 2 shows a comparison of the average and stan-
dard deviation of the shape smoothness measure  over 83 images. With spline fitting, 
smoothness is improved 69.5% (  drops from 65.6 to 20.0). Figure 5 shows shape 
smoothness of the edge of the stroma and its spline-fitted boundary on 83 images.  

 

Table 2. Average Shape Smoothness from Curvature and Standard Deviation Over 83 Images 

 Stroma Edge Spline-Fitted Edge 
Average Smoothness 65.6 20.0 

Standard Deviation 19.52 5.33 
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Fig. 5. Comparison of curvature-shape analysis on the original stroma edge and its spline-fitted 
edge 
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7   Conclusions 

In the paper, we have proposed a novel approach for the estimation of the breast skin-
line estimation based on the dependency relationship between the edge of the stroma 
of the breast on the given mammogram and the result of adaptive thresholding. The 
approach is based on the observation that the distance between the edge of the stroma 
and the skin-line is relatively uniform. It is an on-going research to obtain final skin-
line in mammograms. 

We have presented an automatic method for the extraction of the edge of the 
stroma based on Otsu’s thresholding technique. A dependency relationship between 
an initial result based on adaptive thresholding and a spline-fitted stroma edge was 
analyzed using a constant distance curve, a polyline distance measure and a measure 
of the shape smoothness. The results were used for an on-going research to obtain an 
improved estimation of the skin-line in mammograms with strong background noise 
near skin-air boundary.  

Accurate estimation of the breast skin-line is important in computer-aided analysis 
of mammograms. Further developments in this application could be expected from 
this initial investigation.  
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Abstract. More than 2 people out of 10 suffer from allergies, which can take 
various forms, from eczema to anaphylactic reactions with possible lethal con-
sequences. Diagnosis is achieved through so-called “prick-tests” or IDR (intra-
dermo-reaction): the injection of a small quantity of substances suspected to 
cause the allergic manifestation induces an erythema, the size of which is a use-
ful indicator for the diagnosis. The manual surface measurement is time-
consuming and inaccurate. This article presents a method for the semi-
automatic measurement of the erythema from a photograph of the skin, taken in 
such conditions that lighting problems are minimized. The method is based on 
region growing and takes advantage of the most significant color spaces; the 
Lab space appears to be the best suited. It was tested on nearly 100 images, 
taken by various operators, on patients with various skin pigmentations; it gave 
promising results and proved to be robust.  

1 Introduction 

Allergies are classified as the fourth most important public health problem in the 
world. Numerous epidemiologic studies show that 20 to 25% of people suffer from 
allergic troubles. Allergic manifestations take various forms, among which eczema, 
rhinitis, asthma, or even Quincke oedema or anaphylactic reaction, with possible 
lethal consequences.  

In order to prevent from the most severe anaphylactic manifestations, it is neces-
sary to have an acute knowledge of the substances that are responsible for the allergic 
reaction, called the “allergens”. This diagnosis is achieved by the allergologist 
through cutaneous tests: “prick-tests” or IDR (intra dermo reaction). In prick-tests, a 
drop of solution containing the allergen to be tested is dropped on the forearm of the 
patient, which is then punctured in order to make the allergen penetrate into the skin; 
in IDR’s, the allergen is injected into the skin with a syringe. 

An allergic reaction locally induces a dilatation of blood vessels and the release of 
chemical substances due to the “axon reflex” [1], leading after 15 to 20 minutes to the 
apparition of an erythema, characterized by a local reddening of the skin and an in-
crease in its temperature; at the center of the erythema a papula is formed, looking 
like a mosquito bite. The surface of the erythema is an indicator for the severity of the 
allergy. 
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The mean diameter of each erythema is measured with a scale; each value, corre-
sponding to a given allergen, is compared to 2 reference values: the positive and nega-
tive standards. The positive standard indicates the standard degree of reaction of the 
patient and is achieved by the injection of codein phosphate which involves for eve-
rybody a positive reaction. The negative standard is achieved by the injection of 
physiological serum which never involves a positive reaction (only the puncture is 
involved in an eventual change in the skin appearance). The reaction induced by a 
given allergen is considered to be positive if it is equivalent to or larger than the posi-
tive standard; if it is comparable to the negative standard, the reaction is considered to 
be negative. 

This technique appears very fastidious especially due to the huge number of aller-
gens to be tested (up to 20); moreover, the measures are corrupted by errors due to the 
inter- and intra-operators variability, thus making a follow-up of the patients more 
difficult. Moreover, the diameter of the erythema does not give a good estimation of 
the surface, the measure of which would be preferred by the allergologists. 

All these reasons make an automatic measure of the surface very challenging; the 
expected improvements are: less time spent for measuring, less intra- and inter-
operators variations in the measurement, more accuracy thanks to the surface meas-
urement instead of the diameter measurement, and the storage possibility, making a 
follow-up of the patients easier. However, the clinical motivation of this work is not 
to provide a fully automated diagnosis system, but rather to provide assistance to the 
allergologist to make his diagnosis. Thus, it should be focused on the segmentation 
problem but it should not be dealt with an automatic diagnosis whether the patient is 
allergic or not. 

Several research works emerged during the last years, dealing with the automation 
of erythema detection. They make use either of spectroscopy, or of echography, or of 
visible imaging. Several teams including Kopola et al. [2], Dawson et al. [3], Fergu-
son-Pell et al. [4], Hajizadeh-Saffar [5] or Diffey [6] suggest calculating an “erythema 
index” from reflectance measures in different carefully chosen spectral bands, by 
means of a spectroscope. Several methods among these were evaluated by Riordan et 
al. [7]. Some of them allow detecting erythemas even in highly pigmented skins; 
however, all of them only provide an index (generally an erythema index and a mela-
nin index) that characterizes the global change in color, whereas routinely the 
allergologist is interested in the size of the erythema. 

Seidenari [8] et al., for their part, use echography to quantify erythemas induced by 
patch-tests; once again, this provides values representing the intensity of the reaction 
whereas the allergologist is interested in the surface. 

The surface can only be obtained automatically from images of the skin; although 
the problem of segmentation is dealt with very often in the context of melanoma de-
tection for example, this problem has been addressed very rarely in the context of 
erythema detection. Unfortunately, the methods used for segmenting melanomas can 
not be transposed easily for erythema detection, since melanoma images are much 
more contrasted than erythema images. Nischik et al. addressed the problem of ery-
thema segmentation from visible light images and proposed a method for segmenting 
the erythema, based on the CIELab color space and on the comparison between two 
images acquired before and after prick-testing [1]. This method presents a major 
drawback: it implies a motion analysis in order to suppress artifacts due to the  
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unavoidable motion between both images, since the reaction can be read 15 to 20 
minutes after prick-testing. 

We therefore propose an original approach to segment the erythema and provide a 
surface measurement of it, using only one image taken after reaction. 
In Section 2 we briefly describe the image capture system and the image database; 
then we address in Section 3 a colorimetric study in order to extract the best color 
space to use. In Section 4 we describe the method, and the results are presented and 
discussed in Section 5. 

2 Image Database 

As said before, the detection is performed from digital photographs of the arm and 
forearm. These digital photographs are taken using a standard color CCD camera with 
a spatial resolution of 752 x 582 pixels. The camera is connected to a personal com-
puter via a digitalization card (Ellips Riowin) allowing  real-time visualization of the 
acquired image and eventual tuning of some acquisition parameters, as well as saving 
a color image in bitmap format (BMP). 

The illumination system is composed of two neon tubes placed behind unpolished 
and translucent Plexiglas plates, in order to provide an homogeneous illumination and 
thus to avoid reflection artifacts. 

90 images of the arm or forearm were acquired at ‘anonymous’ hospital (‘town’, 
‘country’) from January 2003 to June 2004 on both male and female adult patients 
who agreed to take part in these tests. Most patients had lightly pigmented skins (Cau-
casian for most of them, and Metis or Mongoloid), and only one patient had a very 
dark skin (Negroid). Ten randomly chosen images formed the learning database and 
the others were used for evaluation purposes. 

3 Colorimetric Study 

A first examination of the learning database revealed that the classical RGB (red, 
green, blue) color space is not the best suited for the segmentation of erythemas. In 
this section, we study several color spaces to extract the best suited for discriminating 
the reddened skin from the “normal” skin. The CMY color space is the complemen-
tary color space to the RGB one: it is based on subtractive synthesis (as in printers) 
while the RGB space is based on additive synthesis (as in monitors). HSV (hue, satu-
ration, value) and HSL (hue, saturation, luminance) systems correspond to a psy-
chovisual description of color, based on the human eye function. The LMS color 
space is also based on the human eye: each stimulus L (long), M (middle) and S 
(short) represents the spectral sensitivity of the photoreceptive cells of the eye. The 
CIELab color space is derived from the XYZ standard color space, defined by the CIE 
in 1931 by a homographic transformation of the RGB space. L represents the lumi-
nance whereas a and b respectively represent the red-green chrominance and the blue 
chrominance. 

All these values (R, G, B; C, M, Y; H, S, V; H, S, L; L, M, S; X, Y, Z; L, a, b) 
were computed for each image of the learning database. An SNR study revealed that 
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the chrominance “a” provides the best discrimination of erythematous skin versus 
normal skin. These results confirm those obtained by Fullerton et al. [9] and Weather-
all et al. [10]; they recommend the use of the Lab color space, which takes into ac-
count the non linearity of color perception by the human eye. 

4 Color-Based Segmentation 

4.1    Choice of the Method 

As said before, the segmentation of erythema is a difficult task, because of the col-
orimetric heterogeneity of the skin (both the normal and the reddened skin present a 
marmor aspect), as well as because of the low contrast between erythema and normal 
skin. This problem belongs to the family of problems dealing with the segmentation 
of low SNR images. For such images, classical segmentation methods such as contour 
detection approaches are not well suited, that is why we concentrate our attention on 
constrained region segmentation approaches. Among these methods, structural ones 
are well suited to the problem since they allow constraining more or less the pattern of 
the extracted region [11]. 

Moreover, each image acquired represents the full arm or forearm, and can thus 
contain several erythemas corresponding to different allergens. It does not appear 
judicious to develop a system that would be able to recognize automatically to each 
kind of allergen each area of the arm corresponds, since it will induce many technical 
constraints for the operators performing the test, whereas it is not very constraining 
for him/her to have a minimum level of interaction with the system. On the contrary, 
the medical specialists generally prefer keeping a given degree of control on the 
automatic diagnosis process rather than obtaining results from a fully automatic sys-
tem in which they have low confidence. Thus, it appears as a reasonable compromise 
to require the allergologist to click on the corresponding erythema when prompted 
with the name of an allergen, for example, as follows: 
�  launch image acquisition 
�  for each allergen: 

� if an erythema is present: 
� mouse click within the reaction area 
� detection is thus performed automatically from the given seed 
� view, validate and store the results, both quantitative (image) and qualita-

tive (surface) 
� else, store the result (absence of reaction) and skip to next allergen. 

 
Taking into account both the considerations about the segmentation problem and 

the integration of the algorithm within a future computer-aided diagnosis software, a 
method based on region growing with manual input of the seeds appears consistent. In 
the next subsection we describe our algorithm based on pixel aggregation, with a 
strong constraint on the connectivity of the region and a weak constraint on its  
pattern. 
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4.2    Segmentation Algorithm 

The algorithm is based on region growing [11,12] where the initial regions have a 
unitary size and are chosen manually by mouse clicking. Aggregation of new pixels is 
iterative and depends on two criteria: adjacency and colorimetric similarity. Each 
iteration begins with the constitution of a candidate set, based on adjacency; all can-
didates satisfying the colorimetric criteria are aggregated, and the new region is then 
used for the following iteration. The algorithm stops when no more candidates are 
eligible for aggregation. 

The different steps of the algorithm are detailed below: 

� Initialization: manual choice of N seeds chosen within the erythema, forming the N 
initial regions Ri. 

� For each region i: 
� selection of the candidate set Ci, i.e. the set of pixels adjacent to the current 

region, obtained with a morphological dilatation: 
 Ci = (Ri ⊕ ES) – Ri (1) 

where ⊕ represents the morphological dilatation with a 3x3 square structural ele-
ment Es. 

� among the candidates ci
k, selection of those satisfying the colorimetric simi-

larity criterion: 
 ))(a(R  T  )a(c i

k
i >  (2) 

where a represents the chrominance “a” in the Lab color space, T is an automatic 
threshold computed from statistics in the region Ri. 

� if no candidate was selected at the previous step, algorithm ends. 
� else, creation of the new region Ri+1 as the union of region Ri and se-

lected pixels ci
k. 

4.3    Automatic Threshold Tuning 

A statistical study of the chrominance “a” was performed on the 10 images of the 
learning database: a coarse thresholding helped select the arm and suppress the back-
ground, and then the histogram of the chrominance “a” was computed.  This study 
revealed that the mean and variance of the chrominance varied sensibly from an im-
age to another. Therefore the threshold was chosen as a function of the mean and 
variance of the chrominance “a”. For the 10 images of the learning database, the ery-
thema surface was computed for various thresholds and compared to the reference 
surface (which is described further in Section 5). The threshold T varies as follows: 
 )()( IIaT aλσ+=  (3) 

where a is the mean chrominance over the image I, aσ  is the variance of “a” over 

the image I, and the parameter λ varies from 0.6 to 1.4. The value of λ giving the 
exact diameter is interpolated; over the learning database, the mean λ equals 0.97 
meaning that the best threshold is )(97.0)( IIa aσ+ . 

The robustness of the parameter λ can also be evaluated from these tests: a varia-
tion of 10% of the standard deviation in the threshold induces a variation of about 5% 
in the diameter. We can therefore affirm that the threshold is quite robust. 
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5 Results and Discussion 

5.1    Qualitative Study 

The algorithm was tested on the 90 erythema images of the database. Among the 90 
images, 89 concern patients with lightly pigmented skins (Caucasian, Mongoloid, 
Metis) and one patient has a highly pigmented skin (Negroid). Some results are 
shown on Figure 1 for the clear skins and on Figure 2 for the dark skin. On these 
images, blue pencil marks can be noticed, corresponding to the marks used by the 
physician; note that these marks do not appear in the “a” chrominance image and 
therefore do not disturb the algorithm (this would not be the case if a red pencil was 
used, as it was the case for some images that were therefore useless). When the sys-
tem will be used instead of the manual measurement, these marks will not be needed 
anymore and will thus disappear. At this step of development, they are useful to com-
pare the contour provided by the algorithm with the diameter estimated by the  
physician.  

On Figure 1, it can be noticed that the lighting conditions differ considerably from 
one image to another; this does not seem to affect the algorithm, and confirms its 
robustness. Concerning the dark skin on Figure 2, the erythema of the unique negroid 
patient taking part in the tests could be detected in a satisfactory way. 

 

                         

                         

                         

Fig. 1. Examples of results obtained on various skin types among Caucasian, Mongoloid, and 
Métis patients. Left, the regions of interest in the original images; Right, the results superim-
posed on the original regions of interest. Blue pencil marks can be noted, which correspond to 
the separations between the allergens being tested, and to the limits used by the physician for 
the diameter measurement.  
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In 5 images, the algorithm was not able to detect any contour. Possible reasons for 
these failures are: the low contrast of the image, due either to the image capture or to 
the skin reactivity of the patient; artifacts on the patient skin; defaults in the lighting 
systems providing an image with reflection artifacts that disturb the segmentation 
process. 

The detection of an erythema lasts a few seconds, so that for one patient tested for 
10 allergens, the total time including the mouse clicking, the automatic detection and 
storage of the results amounts to far less than one minute: less than the time for the 
patient to get dressed after the measurements. Routinely, the operators needs to draw 
the limits of the erythema before measuring (when measuring the diameter, the opera-
tor has to flatten the skin, which makes the skin reddening disappear), then measure, 
and finally report the value in a paper or electronic report; all these steps require sev-
eral minutes and are much more time-consuming than the mouse-clicking and detec-
tion. Moreover, as said before, the measures are corrupted by an important variability 
between different operators and even between different measures taken by the same 
operators. The automatic detection provides a reproducible measure and proved to be 
nearly independent of the manual input of the seed (if the seed is chosen within the 
erythema and not on the border).  

 

  

Fig. 2. Example of result obtained on a skin of type Negroid. On this unique example it seems 
that the algorithm does not encounter any particular problem detecting the contour of the ery-
thema, although the erythema is hardly visible with the naked eye. 

5.2    Quantitative Evaluation 

Two options can be considered for evaluating the algorithm; the first one consists in 
comparing the results to the clinical measurements performed manually, and the sec-
ond one consists in comparing to a ground-truth surface that remains to be defined. 

Actually, the measurements conducted routinely are diameter measurements per-
formed by the nurses with a scale. These measurements suffer from a very important 
intra- and inter-operators variability, mainly due to two reasons. Firstly, the use of the 
scale implies a deformation of the natural curve of the arm and pushing on the skin 
implies color changes that can affect the measurement. Secondly, the erythema con-
tour is not necessarily a circle; the nurses take as “diameter” measurement the biggest 
distance between the erythema borders. This is not so easy to appreciate with the 
human eye and is another factor for the variability of the measurement. Therefore, a  
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quantitative evaluation based on these measurements does not appear to be judicious, 
and it appears necessary to perform evaluation by comparing to a “ground-truth” 
value. 

To this end, for each image of the database an expert was asked to draw the ery-
thema contour as precisely as possible; actually he pointed as many points on the 
contour as he needed and the corresponding polygon (with many vertices) was con-
sidered to be the ground-truth boundary. A “goodness” measure was defined as the 
ratio between the provided surface and the ground-truth surface. Figure 3 shows the 
histogram of this ratio computed over the database. 

Figure 4-(a) presents a “good” result of evaluation with the polygon and the detec-
tion result superimposed on the image. On this example, the evaluation metric (the 
surface ratio) is 95%; the area of the polygon is 6411 pixels² and that of the automatic 
contour is 6139 pixels². A fictive diameter was computed as πarea2 , giving 90 

pixels for the ground-truth, 88 pixels for the automatic detection. These values can be 
compared to the diameter measured manually (corresponding to the pencil parks) to 
111 pixels. The error of 2 pixels is very low compared to the 21 pixels difference 
between the manual measure and the ground-truth. The difference between the man-
ual measurement and the ground-truth provides a surface ratio of 152%, which corre-
sponds to the worst cases of the automatic detection, as shown on Figure 3 (left). 

Figure 4-(b) and 4-(c) shows two of the worse results obtained with the automatic 
detection. For the left image, the surface ratio is 76%; for the right image, the surface 
ratio is 155%. When comparing the results of Figure 4, it can be noticed that even in 
the worse cases, the contour is not so bad and is anyway at least as good as the one 
that could have been drawn manually. This illustrates the fact that surface ratios of 
80% or 150% for example are considered as acceptable by the experts, and also con-
tribute to the improvement of the measurements when compared to the manual ones. 

     

Fig. 3. Left: Histogram of the ratio between the surface provided by the algorithm and the 
ground-truth surface. This surface comparison leads to ratios that go very fast far away from the 
ideal ratio of 100%; this is due to the fact that the variation of surface is quadratic. Right: the 
same histogram after correction of the quadratic effect due to the surface measurement. As a 
consequence the ratios are homogeneous with diameter ratios and are thus easier to understand 
intuitively. 
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6 Conclusion 

In this article, we addressed the problem of the automatic detection and quantification 
of reactions to allergic tests. This original problem was not addressed often in the 
literature, although it derives from an actual query from the allergologists. 

In this study we focused on the segmentation problem; the automatic decision 
process was not addressed. Indeed the segmentation problem is the most difficult to 
solve because of the low contrast of erythema images and of the heterogeneity of the 
skin color. To this end a method was developed that combines color image analysis 
with a region growing algorithm; it provides a robust and reproducible contour detec-
tion from the manual input of a seed point within the erythema. 

The method was applied on a database of nearly 100 images acquired during the 
consultations of allergologists at ‘anonymous’ hospital. A rigorous evaluation allowed 
proving that the method has a satisfying detection rate and is quite robust. The physi-
cians judged the software potentially helpful and very promising. In the future, it will 
be necessary to perform more tests especially on dark skins, since they were not well 
represented in the present database. 

It is also planed to work on the acquisition and lighting systems: the system de-
scribed in Section 2 is a provisory one and work is already being performed on a best 
suited system, such as those used by some dermatologists consisting of a digital cam-
era together with a ring light. 

         
                          (a)                                              (b)                                 (c) 

Fig. 4. Comparison between the automatic contour (solid line), the ground-truth (dashed line) 
and the manual diameter (on image (a): dark pencil marks looking like parenthesis) in a “good” 
case (a) and in two “bad” cases ((b): the surface ratio is 76%; (c): the surface ratio is 155%). 
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Abstract. Histopathological tissue analysis by microscopy is a process
that is subjective, prone to inter- and intra-observer variation. This,
along with the problems associated with verbalising visual elements of
the diagnostic process, make learning the skill quite difficult. Training is
long and largely relies on an “apprentice” model, where trainees learn the
skill by witnessing an expert at work. Here we present the first findings of
a longitudinal study of a group of histopathology trainees. By monitoring
the progress of the trainees, we hope to be able to provide information
that will improve training and assessment. In this paper we discuss the
results of early data collection and analysis, from a web-based study of
trainee classification accuracy and classification time.

1 Introduction

Trainees entering the Histopathology SHO training programme in the UK are
required to develop their skills in various areas over several years. With 20%
of consultant histopathologist posts unfilled [1], an increase in trainees will be
necessary to supply the required professionals to meet future demand.

Entry into the SHO schools is by open competition for medical staff who enrol
with varying degrees of experience. During the programme, they are informally
reviewed at 3 and 6 months with a more formal assessment at 9 months. During
the programme, training is given in many areas, including macroscopic tissue
examination, histopathological microscopy, cytology and autopsy.

The subjective nature [2] of histopathalogical microscopy and high levels of
inter- [3] and intra-observer variation [4] makes difficult the process of acquiring
proficiency in this area. This makes extensive use of supervised specimen analy-
sis, in which an experienced histopathologist analyses routine biopsy specimens,
while one or more trainees examines the tissue through the ancillary eye-pieces
of multiheaded microscope while listening to the expert’s verbalisation of the
process and the result. The hands-on nature of the training requires significant
commitment of time and effort on behalf of the trainee and trainer alike.

Training to make a diagnosis is based on correlating the given clinical infor-
mation with the observed histological features. The SHO will review the micro-
scope slide before bringing it to the consultant. Then each case is reviewed in
the knowledge of the clinical information and the consultant will listen to the
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SHO’s observation and point out the other details which make up the diagnosis.
The theoretical knowledge is assumed to be minimal - undergraduate level only.
Half of one day per week is given over to the review of histopathological mate-
rial and the theoretical basis of pathology. This is run at the same time as the
“apprenticeship”, the practical side of the training.

It has been observed by trainers that some trainees quickly develop an ap-
titude for tissue analysis, while others take longer or occasionally never develop
the skill to an acceptable level.

Our hypothesis is that the decision-making process is different between ex-
perts and novices, and that expert decisions are based upon automatic pattern
recognition rather than cognitive reasoning [5]. Not all trainees will develop an
aptitude for pattern recognition in tissue analysis, and the training programme
seeks to guide these individuals in other directions. Evaluation of trainees’ per-
formance is carried out after one year, when the skills of a trainee are reasonably
well developed [6].

This paper presents a study of data collected from trainees recently joining
the program. By analysing the decision-making performance of trainees through
the first year of their training, we hope to determine the possibility of identifying
trainees who are likely to develop an aptitude for tissue analysis early in the
program, perhaps even before training begins.

Previous work [7,8] has investigated image features that correlate with classi-
fication, and identified a number of useful texture features for automated classi-
fication, such as correlation, angular second moment and entropy, that combined
can be used to classify image regions with less than 2% error. It is hoped that the
work presented here will lead to a better understanding of these image features.
Also, by combining the results of this study with statistical analysis of the im-
age data, we hope also to provide insight into the learning and decision-making
process based on image features, which will help us to develop better tools to
assist in the training process.

The aim of the current line of research is to gain a better understanding of
how clinicians are learning to analyse the images. The second part of the study,
currently underway, investigates further, and seeks to determine how trainees’
mental organisation and clustering changes with experience and how it differs
from that of experts.

2 Experimental Method

2.1 The Images

In total a set of 20 images, shown in Figure 1, were used, each measuring 256×256
pixels. The images were classified by a qualified, experienced gastrointestinal
pathologist into one of three classes: normal, dysplasia, cancer. All images were
taken from routine past cases and stained with H&E. Digitisation was carried
out from 5μm slices using a Leitz microscope and a digital camera and all image
data has been anonymised, with respect to the factors discussed in [9].
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Fig. 1. The image set

2.2 Subjects and Data Collection

The subjects were 8 students who had just commenced training within one of the
NHS training schools. The experiments were carried out within a purpose-built
web-based experimental framework that allows individual subjects to view and
classify images, and records the classification assigned to each image and the
time taken to reach a decision in each case. The images shown in Figure 1 were
displayed in a random order and the subjects were asked to classify each one
into one of three classes: normal, dysplasia or cancer.

All data was anonymised by using randomly generated usernames, assigned
to the trainees by their instructor. to comply with data protection guidelines.

Each user’s data was recorded in a separate file, along with the date and time
of completion.

3 Results

Table 1 shows the data collected from the trainees. Each column contains data
for a single trainee. For each image, the trainee’s decision and length of decision-
making time was recorded. Decisions are shown as A for normal, B for dysplastic
and C for cancer. All times are in seconds.
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Table 1. Recorded data for each trainee showing classification for each image and
time, in seconds

User ⇒
Image ⇓ 138-0 260-1 121-0 172-0 260-0 129-0 136-0 115-0 193-0
i1 A,5.7 A,7.1 A,1.4 B,12.5 A,4.3 A,4.9 A,6.9 A,6.4 A,11.7
i10 B,6.6 A,5.3 A,5.6 B,11.1 A,1.9 A,7.1 A,46.3 B,8.4 B,18.8
i11 B,5.6 B,5.9 B,1.3 B,9.9 A,8.2 B,13.6 B,5.7 B,3.0 B,13.2
i12 B,10.1 B,9.2 B,2.5 B,11.7 B,2.1 C,3.4 B,8.1 B,3.7 B,6.9
i13 B,60.9 B,3.7 B,2.1 B,12.8 B,6.1 B,15.6 B,15.9 B,3.1 B,7.0
i14 B,6.9 B,10.9 B,9.5 B,8.6 A,8.4 B,6.6 B,10.0 B,6.1 B,11.7
i15 B,10.7 B,20.9 A,2.9 B,16.1 A,14.9 A,11.1 B,15.5 B,9.1 B,15.4
i16 B,9.7 A,4.8 A,8.3 B,25.7 A,2.6 B,12.9 A,35.9 A,14.6 B,12.9
i17 C,7.6 C,6.9 C,2.4 C,9.3 C,7.7 C,6.1 C,5.9 C,8.8 C,6.8
i18 B,12.5 B,5.8 B,3.1 C,10.3 A,24.3 C,7.7 C,8.2 C,11.1 C,11.6
i19 B,15.1 C,9.1 C,6.0 C,9.4 B,5.8 C,2.6 B,14.1 C,7.7 C,13.3
i2 A,6.7 A,4.6 A,6.0 A,9.2 A,5.1 A,54.2 A,14.2 A,5.3 A,38.1
i20 B,32.8 C,7.1 C,5.3 C,7.8 C,4.3 C,2.6 C,4.0 C,5.0 C,9.9
i3 A,8.0 A,14.0 A,3.7 A,20.9 A,2.8 A,5.2 A,10.4 A,2.6 A,12.6
i4 A,5.3 A,25.4 A,2.2 A,10.0 A,8.9 A,3.3 A,9.7 A,4.9 A,9.5
i5 A,7.1 A,6.6 A,1.3 A,14.5 A,2.7 A,8.9 A,46.0 A,2.8 A,67.5
i6 A,6.2 A,5.3 A,5.1 A,45.6 A,4.2 A,11.0 A,5.9 A,5.5 A,9.5
i7 A,61.1 A,9.1 A,2.6 A,19.6 A,2.5 A,4.5 A,8.2 B,10.5 A,10.7
i8 B,7.1 A,11.7 A,10.7 A,34.2 A,5.4 A,13.5 A,15.2 A,9.5 A,36.0
i9 B,7.5 B,16.5 B,8.6 B,8.3 A,18.6 C,4.1 B,8.3 B,6.2 B,18.1

4 Analysis

4.1 Accuracy and Speed

The most obvious relationship to look for is that between time taken to make
a diagnosis and accuracy. Defining accuracy simply as the percentage of correct
classifications, this can be plotted against average time. Figure 2 shows the
nine collected records on these axes. There appears to be a correlation between
average time and accuracy, with longer average times seeming to indicate a
greater number of correct classifications. The correlation between these two fields
is r = 0.5, giving a probability p = 0.085 that the correlation is spurious, or an
effect of the limited sample size. While this is a low probability, it does not fall
below the 0.05 threshold for significance. There are two outliers in the plot: one
record has a score of just 50%, while another has a score of 90%, but a low average
time. The low scoring record is the first attempt by trainee 260-0, who entered a
second record the following day. This second attempt scored 75%, and probably
indicates that the trainee initially misunderstood the instructions. It is possible
that the high scoring trainee that made decisions quickly has more experience or
aptitude than the others. Removing these outliers would give r = 0.83, p = 0.01.
This indicates that the relationship is potentially very useful, but requires a
larger data set to be certain.
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4.2 Time Deviation and Correctness

After examining the data along one axis, above, the next logical step is to change
axes and examine the data on a per-image basis. Converting each trainees timing
data into Z-scores, which are based on deviation from the mean, allows us to
remove differences in the means, leaving information only on the relative times
taken per image. The average Z-score per image then gives an indication of
the time, relative to the mean, that the average trainee takes for each image.
Plotting this against the number of trainees that correctly classified an image
gives Figure 3.
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Interestingly, the relationship between correct classifications and average Z-
score is negative: r = −0.58. Unlike the correlation between a trainee’s mean
time and score, this correlation is very significant (p = 0.004).

4.3 Visualisation

As well as statistical analyses of student data, we have produced prototype
visualisation models for use by instructors. One particularly useful visualisation
is shown in Figure 4.

The leftmost column shows the trainee username and run index. User 138,
run 0 is first, for example. The rightmost column shows the percentage of correct
classifications. The remaining 5 columns show the number of classifications and
misclassifications as a coloured circle and, in the left corner of each cell, numer-
ically. Column -2 gives the number of misclassifications such that the trainee’s
answer was two classes too low (normal when the correct answer was cancer).
Column 2 shows the number of misclassifications where the trainee answered
two classes too high. Columns -1 and 1 are misclassifications by one class and
column 0 shows correct classifications.

Fig. 4. Visualisation of group performance
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The purpose of the visualisation is to give instant and intuitive feedback on
the accuracy of the group, and the kind and number of misclassifications.

Interestingly, the majority of misclassifications are lenient. We expect this
to change over time in two ways. Firstly, we expect there to be fewer misclas-
sifications as the trainees’ skills develop. Also we expect the bias to shift such
that either there is no significant difference between the number of under and
over classifications, or that the bias moves so that misclassifications are mostly
assigning a higher grade to an image. The consequence of this kind of misclas-
sification is simply further investigation, while a lenient misclassification may
mean that the disease is diagnosed much later.

5 Discussion

The correlation between deviation from average mean time and case performance
(as described in 4.2) gives some indication of the process trainees use to make
classification decisions at this point in their training. Regardless of their average
time, spending longer than average on an image doesn’t appear to increase the
likelihood of a correct classification. In fact, the cases that were most correctly
classified were done in less than average time. This seems to indicate a more
automatic decision making process that requires less cognitive resources. Taking
longer than normal on a difficult image (suggesting more analysis) would appear
to provide no benefit to the average trainee.

Although the correlation between mean time and performance (section 4.1)
was not strong enough to be significant on this small data set, it is reasonable
to assume that the hypothesis that longer average times are associated with
higher classification accuracy will be shown to be significant with a larger data
set. Assuming, then, for the purposes of discussion, that the correlation is not
spurious, we can reason that at this stage in training, trainees that take a longer
average time to make a diagnosis are more likely to make a correct classification.
However, correlation does not necessarily imply causation. The factor causing
a trainee to examine images for longer could also be responsible for a high
classification accuracy. For example, these trainees might be, by nature, more
careful and thorough: traits that would cause them to have spent more time
and effort learning, practising and reviewing cases, leading to a higher score.
These same traits would cause the trainee to spend longer on each case in the
experiment. The previous correlation, showing a relationship between deviation
from mean time and accuracy, indicates that correctly classified cases generally
take less than average time.

If this does indicate thatmore amore automaticdecisionmakingprocess is a key
factor in classification, we would expect the relationship between average time and
accuracy to become progressively less pronounced as the subjects gain experience.

6 Conclusion

The results presented in this paper are the first findings of our investigation of
the process of learning histopathological microscopy.
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We have shown that a simple measurement of the time taken for a trainee to
analyse images could possibly inform us of the level of skill of the trainee. Such
information could be used to improve training and assessment.

Ongoing and planned work will seek to strengthen and build on these findings.
We are currently examining more complex processes, using a pair comparison
method after [10], to help build a model of subjects’ mental organisation of the
images, to investigate how this changes with training and time and to study
how this compares to the mental map of the images used by experts. A bet-
ter understanding of the process of learning histopathological microscopy will
allow trainers to identify areas that students find difficult, and focus training
accordingly.

As well as analysing trainee performance, we intend to seek relationships to
statistical image features. Previous research [7] has shown a strong correlation
between textural image features and classification, and it is reasonable to assume
that these same features could be used to improve training by predicting which
images trainees will find most difficult to classify or determining which features
trainees and experts use to make diagnostic decisions.

This study will also continue, with testing of trainees carried out after further
training and experience, to determine how the trainees improve, how to identify
which trainees will develop the necessary skills and those that need more training
as early as possible, and hopefully identify why some trainees are better at
analysing tissue.
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Abstract. Automated lung nodule detection through computed tomography 
(CT) image acquisition is a new and exciting research area of medical image 
processing. Lung nodules are potentially cancerous growths in the lungs that 
often appear in CT images as distinct, high intensity spherical objects. We have 
developed a nodule detection system. The first stage of the nodule detection 
technique automatically segments the lung regions using a unique 3D region 
growing approach. The next stage identifies regions of interests (ROIs) by using 
adaptive multi-level thresholding (MLT) based on the cumulative density 
function (CDF) of the lung volume. The last stage reduces false positives (FPs) 
by using unique features such as vessel and lung wall connectivity, a modified 
bounding box and 3D compaction to compensate for partial volume artifacts 
due to thick CT slices. We obtain a sensitivity of 80% with approximately 3.05 
FPs per slice. 

1   Introduction 

There is now significant research interest in identifying lung nodules in CT images 
using intelligent computer methods. CT has replaced chest radiography as the 
imaging modality of choice for diagnosis of lung nodules offering significant 
advantage in detection of small lung nodules with its good tomographic and 
spatial resolution. With its increase in accuracy, however, comes a significant 
increase in information to process. Analysis of chest radiographs involved review of 
only a couple of images whereas CT scans can produce in excess of several hundred 
images to inspect [5]. With the multiplicity of scans now performed daily this can be 
an overwhelming amount of data for a radiologist to review [1]. Computer aided 
techniques can be used as a tool to help radiologists identify lung nodules while 
reducing the burden of processing such large sets of information. 

In  particular,  small lung nodules may be overlooked during diagnosis by errors in 
perception  and  the  volume  of  information radiologists must analyze  [3],  [7],  [8]. 
However detection of small nodules is important because they may represent the 
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earliest stage of lung cancer. Lung cancer is now the most common form of cancer in 
both men and women [2]. It kills more people than the next three most common forms 
of cancer combined [8]. This emphasizes the need for finding ways to improve the 
diagnosis of lung cancer so it can be caught as early as possible. Early detection is the 
best way of increasing survival rates for lung cancer patients. The average five  year 
survival rate of lung cancer patients is 14%, while for patients whose cancer is 
detected early it is 49% [8]. 

Segmentation techniques have already produced optimistic results in testing which 
indicates they can improve lung nodule detection in a clinical setting [6]. Our 
segmentation technique uses a MLT algorithm combined with a sequential rule based 
approach to reduce false positives (FPs). We focus on 5 mm thick CT slices since 
these are the most commonly used in general screenings. We look for nodules as 
small as 2.1 mm in diameter. We also use an advanced region growing technique with 
redundancy to include as much of the lung area in our search as possible. Our ROI 
approach of MLT specifically performs well in producing properly filled nodule 
candidates within the ROI set. In the FP reduction stage we are using a sequential rule 
based approach. We examine features such as contrast, lung wall and vessel 
connectivity, size, shape and depth in a sequential rule based approach. 

2   Methods 

Automatic segmentation of the lung regions from a series of CT images is the first 
step in developing a nodule detection technique. A threshold value is found that is 
based upon the complete CT data set [4]. All values above this threshold are 
considered to be body pixels while all the values below are considered to be non-body 
pixels. The lung mostly falls in the non-body category except for vessels and nodules 
which will exceed the threshold value. After thresholding, images from the beginning 
of the series are sequentially checked until two objects whose sizes exceed 1 percent 
of the total pixels in the image are found. This slide represents the first image where 
both lungs are present in the image, and are of substantial size. This slide forms the 
base mask from which the region growing technique extracts the remainder of the 
lungs. The next two slides are also obtained using the same thresholding technique 
and used as separate region growing masks. The reason for this being that the 
thresholding technique might not produce an optimum initial mask in case a vessel 
traverses a portion of the lung. This scenario can cut off a small piece of the lung. The 
exact same region growing technique is applied for all three slides independently 
producing three complete results. These data sets are then ORed together to produce 
the final result. This final result is then multiplied with the original CT series, 
effectively extracting the lung portion of each slide. 

The region growing technique is applied using a mask image. The mask image is 
initially taken as the thresholded result. The lung region is filled to eliminate any 
holes in the lung regions (regions are defined as 8 connected in 2-D). This is done by 
only retaining regions that are connected to the background which exceed the 
threshold value. We then apply morphological operations to eliminate holes and to 
smooth the borders of the lungs. 
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The next step involves identifying the ROIs. For this we use an adaptive MLT 
algorithm that is applied to the original CT slices after lung segmentation. Aside from 
the lung segmentation no processing is done to the slices in order to prepare them for 
the ROI and FP reduction stages. The values in the lung are converted from their 
Hounsfield Unit (HU) values to gray level values. 

 1024gray level HU= +   
(1) 

The MLT technique uses a set of 30 thresholds. All objects above each threshold 
are considered to be separate ROIs. The thresholds are chosen using specific 
cumulative density function (CDF) values. By using the CDF our technique is 
adaptive making it robust to lung regions that have varied intensity distributions. We 
use three CDF values in order to choose our thresholds. Our top threshold is the 
97.5% CDF gray level value. The middle threshold is the 92.5% CDF gray level value 
and the bottom threshold is the 65% CDF gray level value. The 65% CDF value is 
checked against an absolute bottom value of 300 which was selected as objectively 
the smallest gray level value which can have enough contrast with a black background 
to represent a feint nodule. If the 65% CDF value is larger than 300 than threshold 
levels in increments of 20 are used between the 65% CDF value and the 300 gray 
level value inclusively. Using steps of 20 is consistent with larger steps that can exist 
between the 92.5% and 65% CDF values. The region defined by the top and middle 
values produces 10 evenly spaced thresholds and the region defined by the middle and 
bottom values produces 20 evenly spaced thresholds. The top region defines very high 
intensity values producing well defined solid structures and is referred to as the vessel 
range. We try to identify well defined horizontal vessels and large groupings of 
vessels using the vessel range in addition to detecting nodule candidates. In the range 
between the 92.5% and 65% CDF thresholds, referred to as the nodule range, we are 
focusing only on nodule candidates. The vessel range ensures that only well defined, 
distinct high intensity structures could be considered as vessels rather than small 
structures joined by diffusions because only very high values thresholds are used as 
determined by the CDF of the lung volume. In addition, as a last stage of ROI 
extraction a binary image is determined by accepting pixels in the nodule range in an 
attempt to detect nodules that are connected to higher intensity structures and thus 
would not be segmented properly by traditional thresholding. 

 

 
 

Fig. 1. An overview of the FP reduction process 
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The first stage of analyzing the ROIs includes obtaining a modified 2D bounding 
box and compactness from each nodule candidate. The modified bounding box is 
obtained by rotating the object based on its orientation using bi-cubic interpolation. 
From these modified bounding boxes the axis ratio and compactness are obtained. 
The area of the object is also obtained and is used in the FP reduction process. In our 
CT data sets the smallest nodule that could be detected had an area equivalent to a 
disk with a diameter of 2.1 mm. This represents the second time a thick slice nodule 
detection system has ever been able to detect nodules smaller than a 3 mm circle [3].  

(  ,  )
 

(  ,  )

max X length Y length
axis ratio

min X length Y length
=
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Area of Object
compactness

Area of Bounding Box
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ROIs are considered potential interior nodules if their axis ratio is below 2, their 
compactness is greater than 0.6 and they have practically no contact with the lung 
wall. These values were obtained through analysis of nodule candidates in our 
experiments and show that interior nodules are generally compact and may exhibit 
some elliptical properties. At this stage we also identify vessels and vessel grouping 
candidates. Vessels candidates have an axis ratio of above 2.5 and they must be larger 
than a 5 mm circle ensuring only relatively large and well defined vessels are 
identified. By using a modified bounding box we help to identify diagonally oriented 
nodules and vessels by increasing their compactness and axis ratio. We also identify 
large groupings of vessels by finding objects which are larger than a 30 mm circle and 
have no more than 65% of their perimeter pixels contacting the lung walls. By using 
the angular orientation of the nodule candidate we are able to more accurately obtain 
the true compactness and axis ratio of all nodule candidates where in a normal 
bounding box only horizontally and vertically oriented nodules could be accurately 
analyzed.  

We identify wall nodule candidates as those objects that have any contact with the 
lung walls and exceed the lung nodule minimum size criteria. Wall nodules do have to 
exceed a compactness value of 0.3; this is very lenient in order to only eliminate long 
curved objects that can appear along the lung wall contours.  

The next stage looks at all interior nodule candidates which are one slice thick and 
smaller than a 5 mm circle, the diameter is equivalent to the thickness of the CT slice 
in the scan. The pixels directly above and below the nodule are averaged and 
compared to the mean value of the nodule. If the contrast is greater than 15% of the 
nodule’s mean value or 100, whichever is smaller, than the nodule candidate is 
retained, otherwise it is eliminated. This stage targets small, isolated interior nodule 
candidates, whose main criteria for consideration is that they not be vertically 
connected. Candidates that fail this stage are most often vertically oriented vessels. 

We now process the nodule candidates from the previous stage to better define the 
3D shape of the nodules. We look at all 3D connected nodule candidates using 26 
point connectivity. If any 2D slice object is vertically connected to an object which is 
larger than four times its size than that smaller object is eliminated. This condition 
attempts to better define the volumes of large nodules by pruning off small vessels, 
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vascular objects and feint projections in adjacent slices. Once small objects are pruned 
the nodule candidates are once again processed, this time by keeping only those 2D 
slices of a nodule candidate whose areas are within 50% of the largest 2D slice of the 
3D nodule candidate. This process is used to more compactly define the 3D space of a 
nodule, which is a particular issue when using 5 mm thick CT slices because of partial 
projections in slices.  After this processing we have well defined 3D nodule 
candidates.  

The next stage involves using the vessel data that we collected from the first stage. 
Any 3D interior nodule candidate that has a slice that is 3D connected to any of the 
vessels by more than half of the nodule at the connecting slice is considered to be part 
of the vessel and is eliminated. If the nodule candidate is only slightly connected to 
the vessel than this is interpreted as a weak connection and does not guarantee the 
nodule candidate is part of the vessel; rather, this more likely signals a vessel feeding 
the nodule or just one that passes near the nodule.  

The next stage of the process looks at the vertical length of an interior nodule 
candidate and produces the nodule’s vertical ratio. 

( 1)  
 

(  ,  )

slices slice thickness
vertical ratio

max X lengths Y lengths

− ×=
 

(4) 

If any vertical ratio is greater than 3 then the interior nodule candidate is eliminated. 
The X and Y lengths are groups of values from each 2D slice of the nodule. The 
vertical ratio has a higher tolerance than the axis ratio because the vertical axis has 
larger units than the horizontal ones and thus projections in these units require a 
higher tolerance. In our CT slices the slice thickness is 5mm compared to 
approximately 0.7 mm for the X and Y dimensions of the image pixels in most cases.  

The final step involves combining the wall and interior nodule candidates to 
provide a final set that represents the suspected nodules as defined by our system. 
Wall nodules are treated less strictly in the FP reduction process because they are 
inherently more suspicious than interior nodule candidates. 

3   Results 

Our results are presented through an example of the kind of nodules our system was 
able to detect. We then present sensitivity results along with FP statistics. 

In Fig. 2 (b), our system detected three distinct types of nodules. It detected a 
relatively well formed nodule in the lower left portion, a tightly packed diffusion 
connected cluster in the bottom right and a group of spread out nodules in a diffusion 
in the top portion of the image. The tight cluster was actually grouped as one nodule 
that included the diffusion because the grouping was very compact. The nodules in 
the top grouping were identified individually because they were larger and more 
distinct than the tighter grouping. 

In Fig. 3 a significantly different CT data set can be seen. The background of the 
image does not have the same contrast as in Fig. 2 and in the 2 slices presented there 
are a large number of nodules in diverse contexts. Fig. 3 (a) shows two nodules that 
are detected even when there is significant interference from the diaphragm. On the 



778 M. Dajnowiec, J. Alirezaie, and P. Babyn 

 

left side of Fig. 3 (a) the nodule is poorly formed and irregular but the system was still 
able to detect it, specifically because the system treats wall nodules differently from 
interior ones. There are many different nodules that were detected in Fig. 3 (b) such as 
the large wall nodule at the top left of the image. This nodule takes on the contour of 
the lung in this image and so makes it very elliptical. The axis ratio exceeds the 
threshold of 2 for interior nodules, but it meets the criteria of a wall nodule since for a 
strongly connected nodule there is no axis ratio limit. There are also opaque areas at 
the bottom of Fig. 3 (b) that contain nodules but with poor background contrast as 
compared to the slice in Fig. 2. The system was able to detect these nodules even 
given the challenges of an irregular background and significant interference from 
other vascular objects presented due to various connections to the nodules. Fig. 3 (b) 
also gives two examples of small wall nodules that are detected, one that is well 
formed and one above it that is relatively irregular and actually blends into the 
background the further it extends from the lung wall.  

 
 

  
          (a)                      (b) 
 
Fig. 2. A sample CT slice. (a) Original CT slice. (b) Slice from (a) with lungs segmented and 
detection results highlighted. 

 

 
     (a)                     (b) 
 

Fig. 3. A pair of CT slices with a significant number of detection results highlighted 
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A comparison of the system to some other popular techniques is presented in table 
1. At first glance our system may not appear to be among the top performers in the list 
but an analysis of the CT data will yield significant insight. There is only one other 
technique that tries to detect nodules that are smaller than a 3 mm circle using thick 
slice CT scans and that is the one developed by Gurcan et al. [3]. However, their own 
data set consists of only 63 nodules, 15 of which are smaller than a 4 mm circle. Our 
data set consists of 239 nodules, with 41 nodules being smaller than a 4 mm circle. Of 
these 41 nodules, 28 fell below our own minimum size criteria. This is a significantly 
larger and more challenging data set than the one used by Gurcan et al. [3] based on 
the number of nodules used and the number of small nodules present. In fact any of 
the 41 small nodules in our CT data set would not be detected by the system 
developed by Kanazawa et al. listed in table 1 as they all only target nodules larger 
than a 4 mm circle [5]. That means, even with perfect sensitivity performance on the 
nodules they could detect, based on size they could do no better than a sensitivity of 
83%. Of the different techniques mentioned, the system developed by Armato et al 
actually had the most similar data set as they used 17 CT scans with a total of 187 
nodules, compared with our own data that consists of 19 CT scans and 239 total 
nodules. Our system’s performance when compared to that technique is actually very 
promising. 

 
Table 1. A comparison of different reported lung nodule CAD systems [1], [3], [5], [8] 

CT study Sensitivity FPs 
Armato et al. 70% 3.0/slice 
Gurcan et al.  84% 1.74/slice 
Kanazawa et al. 90% 8.6/case 
Zhao et al. 84.2% 5.0/case 
Our approach 80% 3.0/slice 

 

    A look at table 2 shows a detailed, case by case, analysis of our system’s 
performance. The sensitivity performance is shown to be approximately 80% with 
3.05 FPs per slice (2891/947). The FP performance ranges significantly with a 
minimum of 1.46 and a maximum of 6.55. This shows how dependant the FP 
performance is on the actual CT data set. There is some correlation between the 
number of nodules and the number of FPs but there are also clear exceptions to the 
attempt at linking more nodules with higher FPs per slice. In fact, case ID58F had 
only one nodule but there were 4.89 FPs per slice, where case FB3F had 34 nodules, 
the third highest among cases, but only 1.98 FPs per slice. The variety between cases 
is significant as they range between 0 and 103 nodules. On a case by case basis the 
performance of the system ranged between 67% and 90%, which is a significantly 
smaller variance than the FP performance. The use of our tight bounding box helped 
to reduce FPs by an average of 10% when compared to a traditional bounding box 
approach. In addition the diversity and size of our data set reflects the importance we 
have placed in a robust data set to produce meaningful experimental result. Other 
systems have been shown to practically fail using a different data set, where initial 
testing showed excellent sensitivity and FP performance [3].    
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Table 2. A detailed presentation of the nodule detection system’s performance on a case by 
case basis 
 

Case # of nodules # detected Sensitivity FPs / slice 
FB1F 1 0 0.00% 2.23 
FB2F 0 0 N/A 1.46 
FB3F 34 25 73.53% 1.98 
FB4F 1 1 100.00% 1.80 
FB5F 1 0 0.00% 2.07 
FB6F 13 9 69.23% 3.33 
FB7F 0 0 N/A 4.11 
FB8F 1 1 100.00% 3.09 
FB9F 8 6 75.00% 2.25 
FB10F 1 0 0.00% 3.77 
ID101F 58 52 89.66% 5.68 
ID51F 0 0 N/A 4.06 
ID52F 103 85 82.52% 6.55 
ID53F 13 10 76.92% 3.20 
ID54F 1 0 0.00% 3.76 
ID55F 0 0 N/A 1.84 
ID56F 0 0 N/A 2.07 
ID57F 3 2 66.67% 2.18 
ID58F 1 0 0.00% 4.89 
Total 239 191 79.92% 3.05 

4   Discussion and Conclusions 

Our lung segmentation technique evolved from our analysis of a paper that was 
focused on lung segmentation [4]. Automatic lung segmentation is a crucial first stage 
in the nodule identification process because the segmentation needs to present a good 
representation of the lungs. The results of our technique are encouraging and it 
addresses the issue of including the top and bottom of the lungs as their volume 
decreases. This issue is resolved by using 3-D region growing to include connected 
components. Our technique also successfully retains disconnected components of the 
lung by using a combination of region growing and redundancy in the mask image 
used for region growing.  

We are very encouraged by the performance of our ROI detection algorithm. The 
algorithm is more thorough and unique compared to those found in past techniques 
through its use of non-linear adaptive thresholding [2]. Through our experience, this 
approach does a good job of providing very full representations of nodules. This is 
important for the rule set because we have a good idea of what 2-D slices of nodules 
will look like coming out of the ROI stage. In addition the technique allows us to 
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detect vessels by identifying a subset of thresholds where vessels are likely to be 
present. One of the major shortfalls of the MLT approach is that nodules connected to 
higher intensity objects can not be properly segmented from them. This is an issue 
that is important in future development of the system. As a precursor to this 
development our system also includes a single thresholding stage that identifies pixels 
within the nodule range rather than using a binary threshold limit to get an intensity 
mapping of ROIs. This approach can be expanded upon and an ROI extraction 
process that uses ranges rather than single value thresholds can be developed and 
evaluated. ROI extraction is a crucial step as accurate representations of lung volume 
objects is crucial to having good nodule detection results.  

For FP reduction we have introduced the idea of identifying vessels in order to use 
their connectivity with nodule candidates to reduce FPs. We have also produced a 
modified bounding box which does a better job of characterizing lung nodules which 
have a non-trivial angular orientation. Our system is only the second system that can 
detect nodules smaller than a 3 mm circle using thick slice CT scans and between us 
we have had the opportunity to use a significantly larger data set for testing. One of 
the major challenges for our system is to reduce the number of FPs. Our sensitivity 
performance is very good, given the context of our data set, and so the focus of future 
development will be on improving FP reduction. Other techniques [1],[3] have 
successfully used linear discriminant analysis (LDA) to improve FP performance and 
exploring this technique is of immediate interest in our development of the system. In 
addition, more features for the nodule candidates will be examined with a focus on 
providing contextual information for the FP reduction system. Improving the 
contextual understanding of nodule candidates is the single most important area we 
need to improve upon in order to advance the FP reduction system.  

The potential of our nodule detection technique is looking very promising as an aid 
for radiologists in detecting lung nodules. Our technique offers many innovative new 
stages that can be built upon and used by others in existing techniques to improve 
lung nodule detection. In addition there are many promising avenues of research to 
pursue in an attempt to improve the system.  
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Abstract. In this paper we show some preliminary results of our re-
search in the fieldwork of classification of imbalanced datasets with SVM
and stratified sampling. Our main goal is to deal with the clinical prob-
lem of automatic intestinal contractions detection in endoscopic video
images. The prevalence of contractions is very low, and this yields to
highly skewed training sets. Stratified sampling together with SVM have
been reported in the literature to behave well in this kind of problems.
We applied both the SMOTE algorithm developed by Chawla et al. and
under-sampling, in a cascade system implementation to deal with the
skewed training sets in the final SVM classifier. We show comparative
results for both sampling techniques using precision-recall curves, which
appear to be useful tools for performance testing.

1 Introduction

Automatic detection of intestinal contractions is one paradigmatic example of
classification with imbalanced datasets. Its prevalence is very low, and the data
analysis requires high amounts of expert time.

Both the number of intestinal contractions, and their temporal distribution
along the intestinal tract, characterize small bowel motility patterns that are in-
dicative of the presence of different malfunctions. Different techniques have been
applied for intestinal motility analysis in several medical imaging modalities. A
good review about this issue can be found in [1].

The novelty of our research in this fieldwork relies on the use of Wireless
Capsule Video Endoscopy images (WCVE) [2,3,4]. In this clinical domain, the
specialist has to analyze a video, and manually label each frame where a contrac-
tion event happens. Usually, each video analysis may last one or two hours, and
among a typical quantity of 20,000 frames, only 700 contractions are reported.

We focused our efforts on the automatic detection of intestinal contractions
using video as data source. We have trained a SVM system with contraction
and non-contractions frames from several videos, previously labelled by hand by
the experts. The choice of SVM [5] is underpinned by the fact that empirical

S. Singh et al. (Eds.): ICAPR 2005, LNCS 3687, pp. 783–791, 2005.
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results show a good behavior of this technique with moderate skewed datasets.
Recently, several methods have been developed to improve the performance of
SVM classifiers on imbalanced problems [6,7]. Stratified sampling is based on
re-sampling the original datasets in different ways: under-sampling the majority
class or over-sampling the minority class. In this work, we show the preliminary
results of a comparative study of under-sampling vs. SMOTE over-sampling
technique [8]. Both techniques SVM and other popular single classifiers have been
applied. With the purpose of reducing the imbalanced character of the datasets,
we use a 2-steps cascade methodology that prunes false positives without loosing
sensitivity.

In order to assess the performance of the different methods implemented,
precision-recall curves are proposed. The main advantage of these plots is that
they show both the sensitivity of the system and the noise introduced. A detailed
explanation of the utility of these plots for imbalanced dataset is also developed.

The rest of the paper is organized as follows: Section 2 introduces the method-
ology used: the data description and the feature set, and describes the classifica-
tion system. Section 3 shows the comparative results for several single classifiers
and SVM, using different sampling methodologies. Finally, Section 4 is devoted
to the discussion of results and suggestions for further research.

2 Methodology

2.1 Intestinal Contractions

Intestinal contractions are a dynamic event. The expert labels a frame in a video
as a contraction if it corresponds to a temporal pattern that spans 9 frames as
an average -corresponding to 5 seconds in real time-. The frame labelled as
contraction is, therefore, the central frame of a sequence of 9 frames. Several
examples of intestinal contractions can be found in Fig. 1.

With the aim of automatically detecting intestinal contractions, for each
frame, 6 features were calculated based on well known intensity and texture
descriptors: normalized intensity, contrast, hole detection based on a Laplacian
filtering and 3 values from concurrence matrices. We build up a feature vector of

(a) (b)

Fig. 1. Video sequences obtained from wireless capsule endoscopy: typical patterns
of contractions (a) and non-contractions (b) for 3 sequences of 9 frames. The central
frame of these sequences is presented bounded by a rectangle.
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6x9 features, associating with each frame the dynamic information of the whole
sequence. All the chosen features are popular standard descriptors exhaustively
used and referenced in the image analysis and computer vision literature [9,10].
As far as we know, no previous works have been published to describe the kind of
intestinal events we are dealing with in this sort of image acquisition technology.
We are developing our project in a continuous contact with the clinical experts,
and on each research step, new information is added from the expert’s knowledge
about different typologies of contraction events. So, our aim is to get the most
general and flexible feature set, so as to be adaptable to this dynamic scenario.
We reached this optimal set through an exhaustive heuristic search achieved
through the repetition of several experiments, and the analysis of the relevance
of each feature for classification.

2.2 Classification System

Each video typically has 20,000 frames, among which only around 500 contrac-
tions are to be found. Since the system should classify all these 20,000 frames
as contractions or as non-contractions, a highly skewed problem is presented.
We adopted a pre-classification step with the aim of eliminating as many false
positives as possible from the original video, without loosing many true contrac-
tions. This first stage was implemented in the following way: we consider each
one of the features as single values that can be used to divide video frames into
contractions and non-contractions using a single threshold. When a threshold is
applied, all the video frames are divided into two separated sets: the positives,
that will pass to the next step of the system, and the negatives that will be
definitely rejected. We expect that most of the contractions of our video will
lay in the positive set, and that many of the non-contractions will fall on the
negative set. In order to guarantee this, we looked for the threshold value of
every feature that kept the 99% of contractions in the positive set. Next, among
all thresholds, we selected the one less non-contractions in the positive set. With
this simple method, a ratio of 1:5 in the proportion between contractions and
non-contractions was achieved. This strategy helps us to bound the knowledge
that the classifier acquires from the video frames, in an attempt to reduce the
variability of the samples in the decision space.

The second stage of the classification system was the SVM, trained only
with the frames that passed the first stage. We used a radial basis function
kernel (RBF) with g=0.01. Most classifiers tend to classify everything as the
majority class -negative- as the imbalanced character is accented, so this is the
optimal solution in terms of global error. For this kind of imbalanced problems,
the performance of the SVM is less sensitive, as the classification strategy is
based only on some samples -the support vectors- and the rest of the samples
have no influence. However, several studies seem to show that stratified sampling
is a useful tool for improving the final decision border in SVM [11,6]. We tested
two different strategies of sampling: under-sampling the majority class and over-
sampling with the SMOTE technique.
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3 Experimental Results

For our experiments, 8 videos of 1-2 hours of length were used. These videos
were labelled by the experts, identifying the frames where the contractions were
present. An average of 500 contractions were labelled by the expert in each video.
We applied the leave-one-out method: each run, one video was used for testing
and the rest for training, in a resulting number of 8 runs. On each run, the
threshold for the first step was calculated, and the SVM was trained exclusively
with the frames that passed the first stage. We also trained a set of popular
single classifiers for comparison purposes: linear, logistic, and 1,5,and 10 nearest
neighbor (1-NN, 5-NN, 10-NN) [12].

Two sampling methods were tested: under-sampling and SMOTE. For under-
sampling, we trained the classifiers choosing randomly from the training set a
number of non-contractions equal to that of contractions, so the final training
set for each leave-one-out run was build up with 500x7 contractions and the
same number of non-contractions -around 7,000 training samples. For SMOTE,
we replicated the positive samples up to the number of non-contractions. Since
around 2,500 frames typically pass the first stage, this yields to a training set
of around 35,000 samples. The discussion section analyzes this point, which
deserves special attention.

We carried out our experiments in order to answer two main questions: 1)
In what measure the sampling technique used affects the performance of the
classifiers tested, and 2) In what measure SVM outperforms the rest of classifiers
for our dataset. With the aim of illustrating both questions, we use the precision-
recall curves pr-curve, that is a standard evaluation technique in the information
retrieval community [13]. Precision is a measure in the interval [0,1] defined as
the ratio of true positives detected over all the system output. It will be one
when the system detects only positives, and zero when the system detects only
negatives. In this way, a low precision value is associated with a high number
of false positives, and it can be viewed as a measure of noise at the output
stage. Recall -also known as sensitivity- is a measure in the interval [0,1] defined
as the ratio of true positives detected over the total number of positives. It
will be 1 when the system detects all the existing positives, and zero when no
positive is detected. For imbalanced problems, both measures together give more
information than ROC curves. In ROC curves [14,15], precision is substituted
by 1-specificity, or false positive ratio, and so the proportion between positives
and negatives is not taken into account.

In order to give response to question 1, comparative plots are presented
in Fig. 2. We can see that no substantial improvement is achieved by any of
both sampling techniques, neither for single classifiers nor for the SVM, and
the classifiers performance seems to be quite invariant to the sample method.
Regarding the performance of SVM with respect to the rest of the classifiers,
both for under-sampling and SMOTE, SVM outperforms their competitors. Fig.
3 shows that only for low levels of recall -when almost no positive is detected- NN
classifiers appear to be competitive. A quantitative approach can be analyzed by
means of the area under the PR curve (AUPRC). The AUPRC gives us a metric
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Fig. 2. Under-sampling (dashed) vs. SMOTE over-sampling (solid) for detection of
intestinal contractions with several classifiers. (a) linear, (b) logistic, (c) 1-NN, (d)
5-NN, (e) 10-NN, (f) SVM.

for assessing the classifier performance. We calculated it using the polygonal
rule, in the same way as it is done for the calculus of the area under a ROC
curve [16]. Table 1 shows the AUPRC related to the graphs in Fig. 3.

Several important conclusions can be inferred from these results, which de-
serve special attention so next section is devoted to their analysis.

4 Discussion

We presented some preliminary results of our research in the automatic detection
of intestinal contractions in video endoscopy, a highly imbalanced problem due to
the low prevalence of contractions in video. In order to implement a classification
system, a set of classical image descriptors based on luminance, contrast and
texture was associated to each frame. The dynamic behavior was taken into
account building up feature vectors containing all these basic descriptors for
each one of the frames in a +/ − 4 frame neighborhood.

One of the main characteristics of our system is the cascade implementation.
In a first step, we make an exhaustive search of a single threshold in the feature
space that keeps the 99% of contractions and rejects the majority of the non-
contractions. The video frames passing this threshold are sent to the second step,
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Fig. 3. Single classifiers vs. SVM (solid line) for (a) under-sampling and (b) SMOTE

Table 1. AUPRC for under-sampling and SMOTE experiments of Fig. 3. SVM out-
performs all the rest in both cases.

AUPRC AUPRC
Classifier Under-samp. SMOTE
Linear 0.6100 0.6021
Logistic 0.6067 0.6006
1-NN 0.5324 0.5485
5-NN 0.5946 0.5849
10-NN 0.6282 0.6216
SVM 0.6934 0.6946

consisting of a SVM classifier. It can be affirmed that this way of operating with
imbalanced problems constitutes a rapid and efficient way of reducing the total
number of false positives, i.e., reducing the ratio of the imbalanced datasets.

The plots of section 3 show a comparative study between two different meth-
ods of sampling: under-sampling the majority class and over-sampling the minor-
ity class, both for single classifiers and SVM. The choice of these single classifiers
is due to two important reasons: 1) On the one hand, linear and logistic clas-
sifiers are simple and fast; K-NN is a non-parametric technique that makes no
assumption over the probability density function; we aimed at finding out if
there was the same difference in behavior with these classifiers in order to infer
conclusion for the SVM. 2) On the other hand, for the SMOTE implementation
the training set typically has around 35,000 samples in a 54 feature space. In
this situation, most of the software implementations -PRTools were used [17]-
did not present the possibility of testing some common classifiers such as Parzen
or decision trees owing to this huge amount of data.
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In this point, recent works have tested SMOTE with several classifiers in
common public databases, such as UCI [8,6], showing improvement with respect
to under-sampling in some experiments. The results seem to show that for our
problem, not a hard assessment can be done in order to affirm that SMOTE
outperforms under-sampling -maybe, slightly in the best of cases-. It must be
pointed out that the aim of SMOTE is to provide a sufficient quantity of minority
class samples to equilibrate the number of samples for the negative class. But
this is not the only important issue: special attention must be paid to the fact
that when we have very few samples for the minority class, they may not be
enough to reconstruct the probability density function underlying them, which
is basically the role of SMOTE. We suggest that this is the case of our data
set, as well as of other examples presented in the papers mentioned above. Our
efforts are focused on the research of this point and the theoretical and empirical
confirmation of this hypothesis.

The final results of our SVM classifier outperform all the remaining classifiers.
This fact has been illustrated by means of the precision-recall curves that are
presented as a useful tool for the assessment of imbalanced problems. In terms
of operating points, the plot in Fig. 3(b) shows that with an 80% of detection
of all the existent contractions in the video, a 40% of detections is found in the
system output. This appears to be a promising result that motivates us to follow
this line of research improving the system, testing new classifiers and sampling
methodologies.

The aim of this paper is twofold: 1) On the one hand to present our prelimi-
nary results showing that SVM outperforms the best of single classifiers used for
this particular imbalanced problem of intestinal contractions. 2) On the other
hand, to show that both sampling techniques used in this work yield to similar
results for SVM. We cannot avoid deepening in the analysis of the consequences
associated with our results. In fact, if the different sampling techniques used
appear to have no effect in the final performance of the system, it is due to some
relevant characteristics of our specific problem, closely related to the statistical
properties underlying our datasets. Moreover, the sampling techniques we use,
which seem to work for other studies -some of them already referenced in this
paper-, appear to give no performance improvement for our problem. This is a
very challenging and interesting line of work, in which our group is completely
involved.

We could re-formulate last paragraph into the next question: ”Why is perfor-
mance improving using one sampling method problem-dependent in SVM with
imbalanced datasets?”. In this sense, the next experiment is to be of high in-
terest and can help us to shed light in this scenario: Let us consider that we
have two imbalanced datasets with samples N1 for the minority class -positives,
contractions-, and N2 for the majority class -negatives, non-contractions- and,
consequently N1�N2 (this is the typical scenario of an imbalance problem).
Now, keep N1 fixed and under-sample from N2 several times, to generate a
smaller number of samples for training the classifier. Our purpose focuses on see-
ing the extent to which SVM is better as the skew or imbalance gets worse. The
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same experiment can be repeated over-sampling N1. This analysis is extremely
important to draw any firm conclusions about classification performance. Never-
theless, the inference that can be obtained from it is not so straightforward, and
it is worthy of special and subtle attention. In this point, and in order to under-
stand why a specific classification performance is achieved, two main questions
should be stated: how the data distribution around the decision border is for both
datasets, and how descriptive the positive samples are for the probability density
function (PDF) of its class. Why? The first question is strictly related to the
decision of the margins for the SVM, the second one is strictly related to the way
in which over-sampling will perform. This analytical study is of high relevance,
but it also holds intrinsic difficulties related to the statistical description and
the geometrical analysis necessary to understand how the real distribution of
the whole data in the n-feature space is, an how well the distribution provided
by the samples we use for training fits the real PDF of the minority class. Finally
an equally interesting question is open: how the choice of the sigma parameter in
the SVM may affect the final performance of the classification in this scenario.
We are preparing a more extended work with all these points of study, including
the proposed experiment for a further piece of research.

Finally, one of the main objectives of our future work aims at addressing
the feature extraction problem, in order to achieve better descriptors for the
intestinal contraction events, as well as deepening into the achievement of the
optimal set of features that we need in order to properly describe an intestinal
contraction -i.e., the feature selection problem-. We expect that our collaboration
with the clinical experts will help us to advance in this challenging fieldwork,
which is of vital importance for an optimal result.
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Abstract. Particle tracking is important for understanding the mobile behaviour 
of objects of varying sizes in a range of physical and biological science 
applications. In this paper we present a new algorithm for tracking cellular 
particles imaged using a confocal microscope. The algorithm performs adaptive 
image segmentation to identify objects for tracking and uses intelligent 
estimates of neighbourhood search, spatial relationship, velocity, direction 
estimates, and shape/size estimates to perform robust tracking. Our tracker is 
tested on three videos for vesicle tracking in GFP tagged videos. The results are 
compared to the popular Harvard tracker and we show that our tracking scheme 
offers better performance and flexibility for tracking. 

 
Keywords: Particle tracker, Vesicles, Insulin, Diabetes, Confocal Microscopy, 
Image Analysis. 

1   A Novel Multiple Particle Tracker 

Particle tracking has been used recently in a number of contexts. These include, but 
are not limited to: (a) Tracking and analyzing bacterial motion (Soni et al., 2003); (b) 
Analysis of nonhomogeneous spatial distribution of cytoskeletal polymers such as F-
actin, microtubules, and intermediate filament and their auxiliary proteins by tracking 
microspheres (Tseng et al., 2002); (c) Protein or lipid tracking (Vrljic et al. ); (d) 
Tracking single chromaffin granules beneath the plasma membrane in three 
dimensions  (Qian, 2000); (e) Determining the relation between the degree of spatial 
heterogeneity and the mechanical properties of cross-linked actin filament networks 
(Tseng and Wirtz, 2001); (e) Tracking the sub-micron motion of individual 
organelles, microspheres, and molecules under microscopic observation (Cheezum et 
al., 2001); and (f) Tracking animal or insect colonies (Khan et al., 2003); (g) Genetic 
material tracking (Babcock et al. , 2004).  

In this study we propose a novel particle tracker. The algorithm is capable of 
tracking multiple particles simultaneously and improves upon the image processing 
component of traditional trackers. The proposed tracker performs better quality image 
segmentation to ensure that all particles are properly identified. The tracking process 
uses a range of intelligent criteria to ensure that particles are not lost especially if they 
are travelling at multiple speeds and randomly accelerate. We first present the 
algorithm of our tracking procedure and then highlight its major strengths in 
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comparison with Harvard tracker developed by researchers at Harvard 
University,Berg(2000)http://webmac.rowland.org/labs/bacteria/index_software.html. 

A detailed comparison with Harvard tracker on experimental results follows in 
section IV. 

Algorithm: Intelligent Particle Tracker 

1) Take input from the user on their choice to track either all particles in the video or 
a selected number of particles through mouse input. The user also enters the name of 
a text file that contains the inputs to the system. The contents of the file includes: 
Input file name, Output file name, Thresholding cut-off, Starting frame number, End 
frame number, Frame rate, Scale of the video, Search radius, Velocity threshold and 
Velocity Thresholding state. The text file can either contain a single video clip of all 
the frames or a collection of small clips involving a subset of frames 

2) Input Processing Module: This module accepts all user-defined parameters and 
integrates calls to other sub modules of the system. This procedure is looped across 
different clips as mentioned in the input text file. The various function calls include: 
Video Pre-processing module, Particle tracking module, Output display module and 
Statistics computation module. 

3) Video Pre-processing Module: This module pre-processes the video clip to 
required specifications of the system. Pre-processing steps include: 

a) Generation of information from the original video such as number of frames, 
height and width of the video frames, etc. 

b) Repeat across all frames of the video and  
i. Perform adaptive thresholding (conversion into a binary image) of 

individual frames (Yasuda et al., 1980). Let us denote these N  
particles in the first frame of a video as ),...,1( Npp .  

ii. Also discard objects of size less than 2pixels. 
iii. Label all objects in the image with a unique address that remains the 

same as the object is tracked. 
iv. Generate region properties of the objects in the image such as area, 

shape, histogram information, etc.  

4) Particle Tracking Module: This module is central to the tracking mechanism 
involved in the system. The module accepts the information on particles that need to 
be tracked from the previous step. This requires the following sub-processes. 

a): Store the values of the coordinates of all objects in all frames into x and y 
variables. 

b): If the particles are denoted as ),...,1( Npp , that can be represented as 

),...,1( pp t
N

t  at time t , then track these as follows: 

i. For all particles pt
i , if their position in frame t ),( yx t

i
t
i  is given by 

coordinates ),( yx t
i

t
i , then consider a search radius of size R with ),( yx t

i
t
i as 

the centroid in frame 1+t . 
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ii. Find the number of particles in this search radius. A total of M particles 
within this search radius can be represented as )...,,...1( Mqjqq , for 0≥M . If 

0=M , then follow step 4(e) of this algorithm. Otherwise, compute a vector of 

similarity between pt
i  and ),...,1( Mqq . The similarity between each particle 

pairing is computed based on area, distance, shape, and histogram similarity 
using purity estimate of histogram (Singh and Singh, 2004). If these estimates 

for particle pt
i  are given as )(At

ip , )(dt
ip , )(St

ip  and )(Ht
ip , and similarly 

for particle qt
j  are given as )(At

iq , )(dt
iq , )(St

iq  and )(Ht
iq , and if these 

estimates are within [0,1] range, then the overall similarity is given by: 
 

2))()((4
2))()((3

2))()((2
2))()((1 Ht

iHt
iwSt

iSt
iwdt

idt
iwAt

iAt
iwS qpqpqpqp −+−+−+−= . 

The area estimates are normalised to be between [0,1] range, whereas shape and 
histogram purity measures are normally defined to lie within this range 
automatically. The weights are normally set to be the same for all similarity 
estimates except for distance matching that has higher weight. 

iii. Link particle pt
i  to particle qt

j  for which S  is the least. 

e): If no matching particle is found within the search radius, i.e. either there is no 
particle within the search radius or those found can be better linked with other 
particles, then use directionality estimates to search for the best suited particle. For 
this purpose, do the following: 

i. Calculate the direction of movement as the slope of the trajectory between 

particle pt
i  position in frame t  and the previous frame 1−t . If the angle of 

movement is angle θ  between the line and the horizontal axis, then search for 

available orphans within en envelope of )45,45( oo +− θθ  (see Figure 1(b)). 

This is based on the observation that particles do not move outside this 
envelope; the size of the envelope can also be increased if needed. 

ii. An orphan Ot
k at time t  is defined as a particle that has no linked path to 

previous frame. These orphans are not linked to a trajectory since they might 
have been lost in the tracking process or these might be new particles entering 
the image. The similarity metric S   defined in step 4(d) is now performed for 
matching the particle to all orphans within the search envelope. 

5) Output Display Module: The output display module is responsible for displaying 
and recording the output of the tracking process as made in the previous stage. The 
output of this module is a set of trajectory plots.  

6) Statistics Computation Module: The purpose of the module is to derive various 
critical statistics from the tracking process on the video. The current set of statistics 
that the module has been trained to derive include: average speed of particles, 
standard deviation of the speed of particles, total number of objects in the video, 
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number of objects considered moving in the video, percentage of objects moving, 
directionality of objects in angles, displacement vector of objects in each frame, area, 
centroid, Convex Hull, Euler Number, Convex Image, Extrema, Bounding Box, 
Convex Area, Equiv Diameter, SubarrayIdx, Image, Solidity, Major Axis Length, 
Pixel List, Extent, Minor Axis Length, Pixel Idx List, Filled Image, Orientation, 
Filled Area and Eccentricity, Shape measure, of objects in each frame of the video. 

 

Fig. 1. The computation of the shape measure (a), and tracking objects outside search radius (b) 

In this paper we propose a new measure of shape that is used in our particle 
tracking system. Each object is first segmented and edge traced to find its boundary. 

If the N boundary pixels on the object of interest B are given as ),...,( 1 Ngg , then 

their curvature at each pixel is calculated as ),...,( 1 Ncc . Starting with the first five 

pixels with the highest curvature, these pixels are joined together to form a closed 
polygon A  (see Figure 1(b)). When a total of i  pixels are joined together to form 

this polygon, which has area ia  for the closed polygon, and area b for the object of 

interest, and their overlap (common) area equals ih , then an estimate of the amount 

of overlap can be calculated as )/()(2 bahs iii += . As Ni → , 1→is . If i  is 

scaled to lie between [0,1], and since is  already lies between [0,1] range, the area 

under the curve S that plots is  on the vertical axis, and i  on the horizontal axis, is an 

effective shape measure. It is unique for different shapes. Shapes that have too many 
high curvature points need more complex polygons to fit them (high value of Ni →  

before is approaches unity), and will have a smaller value of S  compared to shapes 

will less number of high curvature points on the boundary. Furthermore, the values of 

is  can be weighted if needed to give more weight to high or low curvature points as 

needed. 
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Our model has several important differences compared to the popular Harvard 
tracker which is also based on the concept of nearest neighbour based particle 
tracking. These include: 

1) Our software accepts mouse inputs from users to track specific objects of 
interest. This will be important for biologists in tracking their objects of interest. 

2) We use adaptive thresholding (Yasuda et al., 1980) as opposed to fixed 
thresholding to select particles for tracking after the frames are enhanced using 
Gaussian sharpening. 

3) The pairing of particles across frames is completely different in the two models. 
The Harvard model uses the nearest neighbour approach based on drawing a search 
radius and linking the centroid of a particle to the nearest other centroid. Our 
algorithm uses a set of if-then conditions (as discussed in the algorithm) to perform 
this process which is based on comparing a number of particle features based on 
directionality, shape, size, and data distribution.  

4) Quality of tracking is much superior with our proposed model. We are able to 
track more particles for longer, and with higher accuracy. 

We next discuss the problem of vesicle tracking for understanding the behaviour of 
insulin in diabetic cells, and how our model can be used effectively in this context. 

2   Tracking Vesicles in GFP Tagged Videos of Living Cells 

The regulation of cargo trafficking between intracellular compartments is central to 
the control of many cellular processes and as such has been an important area of study 
in the cell biology field.  A major breakthrough in this field came through the cloning 
of green fluorescent protein (GFP) from the jellyfish Aequoria Victoria.  GFP is a 
27kDa protein which possesses intrinsic fluorescent properties which allows it to be 
expressed in a fluorescent form in a whole range of organisms and cell types from 
bacteria to man (Tsien, 1998).  The localization and trafficking of any cloned protein 
can be monitored in a living cell by laser scanning microscopy by fusing GFP to one 
or other end of the protein. 

In this paper we use multiple particle tracking to study the dynamics of GLUT4 
vesicles in single living cells. Rapid sub-second imaging showed that GFP-GLUT4 
vesicles exhibited two types of movement, firstly rapid vibrations around a point and 
secondly linear movements that were demonstrated to be along microtubules (Fletcher 
et al., 2000). It is known that insulin both increases the rate of movement of GLUT4 
to the cell surface and decreases the rate by which GLUT4 can re-enter the cell.  Thus 
to gain further insights into the molecular basis underlying these movements, and  
understand how insulin causes translocation to the cell surface, it is essential to 
develop methods by which we can accurately track and measure the speed and 
directionality of vesicles, and their fluorescent intensity, under a variety of conditions.  
However since the GLUT4 vesicles rapidly change direction, can coalesce or bud off 
from other vesicles, tubulate and can change shape, it has been very hard to develop 
vesicle trafficking software that can accurately and faithfully follow movement of a 
single vesicle between frames. Success in achieving these aims will allow dynamic 
tracking of multiple different types of intracellular organelles including peroxisomes, 
endosomes, lysosomes, and mitochondria in a quantitative manner. 



 Multiple Particle Tracking for Live Cell Imaging with GFP Tagged Videos 797 

 

3   Results 

All of our experiments are performed on a total of three videos obtained in line with 
the work of Tavare et al. (2001).  These videos were captured at different resolutions 
at 15 frames per second (video 1 at 196x 160 pixels, video 2 at 224 x 216 pixels and 
video 3 at 192 x 192 pixels). The resolution is increased in Matlab to 720 x 480 pixels 
for further analysis. The original video compression MSVC is changed to Indeo5. The 
image type is “indexed” and “true colour”. Video 1 contains a total of 73 frames, 
video 2 162 frames and video 2 contains 92 frames. All analysis was performed on a 
AMD Athalon 2.16 GHz processor under windows environment using Matlab 6.5. 
The experiments are conducted to analyse: (a) The quality of adaptive thresholding 
(Yasuda et al., 1980) compared to fixed thresholding for detecting particles to track; 
(b) The computation of various statistics on the movement of particles in terms of 
their displacements, velocity, direction of movement and analysis of trajectories; (c) 
The ability to track fast accelerating particles that are outside the search windows of a 
defined radius; and (d) To interpret the results in a biological context. These 
experiments are discussed below. 

A. Adaptive Image Segmentation 
Particle trackers often use fixed image thresholding for finding the particles to track. 
This is not recommended for low-resolution images where the particles appear with 
varying image intensities. In our analysis we use adaptive thresholding. A 7x7 pixel 
window is used to split the image into local neighbourhoods that are independently 
thresholded. The thresholding is based on calculating the median of the window and 
then using it to label pixels as belonging to the particle or the background. The 
segmented image is then counted for the number of disjoint regions each of which is 
tracked. Our proposed method of particle detection is compared with the Harvard 
tracker and the results are shown in Figure 2 (a,b, and c for the results on the three 
videos) . The first subplot shows the number of objects tracked by both models. Our 
model is capable of tracking roughly 4 to 5 times more objects than the Harvard 
tracker. The second subplot shows the proportions of “orphans” in each of the frames. 
Those frames are labelled as “orphans” that do not have a track associated with them, 
i.e. they are objects that now need to be tracked from start. Our algorithm shows a 
stable number of orphans (low variance) compared to large changes with the Harvard 
tracker. 

B. Velocity of particles 
Figure 3 shows the comparison of the two models when they calculate the velocity of 
the particles. A velocity distribution is plotted that shows the number of particles 
within each velocity range. Our method is more sensitive to particles moving at high 
speed. The plot shows that a lot more particles with higher velocity are better tracked 
with our method. The Harvard tracker can cope reliably with particle centroids 
moving with speeds up to 4 pixels per frame but method tracks velocity up to 8 pixels 
per frame. Furthermore, our tracker also computes velocity for a much larger number 
of particles as shown. 
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Fig. 2. A comparison of proposed tracking algorithm with Harvard tracker on (a) Video 1V  (b) 

2V , and (c) 3V . The first graph shows the number of objects tracked by each model. The 

second graph shows the proportion of orphans (objects that could not be tracked) at each frame 
by both models. 

 

Fig. 3. A comparison of proposed tracking algorithm with Harvard tracker on (a) Video 
1V (b) 

2V , and (c) 3V . The first histogram shows the numbers of particles tracked (frequency) within 

an average velocity range on the x- axis using the Harvard tracker. The second histogram is 
generated with our method. 
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C. Displacement of particles 
The displacement of particles is important to measure (Sharma et al, 2004). Diffusion 
processes are special cases of Markov processes with continuous sample function, 
which serve as probabilistic models of physical diffusion phenomenon. Brownian 
motion is the category of motion for which the variance in time is linear and whose 
slope is diffusion constant. Other variations are classified as Non-Brownian motion. 
In small times, as transients are involved, most of the movements are nonlinear, 
hence, motion will be always non-Brownian.  Figures 4(a,b,c) show the overall 
distance summed across all frames. Figures 4(d,e,f) show the direct line distance 
between the start and the end positions of the particles. In both cases, the performance 
of our model (marked with open circles) is superior to the Harvard tracker (marked 
with asterisks) as it can track longer distances and especially those particles that move 
the most. 

 

Fig. 4. (a,b,c) The overall distance (in pixels) travelled by the particles tracked using our 

proposed model and the Harvard tracker for videos 1V , 2V and 3V ; and Figures 4(d,e,f). The 

straight-line distance between the start and end positions of each particle tracked using our 

proposed model and the Harvard tracker videos 1V , 2V and 3V . 
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We improve upon the basic idea of plotting mean square displacements against the 
time lag and then finding the slope of the line. Instead, we find the line of best fit 
(regression) that has the least square distance from all other points. The residuals from 
this line are calculated and plotted for each model. A high magnitude of residuals 
shows that the motion is Non-Brownian.  Figure 5 shows these results (residuals) for 
the mean square displacements and Figure 6 the mean square change in direction.  

In both figures, our model results are available for more number of objects. In 
general, our model results show higher residuals. Our tracker suggests that there is 
large variability in the motion of particles both in terms of displacement and 
directionality. The particles with high residuals cannot be easily predicted and require 
sophisticated tracking mechanism. It is evident that for displacement residual of 
greater than 4, the Harvard model is incapable of tracking objects.  

 

Fig. 5. The residuals calculated between the regression line that estimates the function plotting 
the variance in mean displacement of particles plotted as a function of time lag. 
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Fig. 6. The residuals calculated between the regression line that estimates the function plotting 
the variance in mean directionality of particles plotted as a function of time lag. 

D. Analysis of Particle Shape 
Figure 7 shows the mean and standard deviation of shape numbers S  plotted for the 
tracked particles in the three videos. The output shows that there is considerable 
variability in the shapes of the particles tracked. The majority of the particles tracked 
are oval or round. Shape provides an important cue for tracking when no matching 
pair is found in the search radius. The particle can slowly change shape as they travel 
either by themselves, as a result of collision with another particle, when they split, or 
as a result of changes in segmentation quality (which is affected by illumination 
changes in particle appearance). Since the change is gradual, reasonable shape 
matching can be performed. Furthermore, shape is important to characterize not only 
for image analysis but also from a biological perspective. At present we are 
investigating this in our further research to evaluate the nature of some biologically 
important particles. 
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Fig. 7.  Shape number statistics for the particles tracked in the three videos 

4   Discussion and Conclusions 

In this paper we proposed a novel particle tracking algorithm. We showed that this 
tracker is capable of tracking sub-cellular traffic with high accuracy and much better 
than the Harvard Tracker. Our future work will address this scheme for 3D tracking. 
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Eglin, Véronique I-580, I-664
Emile, Bruno II-455

Fang, Bin-Xing I-363
Fang, Hui II-542
Farooq, Faisal II-30
Feng, Yue II-542
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Garćıa-Orellana, Carlos J. I-488
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Maćıas-Maćıas, Miguel I-488
Maggini, Marco I-81
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